
Spline-Based Robot Navigation

Evgeni Magid

Applied Mathematics

Technion - Israel Institute of Technology

Haifa, Israel

Email: evgenue@tx.technion.ac.il

Daniel Keren

Computer Science

University of Haifa

Haifa, Israel

Email: dkeren@cs.haifa.ac.il

Ehud Rivlin and Irad Yavneh

Computer Science

Technion - Israel Institute of Technology

Haifa, Israel

Email: {ehudr, irad}@cs.technion.ac.il

Abstract— This paper offers a path planning algorithm based
on splines. The sought path avoids the obstacles, and is smooth
and short. Smoothing is used as an integral part of the algorithm,
and not only as a final improvement to a path found by other
methods. In order to avoid a very difficult optimization over all
the path’s points, it is modeled by a sequence of splines defined
by a gradually increasing number of knots.

I. INTRODUCTION

Motion planning is concerned with automatic planning of a

collision-free path between initial and final configurations. The

classical motion planning problem, termed the piano movers

problem, is defined for complete a priori information about

the obstacles in the environment. The piano movers model is

formulated as follows [15]. Given are a solid object of known

size and shape in two- or three-dimensional space, its initial

and target position and orientation, and a set of obstacles in

the environment. The shapes, positions and orientations of the

obstacles in space are fully described. The task is to find

a continuous path for the object from its initial position to

the target position, while avoiding collisions with obstacles

along the way. Because full information is assumed, the whole

operation of path planning is a one-time off-line operation. The

basic requirements become soundness (collision free path),

completeness (guaranteed to find a path if it exists), optimality

(being close to the optimal path) and complexity (time and

space performance). The main difficulty of the piano movers

model is to obtain a computationally efficient scheme.

Searching is a fundamental component of piano movers

conception. Given a search space, a set of possible problem

states, and a state transition function to determine the states

directly reachable from any given state, a search method is

an algorithm to control the exploration of the state space in

order to identify a path from an initial state to the goal. Given

techniques to search a state space for a path, it remains to take

an environment and to construct a state space to represent

it [6]. A straightforward approach is to take a geometric

representation of a free space and to discretize it (e.g., [2]).

Other mechanisms of mapping the robot’s environment onto a

discrete searchable space include visibility graph (e.g., [14])

and Voronoi diagram (e.g., [5]) construction techniques. Rather

than searching through a discrete space that represent the state

of the robot, an alternative is to model the configuration space

of the robot as a continuous space. Path planning is considered

as the appropriate trajectory within this continuum, modeled,

for example, as a potential field (e.g. [7], [9], [14]).

An apparent advantage of the piano movers approach is that

any optimization criteria can be easily introduced: finding the

shortest path, or the minimum-time path, or the safest path,

or smoothest path etc. Smoothness of the path is essential

for mobile robot navigation, because non-smooth motions can

cause slippage of wheels which degrades the robot’s dead-

reckoning ability. Given a smooth path, a robot can move

for a long distance without receiving extra visual or range

information. The smoothness property of the path is extremely

important for car-like vehicles, which are constrained with

their motion abilities.

Numerous motion planners consider the car-like vehicle as a

three-dimensional system moving in the plane and subjected to

constraints on the curvature in addition to the non-holonomic

constraint of rolling without slipping. The pioneering work by

Dubins [3] showed that the minimal length paths for a car-like

vehicle consist of a finite sequence of two elementary com-

ponents: arcs of circle and straight line segments (e.g., [19]).

From then, almost all of the proposed motion planners com-

pute collision-free paths constituted by such sequences [13].

As a result, the paths are piecewise C2: they are C2 along

elementary components, but the curvature is discontinuous

between two elementary components. To follow such paths,

a real system has to stop at these discontinuity points in order

to ensure the continuity of the linear and angular velocities.

One of the solutions is to smooth the sequences straight line-

arc of circle by clothoids (e.g., [4]). The paths are then C2

between two cusp points. Unfortunately, clothoids do not have

a closed form making the control of their shapes difficult and

dangerous in the presence of obstacles. A completely different

approach is to obtain a shortest path with a visibility graph

methods (e.g., [10]) or Generalized Voronoi graph (e.g., [17]),

with further modification of the path according to dynamic

constraints (e.g., [1]).

Our research goal was to create a path-generating method

for a car-like mobile robot. It should reach a target configu-

ration from a certain initial configuration as fast as possible

under known environment without collision. The main objec-

tive of the new method is the smoothness of the path, while the

optimality (i.e. path length) is only secondary. We introduce

the smoothness requirement on a path from the first stage

of the algorithm instead of smoothing the path on the last

1-4244-0259-X/06/$20.00 ©2006 IEEE
2296

Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

−20
−15

−10
−5

0
5

10
15

20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Potential function for alpha = 1

α=1

−20
−15

−10
−5

0
5

10
15

20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Potential function for alpha = 0.5

α=0.5

−20
−15

−10
−5

0
5

10
15

20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Potential function for alpha = 0.3

α=0.3

−20
−15

−10
−5

0
5

10
15

20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Potential function for alpha = 0.1

α=0.1

Fig. 1. The repulsive potential function (eq.(1)) of a single obstacle with a
center (x, y) = (0, 0) and radius ρ = 10 as a function of robot’s coordinates
(x(t), y(t)). The parameter α influences the slope of the potential field.

stages only. A collision free but not sufficiently smooth path

is considered to have the same low quality as a path which

intersects obstacles of the environment.

II. THE COST FUNCTION

The algorithm navigates a point robot in a planar known

environment populated by stationary obstacles. Our goal is to

find a path from the starting point S to a target point T . The

environment consists of circles of different sizes which may

intersect each other. We believe that most real environment

can be approximated with such simplified model. In sec.VI

we will deal with more complicated obstacles.

To ensure the collision free path for each obstacle a

repulsive potential function with a high value inside the

obstacle and on its boundary and a small value on the free

space is defined. A potential field with high potential in the

obstacles’ center ”pushes” the path outside. The boundary of

the obstacle is a breaking point of the potential function. At the

boundary potential field begins to decrease drastically outside

the obstacle with distance and becomes zero fast enough in a

close vicinity of the obstacle. The following function defines

the repulsive potential function of a single obstacle at the

robot’s configuration q(t) = (x(t), y(t)) and satisfies all the

requirements:

Urep(q) =
β

2
(1+tanh(α(ρ−

√

(x(t) − x)2 + (y(t) − y)2))),

(1)

where ρ is the radius of the obstacle with the center

at (x, y). The additive constant in the brackets makes the

potential function non-negative. A scaling factor β shows the

influence of the obstacle penalty on the path cost. Division by

2 normalizes the expression in the brackets.

A parameter α is responsible for pushing the path outside

the obstacle. With α = 1, close to the boundary - both inside

and outside the obstacle - the potential function changes fast.

While the potential field rapidly converges to zero outside the

obstacle as a point moves away from the obstacle’s center, the

T(q) T(q)+L(q) T(q)+R(q) F(q)

Fig. 2. The influence of different components of path cost function on the
solution.

S

T

S

T

Fig. 3. Start, target and environment together with the potential function
define the final path for a mobile robot.

situation is problematic inside the obstacle. Since close enough

to the center of the obstacle the potential field is uniform

over a large region, there is no ”pushing out” of the path

from the center of the obstacle toward its boundary. Thus,

to ensure different kinds of ”pushing out”, we need adjust

the parameter α while searching for the path. For a small

value of α the function changes slowly; when α is large, the

peaks of the potential function are extremely strong within the

obstacle(Fig.1).

Topology T (q) is the function that takes into an account all

obstacles of the environment. The obstacles that are far enough

from the point of the path (x(t), y(t)) do not influence the path

cost, since the values of such expressions U j
rep are very small.

To obtain all points of the path, we integrate equation(1) by

parameter t, taking into account the length of each segment,

and sum over all N obstacles of the environment:

T (q) =
N

∑

j=1

∫ 1

t=0

U j
rep(q) ·

√

(x′(t))2 + (y′(t))2dt, (2)

Roughness R(q) is responsible for the smoothness prop-

erty of the path and penalizes in the case of a non smooth

path. The square root provides a regularization of the standard

smoothness measure with respect to other measures:

R(q) =

√

∫ 1

t=0

((x′′(t))2 + (y′′(t))2)dt, (3)

The last term is a path length L(q):

L(q) =

∫ 1

t=0

√

(x′(t))2 + (y′(t))2dt, (4)

2297

The final function of the path cost1 is:

F (q) = T (q) + R(q) + 0.5 · L(q), (5)

Roughness and path length measures are used to satisfy

our requirements on the quality of the path. Fig. 2 shows

the importance of each of the three components. When only

T(q) is used, the path may become extremely long, since the

only requirement on the path is to stay far from obstacles.

T(q) together with L(q) generate a path which is enforced to

be shorter than the latter. T(q) together with R(q) is close

to the path cost function containing all three components

and the difference is very subtle in simple cases. In more

complicated examples the influence of the additional length

term accumulates through the iterations and the resulting paths

may become completely different. The lack of L(q) may lead

into a long self-crossing sections of the path which lie far from

all obstacles (i.e. T(q)→0) and all efforts of the algorithm are

concentrated on minimization of R(q) component. These three

desired properties of the path, implemented with a variational

planning approach, are built into our potential cost function

which guides the robot through the environment(Fig.3).

III. THE ALGORITHM

The algorithm works iteratively, starting from two given

points of the path; start point S, target point T and the

obstacles of the environment serve as input for the algorithm.

At the first step the initial guess on the path is made. The

initial path is evaluated. This evaluation serves as a ”minimum

path cost available at the moment” for further improvement.

At each iteration a new initial guess based spline is proposed

as a better option for the path. Optimizing the initial proposal

with Nelder-Mead Simplex Method(NMSM) [12] to minimize

a cost of the path results in a better path, which in turn serves

as an initial guess for the next iteration. The optimization

deals only with the via points of the path, which define the

spline, while the evaluation of the path takes into an account

all points of the path. Each iteration rebuilds the spline,

utilizing the information from the previous stage, increasing

the number of spline’s points and adjusting parameters of

the minimization target function. After each iteration the path

quality is tested relative to the previous iteration. As soon as

the path satisfies the basic property of being collision free,

a few more iterations are conducted in order to improve the

resulting path locally.When the convergence of the path cost

function stops, the algorithm informs that the path is found. If

a collision free path is not obtained after a predefined number

of iterations, the algorithm terminates (Fig.4).

V ia points (MP) are defined as evenly spaced points along

the curve (S,T). First via point MP divides the initial path

(S,T) in two equal parts. Two via points create 3 equal parts

1Our choice of constants is driven by our wish to pay most attention to the
main requirement of the collision free path and smoothness of the path. The
length is less important, since, while the search proceeds in the vicinity of the
obstacles, minimization of the path length is an inherent property of topology
component. As soon as topology component is close to zero, 0.5 · L(q) still
prevents the infinite growth of the path length in a fully satisfactory way.

Obstacles, S, T

Initial guess

Iteration limit overflow ?

Optimization of guess

Path evaluation

Increasing MP, adjusting parameters

Spline construction and optimization

Stop improvement ?

Failure Success

No

No

Yes

Yes

Use

previous

spline as

initial

guess

Fig. 4. Algorithm flow block.

S = MP0

MP1

MP2

MPk

MPk+1 MPn

T = MPn+1

Fig. 5. The distribution of the via points MPi for i = 0..n + 1 is uniform.

of the path and so on. This way when we acquire n via points,

the path (S, T) is divided into n+1 equal segments. Eventually

we posses a uniform distribution of via points on the path

length. (Fig.5)

The first step of our algorithm is an initial guess of the

path. We simply choose it to be a straight line segment (S,T).

Then the NMSM attempts to minimize the cost function of n

real variables (via points) using only function values, without

any derivative information. It can often handle discontinuity,

particularly if it does not occur near the solution, but it may

only give local solutions.

Iterations are the heart of our algorithm. The main idea

is that each new iteration is getting closer and closer to the

desired path. We start from a small value of parameter β,

which shows how much the obstacle should be considered

while choosing the path. Further β is increased: the importance

of collision with the obstacles grows with each iteration.

Similarly, we start from a small value of α, increasing it

with time. The third varying parameter of an iteration is the

number of NMSM iterations (NMSM-iterations). The last and

probably the most important parameter which is increased at

each new iteration is the number of path via points MP, which

determines the complexity of the spline. At each iteration we

use a result of the previous iteration as an initial guess for

NMSM, implemented in MATLAB’s function fminsearch.

2298

At the first iteration of stage one via point is chosen. It

serves as an initial guess to the optimization function. The

target function of the optimization is a cost of the spline, based

on the start, target and via points. The NMSM optimization

”plays” with the via points, moving them locally in different

directions in order to minimize the cost of the produced spline.

When the number of optimization attempts prevails over the

number of NMSM-iterations allocated for this iteration of the

algorithm, a spline with a minimal cost path (relatively to other

attempts) is chosen as a next initial guess. The via points are

uniformly redistributed on the length of this spline (fig.5) and

serve for the next spline optimization. At each iteration the

number of via points is increased by one, enriching the spline.

The spline becomes more flexible with regard to its ancestor.

Parameters α and β are increased as well. In the several first

iterations when parameter β still has a low value, the main

terms of the cost function are roughness and path length.

As parameter β grows, the main term of the path cost becomes

intersection with obstacles. Each obstacle adds its own penalty

to the cost function. In case of intersecting obstacles the cost

of passing through the intersection is a sum of each separate

intersecting obstacle’s contribution.

The number of NMSM-iterations varies with each iteration

as follows. Nelder-Mead algorithm tends to work well in prac-

tice by producing a rapid initial decrease in function values,

but it does not ultimately converges to a minimizer [12].

This means that first NMSM-iterations are significant, while

the following NMSM-iterations decrease the cost function

less essentially. During the experiments we noted that in the

first 3-4 iterations the most significant part of the work is

accomplished, when the spline is rather simple. Since the

number of via points is small in the first iterations, the

computational cost of every NMSM-iteration is not high.

This allows us to allocate more NMSM-iterations in the first

iterations of the algorithm, which create the ”skeleton” of the

final path. Further iterations have more local variations around

this ”skeleton”, coiling round single obstacles one by one. The

fluctuations of the path (i.e. the improvement of the path cost)

are less essential, while the computation cost of each NMSM-

iteration increases rapidly with the number of via points. Thus,

less NMSM-iterations are wholly satisfactory in the further

iterations.

The iterations may stop in two cases: success and failure.

The algorithm decides that it succeeded to find a path when

after a number of iterations the collision free path is obtained.

There are two stages of the algorithm, which are independent

of each other. Both stages have the same structure and the main

difference is a particular choice of parameters α and β. If the

first stage, supposed to deal with simple environments, fails,

the second stage, supposed to deal with more sophisticated

environments, restarts all the process from the beginning in

attempt to find a path far away from the obstacles. As soon

as a collision free path is obtained, further iterations are used

to improve the obtained path locally in the terms of its length

and smoothness. This reminds of a standard procedure used

in methods for searching a shortest smooth path - smoothing

a final path. However, in our algorithm the requirement of

smoothness is introduced from the beginning of the search

and not only on the final stages.

The evaluation function, based on eq.(5), detects when the

so called false improvement of the path starts:

EF (q) = R(q) + L(q), (6)

The distance from the obstacles is not included at all and

only the quality of the produced path is considered. As soon

as the next iteration, improving the path from the obstacle

avoidance point of view, increases the value of eq.(6), the

evaluation function signals that it is time to stop the iterations.

IV. LOCAL MINIMA

In some cases our algorithm fails to find an existing path

from S to T in the given environment in the first stage due

to a local minimum of the cost function. The optimization of

path cost function is conducted over a space of much larger

dimension (the number of spline via points) and is quite costly.

Even though Nelder-Mead optimization uses only function

values without any derivative information, it often produces

a local solution in concave scenes in the presence of local

minimum of a potential field, which is not globally optimal.

Even though for general non-convex functions the Nelder-

Mead algorithm tends to work well in practice by producing a

rapid initial decrease in function values, it is an open problem

if there exists any function f(x) in R2 for which the algorithm

always converges to a minimizer [12].

To globalize the Nelder-Mead method, probabilistic restarts,

utilizing a memory of previous iterations, are introduced

in [18]. Unfortunately, this solution has several serious draw-

backs, which are common to all randomized planning meth-

ods [14]. The planner typically generates different paths if it

is run several times with the same problem and the running

time varies from one run to another. If the input path planning

problem admits no solution, the planner has no way to

recognize it even after a large amount of computation. Hence,

a limit on the running time of the algorithm has to be imposed.

But, if the limit is attained and no path has been generated

yet, there is no guarantee that the free path does not exist.

For the latter reason we did not apply a randomized method

for restarting the application with different initial guesses - it

is hard to establish a good trade off between infinite number

of restarts when the free path exists and the situation with

no free path. Any such choice would fail in some generic

case. Our solution is simple and successfully deals with many

cases of potential function local minima. When the first stage

of the algorithm signals its failure, we already know that

it is caused by a local minima of the potential field. It

means that the potential field map requires a reconstruction.

We take different scale of α and β variables to rearrange

local minima of the potential field. With small values of α

potential field becomes significant in all populated regions of

the environment, smoothing the local variations of the field.

The intersecting obstacles create not a single and strong local

2299

S

T

(a)

S T

(b)

Fig. 6. Navigation examples: (a) - with eq.(1), (b) - with eq.(10)

spike of the field, but a less distinguishing and larger region.

Now every populated region looks on a potential field map as

a big obstacle with small and rather local variations. New local

minima of the field may be obtained between the populated

regions, which definitely correspond to the free space of the

environment. Yet this can not solve the problem when the

start and target points are situated deep inside the populated

regions. In such cases the only possible solution is an infinite

sequence of initial guess restarts, which we explained and

rejected earlier.

V. EXPERIMENTAL RESULTS

The simulation supports 2 types of maps: the maps con-

sisting of a finite number of circles (an existing map or

online created map) and binary image maps (the details are

presented in the next section). Maps of the first type consist

of convex, simple concave (intersecting-by-pairs only circles)

and complicated concave environments.

In practice,we start with parameters α = 0.5 and β = 4 for

the first iteration of the first stage, consisting of 14 iterations,

and increase them further. Parameter α takes values 0.6, 0.7

and 0.8, while β is doubled on each iteration before the

switch to a next α and then restarts from 32. The number of

optimization iterations starts from 250 with a further decrease

to 100. The second stage, consisting of 36 iterations, starts

with parameters α = 0.05 and β = 4 for the first iteration

with a further increase. Parameter α takes values 0.1, 0.3, 0.5,

0.6, 0.7 and 0.8, while β is doubled at each iteration before

the switch to a next α and then restarts from 4. The number of

optimization iterations starts from 250 with a further decrease

to 100 (for details refer to [16]).

Our experiments in convex and simple concave environ-

ments showed fast convergence of the method in all scenes

within the first stage of the algorithm (fig.6(a)). Tests in

complicated concave environments showed that the problem

of getting stuck in the local minimum is solved by our

algorithm in the second stage for the majority of (S,T)-points

choices. In the course of the simulations, we identified and

partially solved the following significant problems, inherent

to all Potential Field Methods [11] and independent of the

particular implementation:

Trap situations due to local minima occur when the robot

runs into a dead end. Traps can be created by a variety of

different obstacle configurations, and different types of traps

can be distinguished. Simple trap-situations are resolved with

our map reconstruction method on the second stage of the

algorithm. More complicated trap-situations can be resolved

by heuristic or global recovery.

No passage between closely spaced obstacles. A mobile

robot attempts to pass between two closely spaced obstacles.

The repulsive fields U1
rep(q) and U2

rep(q) are combined and

the sum of them in the opening appears to exceed the penalty

of each separate obstacle. This problem fully depends on the

selection of coefficient α. It does not arise in the first stage

of our algorithm (simple cases) when α is relatively large. In

the second stage it appears in the beginning and disappears

further with the growth of α.

VI. NEW POTENTIAL FUNCTION

The solution proposed in sec.II assumes that each obstacle

is a circle or a union of a finite number of intersecting

circles. This insures a simple definition of a repulsive potential

as a function of distance from the center of the circle.

Unfortunately, this simplicity plays a significant role in local

minimum trapping: each pair of intersecting circles creates

a local minimum of the potential field. The more obstacles

intersect, the more local minimum of the field are created.

A new repulsive potential function is not constrained to a

specific form of the obstacles any more. Given a set A, the

potential function f(A), based on [8], is guaranteed to obtain

small values on A and to increase as we move away from A.

Thus, e−f(A) is exactly the potential function we need.

Given a binary image map, the algorithm works in two

stages. At the first stage a function g(x, y), responsible for the

potential field map of the environment, is created.The binary

image map of a size n×m is transferred into a discrete set of

the points of the environment, with a pixel-by-pixel sampling.

A set S of points si is obtained; si refers to a point of an

obstacle or its boundary in the map:

S = {si} = {(xi, yi)}, i = 1..N, 0 ≤ N ≤ nm (7)

Since the influence of the map size is very extreme, map

normalization is necessary. After sampling, the center of

obstacles’ weight is placed into the center of a square R with

a side of 4 units. The image map is normalized to fit into R.

Then R is provided with a coordinate system with the origin

in its center; now it contains all obstacles of the environment

and a part of a free space and serves as a domain of integration

in eq.(8). On the set S we define a collection Ph(x,y) of

all polynomials of power h in x and y. Experimentally we

found out that h = 5 is fully satisfactory: smaller h gives a

coarse approximation, while for larger h the influence of lower

powers components is negligibly small with regard to higher

powers components. Ph(x,y) is used to construct a positively

defined matrix A of size 21 × 21, where each element Al,m,

of A is computed as follows for all 1 ≤ l,m ≤ 21 :

2300

Al,m =

N
∑

i=0

fl(si)fm(si) +

λ

∫∫

R

(

∂fl(s)

∂x

∂fm(s)

∂x
+

∂fl(s)

∂y

∂fm(s)

∂y

)

dxdy (8)

The parameter λ, obtained experimentally (λ=0.001), is a

positive constant, responsible for the stable solution. When λ

has a high value, the potential field does not correspond tightly

to the obstacle. Decreasing λ makes a better correspondence.

As soon as λ=0 the solution is not stable anymore. A function

g(x, y) is obtained as follows:

g(x, y) = (f1, f2, ..., fk) · A−1 · (f1, f2, ..., fk)T ; (9)

Function g(x, y) obtains small positive values within the

obstacles and high positive values in the free space. The

potential function at the robot location q = (x, y) is defined

as follows:

Urep(q) = e−g(x,y)kβ (10)

with further integration on the path length for all configu-

rations. Coefficient β decreases in two times at each iteration

of the algorithm, starting with β=32; coefficient k = 100 was

obtained experimentally and remains constant.

In the second stage the algorithm presented in sec.III is

applied for a search; eq.(10) replaces eq.(1) and no further

summing in eq.(5) is needed, since g(x, y) takes into an

account all obstacles of the environment by definition. The two

stages are executed separately, since the first stage demands

exhaustive calculations which could be avoided in the case the

same map is used again. We successfully tested the navigation

abilities of our algorithm with the new potential function in

several environments (Fig.6(b)).

VII. CONCLUSION

In this paper we present a new path-generating method for

a car-like mobile robot under the piano movers model. The

robot reaches the target from a certain initial configuration

in a known environment without obstacles collision. The

algorithm is based on a variational planning method. Local

minima problem is partially solved by rebuilding the potential

field map. The obtained path was almost as short as the

optimal path and much smoother than the latter, which would

guarantee that the target can be reached by a car-like

vehicle.

Finally, we present a new repulsive potential function which

is not constrained to a specific form of the obstacle. The

function is applied directly without any initial approximation

of the obstacle which allows to use almost any binary image

as a navigational map. We successfully tested the navigation

abilities of our algorithm with the new potential function in

several simple environments.

REFERENCES

[1] S. Aydin and H. Temeltas. A novel approach to smooth trajectory planning
of a mobile robot. IEEE AMC, 472-477, 2002.

[2] M. Berg, M. Kreveld, M. Overmars and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2000.

[3] L. E. Dubins. On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangents.
Amer. J. Math.,79:497-516, 1957.

[4] S. Fleury, P. Soueres, J.-P. Laumond and R. Chatila, Primitives for
smoothing mobile robot trajectories. IEEE Trans. of Robotics and Au-
tomation, 11:441-448, 1995.

[5] S. Fortune, A Sweeping Algorithm for Voronoi diagrams. ACM Sympo-
sium on computational geometry, 313-322, 1986.

[6] G. Dudek and M. Jenkin. Computational principles of mobile robotics.
Cambridge University Press, 2000.

[7] Y. K. Hwang and N. Ahuja. Path Planning Using a Potential Field
Representation. IEEE ICRA, 648-649, 1988.

[8] D. Keren and M. Werman. Probabilistic Analysis of Regularization. IEEE
PAMI, 15(10):982-995, 1993.

[9] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. International Journal of Robotics Research, 5(1):90-98, 1986.

[10] T. Kito, J. Ota, R. Katsuki, T. Mizuta, T. Arai, T. Ueyama and T.
Nishiyama. Smooth path planning by using visibility graph-like method.
IEEE ICRA, 3770-3775, 2003.

[11] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for Mobile Robot Navigation. IEEE ICRA, 1398-1404, 1991.

[12] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright. Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions.
SIAM Journal of Optimization, 9(1):112-147, 1998.

[13] F. Lamiraux and J.-P. Laumond. Smooth Motion Planning for Car-Like
Vehicles. IEEE Trans. of Robotics and Automation, 17(4):498-502, 2001.

[14] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
USA, 1991.

[15] V. J. Lumelsky and A. A. Stepanov. Path Planning Strategies for a Point
Mobile Automaton Moving Amidst Unknown Obstacles of Arbitrary
Shape. Algorithmica, 2:403-430, 1987.

[16] E. Magid, D. Keren and E. Rivlin. Autonomous Robot Navigation.
Master thesis, Technion, Israel, 2006.

[17] K. Nagatani, Y. Iwai and Y. Tanaka. Sensor based navigation for car-
like mobile robots using Generalized Voronoi Graph. IEEE/RSJ IROS,
1017-1022, 2001.

[18] S. Wolff. A local and global, constrained and simple bounded Nelder-
Mead Method. Tech.report,Weimar University, Germany, 2004

[19] A. Zelinsky and I. Dowson. Continuous smooth path execution for an
autonomous guided vehicle (AGV). IEEE Region 10 Conference, Tencon
92, 871-875, 1992.

2301

	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

