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Abstract
The presented paper describes a shape optimization workflow using Bayesian strategies. It is applied to a novel automotive 
axle system consisting of leaf springs made from glass fiber reinforced plastics (GFRP). Besides the primary objectives 
of cost and mass reduction, the assembly has to meet multiple technical constraints with respect to various loading condi-
tions. The related large-scale finite element model is fully parameterized by splines, hence the general shape of the guide 
curve as well as the spring’s height, width and material properties can be altered by the corresponding workflow. For this 
purpose, a novel method is developed to automatically generate high-quality meshes depending on the geometry of the 
respective springs. The size and complexity of the model demands the implementation of efficient optimization techniques 
with a preferably small number of required response function evaluations. Therefore, an existing optimization framework 
is extended by state-of-the-art Bayesian methods, including different kernel combinations and multiple acquisition function 
approaches, which are then tested, evaluated and compared. To properly address the use of GFRP as spring material in the 
objective function, an appropriate cost model is derived. Emerging challenges, such as conflicting targets regarding direct 
material costs and potential lightweight measures, are considered and investigated. The intermediate steps of the developed 
optimization procedure are tested on various sample functions and simplified models. The entire workflow is finally applied 
to the complete model and evaluated. Concluding, ideas and possibilities in improving the optimization process, such as the 
use of models with varying complexity, are discussed.

Keywords Bayesian optimization · Surrogate models · Shape optimization · Gaussian processes

1 Introduction

The following sections briefly introduce the presented indus-
trial application example and relevant references describing 
similar optimization problems. Furthermore, optimization 
methods that are potentially suitable for solving the given 
problem are introduced. Relevant literature regarding these 
methods are reviewed and evaluated.

1.1  Leaf spring optimization

The starting point of the problem on which this optimiza-
tion workflow is based on is the development of a novel axle 
system. It essentially consists of four glass fiber reinforced 
leaf springs, manufactured in a corresponding resin transfer 
molding process (see Fig. 1). The system is applied in an 
automotive context in the area of chassis assemblies and 
offers the chance of significant cost and weight reduction, 
speaking of approximately 7 kg per vehicle (Kersten and 
Fiebig 2019). All involved components have to cope with 
various loading conditions and the system as a whole has 
to meet multiple specific technical constraints, concerning 
strength and driving dynamics. To achieve these character-
istic values, the guide curve of the springs, their rectangular 
cross-sections, as well as their material parameters have to 
be altered in the demanded optimization process. The cor-
responding finite element model to simulate those loading 
conditions will be automatically generated by the workflow 
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itself, guaranteeing an appropriate hexahedral dominant 
mesh.

Existing works in the field of optimizing leaf springs 
are using a broad range of different optimization types and 
algorithms. The main objective here is the minimization of 
spring weights and the associated reduction in component 
costs, in most cases by applying new materials. Comparably 
basic studies are evaluating pure material substitutions while 
not changing the geometry of the spring at all (Ghag et al. 
2018). The consideration of using composite fiber materi-
als usually involves a redesign of the conventional spring 
design, but can further reduce the components weight by 
up to 90% (Kumar et al. 2012). Attempts in optimizing the 
actual geometry of springs are mostly sizing optimizations 
by changing the global dimensions of the spring’s cross-
section (Kumar et al. 2011; Rajendran and Vijayarangan 
2001). By changing cross-section dimensions locally, opti-
mization processes yield more sophisticated designs, such 
as a hyperbolically decreasing spring width (Shokrieh and 
Rezaei 2003). Finally, studies on combining different opti-
mization types to create high-end composite leaf springs are 
using topology optimization as well as sizing and parameter 
optimization methods (Gaylo et al. 2019).

Despite the fact that there is a wide range of work on the 
optimization of leaf springs, none of them seem suitable 
for the problem at hand. Material substitution and size opti-
mization will not be sufficient to meet the complex driving 
dynamic constraints of the system. The inclusion of topol-
ogy optimization methods is not considered reasonable 
since the topology of the springs is in general already fixed. 
Therefore, a novel method has to be developed to modify the 
guide curve, the cross-sectional dimensions, and the mate-
rial parameters of the spring while maintaining an adequate 
mesh quality.

1.2  Gaussian processes

Since the mechanical behavior of the spring system is highly 
nonlinear regarding geometrical and material parameters, 
the respective simulations are quite time-consuming. There-
fore, and primarily to save license and calculation costs, the 
number of function evaluations have to be kept preferably 
low. Moreover, the non-linearity of the given model leads 

to a comparatively complex and inconvenient calculation 
of gradient information, which is therefore considered as 
too expensive. Optimizing such large-scale, nonlinear, non-
differentiable, black-box functions is still subject of current 
research (Elhara et al. 2019; Al-Dujaili and Suresh 2017; 
Regis 2020). One way to address these kind of problems 
is the application of surrogate models (Barton and Mecke-
sheimer 2006). By trying to approximate actual functions 
as simply and accurately as possible and by constantly 
readjusting those models, an appropriate optimization algo-
rithm strives to achieve a maximum gain of knowledge using 
existing information toward further iterations and potential 
optima. In this way, optimization problems can be treated in 
a global manner and are less localized as in other methods 
(Egea et al. 2007; McDonald et al. 2007). Enabling, develop-
ing and enhancing optimization processes using surrogate 
models has been the object of extensive studies in the past 
years. The efficient use of existing information to approxi-
mate an objective function, as well as the low computational 
cost of evaluating such surrogate models, have increased 
their popularity.

Fostered by novel methods of emerging research areas, 
such as machine learning or artificial intelligence, especially 
optimization strategies using approaches from Bayesian 
statistics have been revived and extended (Shahriari et al. 
2016). These strategies aim to localize optimal points with 
the aid of Gaussian processes, which do not only approxi-
mate functions but can also quantify the uncertainty of the 
model (Rasmussen and Williams 2006). Besides the Gauss-
ian processes implemented in this work, other surrogate 
model approaches are often examined and enhanced. Popular 
models are radial-basis functions (Song et al. 2019) and sup-
port vector regression (Shi et al. 2020), which are relatively 
performant and precise. There are also studies evaluating 
neural networks (Springenberg et al. 2016; Alam et al. 2004) 
or even splines (Turner and Crawford 2008). For the pre-
sented problem, Gaussian processes were chosen for several 
reasons. The possibility of choosing different kernels and 
optimizing hyperparameters of a GP provides a great varia-
bility and expandability (Kim and Teh 2018; Duvenaud et al. 
2013). This makes the method itself versatile and applicable 
to many different kinds of problems. Also, the estimation of 
uncertainty in the prediction helps picking new evaluation 

Fig. 1  Application example of glass fiber reinforced leaf springs in an automotive chassis assembly in order to achieve weight reduction (Kersten 
and Fiebig 2019)
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points and balancing exploration against exploitation. This 
can lead to accelerated convergence of the optimization 
process and helps to approach optimization problems in a 
more global manner. The main disadvantages of Gaussian 
processes, on the other hand, their high computational com-
plexity of O(n3) and their difficulties in higher dimensions, 
do not arise in the problem at hand (Yetilmezsoy et al. 2021; 
Akbari et al. 2019; Singh et al. 2021).

1.3  Bayesian optimization

The so-called Bayesian optimization is intended to identify 
new and promising evaluation points on a Gaussian process 
and thus to guide the building of the surrogate model on 
the one hand, but also to find optimal solutions on the other 
hand. This is done by choosing successive points, balanc-
ing between potentially optimal points (exploitation) and 
areas of the model where uncertainty is comparably high 
(exploration) (Frazier 2018). Therefore, Bayesian methods 
basically put a lot of effort into choosing the next point to 
evaluate in order to keep the number of required iterations 
low. This can have a particularly favorable effect on time-
consuming function evaluations and thus on the presented 
problem of optimizing the leaf spring system. One of the 
first works toward modern Bayesian optimization is the so-
called EGO algorithm (efficient global optimization, Jones 
et al. 1998). Due to these and following studies, the appli-
cation of Bayesian strategies in conjunction with Kriging 
models or Gaussian processes to describe complex objective 
functions of black-box models is a preferred choice (Viana 
et al. 2012; Basudhar et al. 2012). Especially, when it comes 
to expensive function evaluations with incomputable deriva-
tives and unknown convexity properties, Bayesian optimi-
zation proves its advantages against other methods, such as 
L-BFGS or best09 (Riche and Picheny 2021; Diouane et al. 
2021). Additionally, its ability in balancing exploration and 
exploitation against each other during the optimization pro-
cess, makes it an appropriate approach for structural shape 
optimization problems (Zacchei and Molina 2018; Ghosh 
et al. 2019; Dominguez et al. 2017).

Recent works addressing methods of Bayesian optimi-
zation are primarily aiming at improving and extending 
existing approaches with new ideas and algorithms. The 
enormous number of parameters and settings in Bayesian 
methods provides a high variability. This provides the oppor-
tunity to adapt and to specialize onto different optimization 
problems, which can be an advantage regarding the no free 
lunch theorem (Wolpert and Macready 1996). However, this 
also requires in-depth knowledge and profound user expe-
rience. Hence, there is a wide range of studies providing 
this knowledge by testing and comparing different methods 
against each other, for example, a comparison of different 
universal kriging methods within the EGO framework (Palar 

and Shimoyama 2018). On the other hand, recent approaches 
aim to reduce required user knowledge by determining 
appropriate model types and hyperparameters based on prior 
data and adjusting those parameters adaptively. In this way, 
the methods work more efficiently while the required user 
knowledge decreases (Mehmani et al. 2018).

1.4  Acquisition functions

In order to complete the workflow of Bayesian optimization, 
an acquisition function has to be derived from the previously 
described Gaussian process. In maximizing this function, 
the evaluation point for the following iteration can be deter-
mined. Because of its significant influence on the optimiza-
tion process, a large variety of methods exist. Some of the 
firstly developed acquisition functions are still very preva-
lent. This is due to their straightforward principle and due 
to the fact, that they are quite effective in a large number of 
cases. The probability of improvement (PI, Kushner 1964) 
for example suggests the point in the given design space, 
which is most likely to achieve an improvement of the func-
tion value. Unfortunately, it does not evaluate how large this 
improvement will be. The approach of expected improvement 
(EI, Mockus et al. 1978), however, can lead to better results, 
since it also evaluates the size of a possible improvement. 
Furthermore, the so-called scaled expected improvement 
extends the common EI by proposing evaluation points with 
high EI at locations with a simultaneously high confidence 
(Noè and Husmeier 2018). Although these function do have 
parameters that can be used to attach more weight in explor-
ing the design space, their focus is mostly exploitation. More 
exploration-based approaches would be the upper confidence 
bound (UCB, Srinivas et al. 2010) or the entropy search 
(ES, Hennig and Schuler 2012). Furthermore, the method 
of predictive entropy search (PES, Hernandéz-Lobato et al. 
2014) as well as the method of max-value entropy search 
(MES, Wang and Jegelka 2018) showed promising results 
in extending entropy-based approaches.

For the presented optimization problem, an adjusted EI 
algorithm called top-two expected improvement will be 
implemented (Qin et al. 2017). Instead of picking only the 
best point found during the acquisition function optimiza-
tion, the two best points are determined. With a defined 
probability, the first or the second point will be chosen for 
simulation and evaluation. This leads to a more exploratory 
behavior in methods that are mainly driven by exploitation.

1.5  Consideration of constraints

In order to optimize a given problem including constraints, 
each of these constraints is represented and modeled indi-
vidually using a corresponding GP throughout the optimiza-
tion process. This way, for each GP, a respective acquisition 
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function can be calculated. These can then be combined to 
form an overall acquisition function, whose maximum will 
be the evaluation point in the following iteration. Most exist-
ing approaches aim to modify established acquisition func-
tions in a way that excludes all invalid regions according to 
the current constraint surrogate model. Constrained Bayes-
ian optimization strategies based on EI are quite common, 
although most of these methods can basically be applied 
to various acquisition function approaches (Schonlau et al. 
1998; Gelbart et al. 2014; Gardner et al. 2014). However, a 
relevant drawback of these basic techniques is their inability 
to evaluate and differentiate the invalidity of parameter sets. 
Attempts in overcoming these problems by using informa-
tion provided by the corresponding GP in infeasible regions 
is a subject of current research (Picheny 2014; Gramacy and 
Lee 2010). Furthermore, alternative concepts have emerged 
in recent years, in particular, lookahead algorithms (Lam 
et al. 2018), information-based approaches (Hernandéz-
Lobato et al. 2015, 2016) or the application of augmented 
Lagrangian methods (Gramacy et al. 2016; Gramacy and 
Lee 2010).

The multidimensional design space for the given problem 
is expected to be infeasible in most regions. Thus, the prob-
ability of feasibility (Schonlau 1997) approach is chosen for 
the constraint functions, whereas the above described top-
two EI method will be used for the objective function. This 
will lead to a combined acquisition function optimization 
which tries to maximize all single functions simultaneously 
and in an equivalent way. Comparable to a multi-objective 
optimization, the approach aims to find the most feasible 
points in design space. In addition, a weighting of different 
output values can be applied easily.

2  Contribution

The work presented provides a framework for setting up and 
running spline-based shape optimizations using Bayesian 
approaches. The application example in this case is a rather 
extensive one, considering different computationally inten-
sive load cases, nonlinear behavior and technical constraints, 
such as component strength and various driving dynamic 
parameters. Since the corresponding simulation model 
uses a 3D solid composite mesh to represent the GFRP leaf 
springs, a novel method for creating this mesh is developed. 
This includes an extended parameterization approach based 
on non-uniform rational B-splines (NURBSs) to be able to 
represent and modify the geometry and dimensions of the 
springs. In addition, an adaptive meshing approach is imple-
mented, which ensures constant element and mesh quality 
regardless of the dimensions of the current spring. In order 
to be able to consider different strategies during the product 
development process of components made from composite 

materials, an appropriate cost model is derived. It enables 
the user to decide whether the focus of optimization should 
be on direct material costs or on lightweight design and 
thus the component mass. Based on the given application 
example, it is expected that the objective function, which 
depends on several output variables, will be multimodal and 
invalid in many areas. To model the objective function with 
sufficient accuracy, a wide variety of kernels were tested 
prior to the actual optimization. The prediction quality of the 
resulting models was then evaluated and compared with each 
other using the R2-predict value. The challenges described 
here and their proposed solutions are detailed in the follow-
ing sections.

Following the Three-Columns-Concept of structural opti-
mization by Eschenauer (1989), the upcoming sections are 
divided in the elaboration of structural model, optimization 
model and optimization algorithm. Section 3 introduces the 
application example as well as the simulation model. The 
optimization model, including the formulation of an objec-
tive cost function and constraints are described in Sect. 4. In 
the following Sect. 5, the Bayesian approach is introduced 
with respect to the given problem. The implementation 
and choice of various kernels and acquisition functions are 
described, as well as further configuration options to control 
the optimization process. Results and performance of trial 
optimization runs on the given problem are evaluated and 
compared to each other in Sect. 6. Concluding, Sect. 7 sum-
marizes the outcomes and provides an outlook on possible 
following research aspects.

3  Structural model

As described in Sect. 1, the application of leaf springs in a 
novel rear axle assembly will serve as generic example for 
the introduced optimization method. It represents the prob-
lem of optimizing systems which are, compared to academic 
optimization tasks, rather complex and therefore computa-
tionally intensive. Further areas of application would be, for 
example, the evaluation of crashworthiness (Shi et al. 2012) 
or the examination of problems regarding fluid dynamics 
(Park et al. 2018). The upcoming section outlines the sim-
ulation model and its characteristics, followed by a brief 
introduction of the parameterization of the structural model.

3.1  Simulation model

The given leaf spring axle system mainly consists of two 
halves of nearly symmetric assemblies in XZ plane. Each of 
these contain two leaf springs, held by an aluminum casted 
hinge. The whole assembly is mounted at six bearing points 
(see Fig. 2). Point a is directly connected to the body of 
the vehicle, while point b is attached to the wheel carrier. 
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Point c consists of a rubber bearing, which is connected to 
the vehicle’s subframe. Relevant load cases regarding the 
assessment of the spring system evaluate, on the one hand, 
the components’ strength using the Puck failure criterion 
for fiber reinforced composites (Puck 1996). On the other 
hand, the axle system has to fulfill several driving dynamic 
parameters, which are for example the total spring rate, the 
toe-in angle or the camber angle of the system. These val-
ues have to be as close as possible to the corresponding 
target values, in order to achieve an appropriate driveability. 
Overall the validation of the system’s performance is com-
posed of nine kinematic simulations and five misuse load 
cases. These load cases lead to nonlinear behavior of vari-
ous types. Above all, plastic material behavior as a result of 
high deformation should be mentioned here. Furthermore, 
bolted and clamped connections and the formulation of the 
corresponding contacts cause additional non-linearities. 
Finally, the use of nonlinear spring and damper elements 
also contributes to the complexity of the model. Taking all 
these types of non-linearities into account, the calculation 
of objective and constraint function gradients is considered 
to be too time-consuming in terms of implementation and 
iteration duration.

Due to their comparably voluminous geometry, modeling 
the springs in a shell-based manner does not lead to the 
required quality in results. This applies to both the driving 
dynamics as well as to strength values. Furthermore infor-
mation regarding the exact location of weak spots would be 
lost in a shell model. Therefore, a 3D model made from solid 
elements is necessary for the given problem. For the original 
model, this results in a simulation with approximately 2.8 
million degrees of freedom and a normalized CPU time of 
about 60 h on a high-performance cluster using 96 CPUs. 
In an attempt to speed up the simulations, a coarser mesh 
was used for areas which are not part of the current evalu-
ation and were furthermore substituted by surrogate ele-
ments, if possible. Due to these measures, the number of 
degrees of freedom were reduced to 800,000, resulting in 
a normalized CPU time of approximately 12 h on the same 
high-performance computer (HPC). Assuming an optimi-
zation with 50 function evaluations, this would still lead 
to an overall duration of nearly a month. Additional ways 
to further speed up the optimization process would be the 

parallelization of multiple designs on different nodes of an 
HPC cluster. However, this requires that the optimizer is able 
to generate several promising designs per iteration. In most 
cases, an optimization-based product development process 
is faster than looping manually between design and simula-
tion phases. Although, the goal should be to further reduce 
development costs and therefore minimizing the duration 
of an optimization. Preferred measures to achieve this is, on 
the one hand, by speeding up function evaluations or, on the 
other hand, by improving the optimization algorithm.

3.2  Parameterization

As depicted in Fig. 3 different design stages foster different 
optimization types. As the fundamental topology of the leaf 
springs is already determined and is furthermore limited by 
the applied manufacturing process, topology optimization 
methods are not appropriate in this case. In contrast, a sizing 
optimization to meet the demanded targets regarding driving 
dynamics and strength is simply not sufficient. Concluding, 
shape optimization methods seem to be most convenient for 
the given problem. Moreover, looking into the different shape 
optimization methods, three types of parameterization can be 
taken into account according to Bletzinger (2017): node-based, 

Fig. 2  Simulation model of the rear axle assembly consisting of four GFRP leaf springs (blue) and an aluminum casted hinge (gray). The system 
is connected to the body of the vehicle in point a, to the wheel carrier in point b and to the subframe in point c 

Design stages

Conceptual design

Preliminary design

Detailed design

Topology optimization

Form finding

Shape optimization

Large design changes

Shape optimization

Sizing

Topology

Shape

Sizing

Optimization types

optimization

optimization

Fig. 3  Different optimization types allocated to different stages of 
design according to Bletzinger (2017)
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CAD-based or morph-based approaches (see Fig. 4). The 
applied discretization method for the model uses a different 
number of elements and fiber layers depending on the cur-
rent height of the spring. Since this requires the removal and 
insertion of complete layers of elements, both, a morph- or a 
node-based parameterization would be not applicable for the 
given scenario. The CAD-based shape optimization, however, 
seem to fit well for the present problem.

As the process of parameterization and automated model 
generation is already described in detail in a preceding confer-
ence article (Winter et al. 2019), this section will only briefly 
outline the applied methods. The principal shape of the leaf 
spring can be described by a guide curve, along which a cor-
responding cross-section is extruded. This curve’s geometry 
will be expressed by a NURBS (see Fig. 5). To additionally 
influence the height and the width of the component locally 
and simultaneously keep the number of optimization param-
eters low, the common control points (composed of the three 
spatial coordinates and the control point weight) are extended 
in the following way:

(1)pi =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi
yi
zi
�i

hi
wi

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Control point coordinate X

Control point coordinate Y

Control point coordinate Z

Control point weight

Section height

Section width

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The number of control points of each spring curve has a 
direct influence on the shape of the spring itself and, of 
course, on the number of input parameters for the optimi-
zation. In principle, any number of control points can be 
specified in the optimization workflow. Though, using too 
few control points would limit the design freedom given by 
the method. Apart from that, using too many control points 
would complicate the optimization process. Since this would 
also lead to less smooth spring designs in many cases and 
therefore to low strength values, six control points were cho-
sen for the optimization problem at hand, as shown in Fig. 5. 
Besides the parameters per NURBS control point, the global 
fiber volume content (FVC) of each spring can be altered 
during the optimization. Theoretically, changing the fiber 
orientation per layer would affect the mechanical behavior 
of the system. Although, the parameter of fiber orientation 
has no direct effect on the mass of the spring and, if any, a 
negative influence on the manufacturing costs. However, it 
must be taken into account that a change in fiber orientation 
entails a degradation of the mechanical behavior. This in 
turn requires an increase in the size of the spring and thus 
indirectly does have an influence on the mass and cost of the 
spring. Beyond that, orienting the fibers along the spring’s 
guide curve will result in the optimal mechanical perfor-
mance due to the given load types and directions. Hence, 
fiber orientation will for now be disregarded.

After generating the guide curve based on the given 
design variables, the corresponding solid mesh can be cre-
ated. To ensure a model of sufficient quality, equidistant 
points along the spline has to be calculated using a method 
based on the regula falsi (Bronstein et al. 2007). In a next 
step, local coordinate systems are created in each of these 
points. Using the tangent of the curve as local X direction, 
local Y and Z directions are calculated via the method of 
rotation-minimizing frames (Wang et al. 2008). Following, 
the FE nodes from the starting non-design cross-section of 
the spring are copied in every local coordinate system using 
translation and rotation operations. To fit the respective 
nodes to the local height of the spring given by the design 
variables of the optimization, they are scaled in width (Y) 
and height (Z). If a tolerance, which is based on the element 
size of the non-design areas, gets violated by this scaling, 
a node row will be inserted or removed. As a result of this, 
either a new layer of elements will be generated or an exist-
ing layer will be closed. A depiction of different stages of 
the above described model generation is shown in Fig. 6.

4  Optimization model

The optimization model is defined as the mathematical 
formulation of the optimization task itself. It links the 
analysis variables of the structural model and therefore 

ξ2

ξ1

ξ2

ξ1 ξ1

ξ2

Node-based CAD-based Morph-based

Fig. 4  Shape optimization approaches distinguishing between design 
(gray nodes) and analysis (white nodes) grid according to Bletzinger 
(2017)

p1

p2

p3

p4

Guide curve

Fig. 5  Parameterization of the leaf spring model by defining a 
NURBS curve, which represents the guide curve of the component
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the engineering problem with the design variables and 
parameters of the optimization algorithm. First of all, this 
includes the objective function of the optimization, as well 
as implicit and explicit constraints that have to be satisfied.

4.1  Objective function

In most cases, structural optimization seeks to minimize 
the mass of a given component in compliance with tech-
nical constraints, such as stress or strength. In contrast, 
for the given application example a minimization of the 
component’s cost is aspired:

Here, CS denotes the overall costs of the current design, 
subject to all design variables. Usually minimizing costs is 
synonymous to minimizing mass. For the given application 
example of the leaf spring this is not necessarily the case. 
The mass of a spring mS is calculated as the sum of the mass 
of the fiber portion mF and the mass of the matrix portion 
mM of the spring:

Whereas �F and �M denote the fiber and matrix densities, VS 
represents the total volume of the current spring design and 
�S denotes the FVC. The direct material costs of the same 
spring leads to:

Since the density of the used glass fibers is higher than the 
density of the matrix material, a higher FVC would lead to 
heavier springs. In contrast, the costs per kilogram of glass 
fibers are likely to be lower than the costs of matrix material 
in the current scenario. Thus, the heavier the spring gets due 

(2)��������(CS(x)).

(3)mS = mF + mM = VS ⋅ (�S ⋅ �F + (1 − �S) ⋅ �M).

(4)CDMC = mF ⋅ CF + mM ⋅ CM.

to an increasing FVC, the cheaper it gets in terms of direct 
material costs (of course this highly depends on the costs for 
fiber and matrix material of the given optimization problem 
and can therefore lead to different conclusions in other sce-
narios). This does not take possible subsequent costs into 
account, which could arise from a higher component mass. 
Especially penalty payments due to carbon dioxide emis-
sions could play a role in this context. Unfortunately, these 
additional costs are difficult to quantify because of their situ-
ational character. To still consider these kind of costs, they 
are usually represented by a lightweight cost factor. This 
factor should be defined by the product owner and indicates, 
what he is willing to pay as an extra amount per kilogram to 
foster lightweight measures.

Figure 7 depicts the total costs CS for an exemplary 
GFRP leaf spring design with defined geometry and thus 
fixed volume. In order to be able to investigate the influ-
ence of the lightweight cost factor CLW and the fiber vol-
ume content �S , both variables are varied within a certain 
range. In case of a comparably low value for CLW , meaning 
that the product owner is not willing nor able to invest in 
lightweight measures, the direct material costs are domi-
nant. So, due to the lower price per kilogram of fibers, 
designs with a higher FVC and thus a higher spring mass 
will always be preferred over more lightweight designs. 
However, in higher regions of CLW , designs with lower 
FVCs are favorable, leading to spring designs with higher 
direct material costs and a lower mass. The threshold for 
this generic example is located at CLW = 8.76 €/kg (see 
black line). If the specified CLW is below this threshold, 
the optimizer will always prefer designs with a higher FVC 
and thus lower direct material cost, but a higher spring 
mass. On the other hand, if the given CLW is above the 
threshold, the optimizer will prefer designs with a lower 
FVC and thus a higher direct material cost, but a lower 

Fig. 6  Automated finite element model creation of the leaf spring (a), starting with the parameterized spline and corresponding local coordinate 
systems (b), generation of elements (c) and calculation of fiber orientation vectors (d)
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spring mass. It has to be mentioned that this threshold will 
be varying depending on the current component’s volume 
and therefore will be different for every design proposal.

4.2  Constraints

Besides the above described objective function, the system 
has to fulfill four different types of constraints (see Fig. 8). 
First and foremost, the strength of the leaf spring has to be 
ensured, avoiding fiber and matrix failures. There are vari-
ous types of failure criteria for fiber materials which could 
be applied. The Tsai–Wu criterion (1971) is relatively sim-
ple and its computational effort is comparably low. Unfor-
tunately, there is no distinction in different modes of fail-
ure, which makes the identification of measures to improve 
the design difficult. The Hashin criterion in contrast dis-
tinguishes between fiber and matrix failure (Hashin 1980). 

Furthermore, the Cuntze and the Puck criterion have an 
even more detailed differentiation regarding load type and 
direction (Cuntze 1997; Puck 1996). The latter has been 
chosen for the current optimization, since it gives very 
detailed information about different failure modes and its 
computational effort is neglectable, compared to simula-
tion time. Thus, the following strength constraints has to 
be met, where fEFF

 is the strength regarding fiber fracture 
and fE1

 is the strength regarding matrix or interfiber frac-
ture. The Puck criteria are dimensionless quantities and 
are calculated from the quotient of an equivalent stress and 
a certain strength value ( �∕R ). Therefore, a value of 1.0 
should not be exceeded. Although this applies in principle 
to both quantities, preliminary studies have shown that the 
interfiber fracture criterion is less critical, which is why 
the limit was set to 2.0.

Since the optimization aims to optimize the shape of both 
springs, it has to be assured that there is no contact between 
the upper and the lower leaf spring. This leads to the follow-
ing constraint, which checks the overall maximum contact 
pressure PS1S2

 between both components in every simulation 
step:

Due to connected non-design-areas, the first and the last con-
trol point of the curve are fixed. The coordinates of the fol-
lowing points (after first and before last) are only alterable in 
the normal direction of the adjacent joint plane. This already 
leads to a curve which is in most cases quite smooth. To 
further promote smooth guide curves with a preferably low 

(5)
g1(x) = max(fEFF

(x)) ≤ 1.0,

g2(x) = max(fE1
(x)) ≤ 2.0.

(6)g3(x) = max(PS1S2
(x)) ≤ 0.01MPa.

Fig. 7  Component cost depending on lightweight cost factor and fiber 
volume content

Fig. 8  Implicit constraints of the optimization model including spring-to-spring contact, spline curvature, structural strength and driving 
dynamic parameters
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curvature, the optimization workflow offers the possibility 
to define a maximum curvature C′′

max
 for the spline:

Finally, the system has to satisfy the following eight 
specific driving dynamic values to reproduce the kin-
ematic characteristics of the benchmark system as good 
as possible:

1. Toe-in angle 5. Spring rate
2. Camber angle 6. Stabilization rate
3. Roll steer (empty) 7. Long. suspension
4. Roll steer (full) 8. Wheel load

For each of these characteristic values, the relative 
error ΔDn between simulation result of the current design 
DCn and the result of the nominal design DNn has to be 
smaller than 5%. The index n = {1,… , 8} denotes the cor-
responding driving dynamic values from the upper list.

Taking all the above described constraints into account will 
probably result in an objective space, which is invalid in 
many regions. Therefore, the localization of valid designs 
is considered to be most challenging.

5  Optimization algorithm

As already elaborated in Sect. 1.2, Bayesian optimization 
methods and the use of metamodels such as Gaussian Pro-
cesses fit well on the given optimization problem. This is due 

(7)g4(x) = max(C��(x)) ≤ 0.02mm−1.

(8)gn(x) = |(DCn∕DNn) − 1.0| = ΔDn(x) ≤ 0.05.

to the fact, that the given objective and constraint functions 
do not allow a closed-form formulation depending on the 
design variables. Furthermore, their numerical determina-
tion require an elaborate calculation of nonlinear system 
responses in terms of time and cost. Optimizing on surrogate 
models to minimize the number of needed evaluations can 
save a significant amount of both. Furthermore the hardly 
feasible calculation of gradients and the highly nonlinear 
response functions exclude methods based on gradient infor-
mation, such as sequential quadratic programming or the 
method of moving asymptotes. The presented optimization 
workflow was implemented in C++14 and grounded on the 
optimization platform LEOPARD of the Volkswagen AG.

5.1  Bayesian optimization

Optimization methods based on the Bayesian approach had 
firstly been introduced and evaluated by Kushner (1964) and 
Mockus (1975). The theoretical foundation of Bayesian opti-
mization methods is the so-called Bayes’ theorem which can 
be expressed in the following way:

Broadly speaking, the posterior probability of a given model 
M given evidence E is proportional to the likelihood of E 
given M multiplied by the prior probability of M. The prior 
in this case is referred to as the existing belief of the range 
of possible objective functions. For example, this could 
be knowledge regarding shape, smoothness, convexity or 
complexity. These and further characteristics make certain 
objective functions more plausible than others (Brochu et al. 
2010).

(9)P(M ∣ E) ∝ P(E ∣ M) ⋅ P(M).
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Fig. 9  Bayesian optimization workflow, starting with the evaluation of start designs, followed by the calculation and optimization of the meta 
model, onto the generation and optimization of an acquisition function and looping back to a function evaluation of a new design proposal
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The optimization framework under the use of Bayesian 
methods is presented in Fig. 9. In order to start the optimi-
zation process with a reasonable surrogate model, a previ-
ously defined number of designs are simulated and evalu-
ated. These initial designs are found using an advanced 
Latin hypercube approach to generate space-filling DOEs 
(Viana et al. 2009). Based on these evaluations, the surro-
gate models of the objective function and possible constraint 
functions are build. Following, the hyperparameters of the 
model are optimized using a suitable gradient method, such 
as L-BFGS, and thus the quality of the model itself. Instead 
of optimizing directly on the surrogate model, an acquisi-
tion function is derived from it, which rates points based on 
the given information of the surrogate model. This way, the 
most promising points to evaluate in following iterations 
will be picked by maximizing the acquisition function using 
numerical optimization methods.

5.2  Gaussian processes

Using Gaussian processes as surrogate models to optimize 
black-box functions offers some fundamental advantages. 
First and foremost, every finite parameter combination of the 
given design space is a multivariate Gaussian distribution:

Therefore, a Gaussian process not only provides a prediction 
of the possible function value but also a confidence interval, 
assessing the quality of the prediction at the requested point.

Thus, given a set of input points X, and their correspond-
ing function evaluations f(X), the posterior distribution of a 
requested point x̂ can be calculated:

A further in-depth treatment of Gaussian processes, their 
theoretical backgrounds and their wide range of possibili-
ties in a practical context can be found in Rasmussen and 
Williams (2006).

Another important benefit of Gaussian processes are their 
variability. Here, the underlying covariance function, also 
known as kernel function, have the biggest impact on the type 
and shape of the Gaussian process. In principal, it evaluates the 
influence of each point to each other point, based on different 
types of distance metrics. In the presented framework, various 
kernel types has been implemented (see Fig. 10) to cover a 
possibly wide range of different functions. Examples would 
be the dot-product kernel for modeling polynomial curves, 
the exp-sine-squared kernel having periodic characteristics or 

(10)x̂ = (x1, x2,… , xn) ∼ N(𝜇,𝛴).

(11)f (⋅) ∼ GP(�(⋅),�(⋅, ⋅)).

(12)
[
f (X)

f (x̂)

]
∼ N

([
𝜇(X)

𝜇(x̂)

]
,

[
𝛴(X,X) 𝛴(X, x̂)

𝛴(x̂,X) 𝛴(x̂, x̂)

])
.

kernels aiming to describe more irregular functions, such as 
rational-basis function, rational-quadratic or Matérn kernels.

5.3  Acquisition functions

In order to simultaneously optimize the objective function 
and find most feasible solutions, a combined acquisition func-
tion approach will be applied. For the objective function, the 
method of expected improvement will be used as followed:

Here �(x) is the mean and �(x) is the variance at location x. 
The parameter � controls the ratio between exploration and 
exploitation, with higher values putting a stronger weight on 
exploration. For the presented studies this parameter was set 
to 0, 01. � represents the cumulative distribution function 
(CDF), while � is the probability density function (PDF) of 
the standard normal distribution. f (x+) denotes the objective 
function value of the best solution found so far. Finally, the 
term Z stands for the improvement at location x:

For the constraint functions, on the other hand, the prob-
ability of feasibility approach is used. The parameter b in 
this case represents the boundary of the given constraint, 
while the f̂ (x) is the predicted constraint value at location x:

The above calculated acquisition function values are then 
summed up in the following way, where Ao is the acquisition 
function value of the respective objective function and Ac,i 
are the acquisition function values of all constraint functions.

(13)EI(x) = (�(x) − f (x+) − �)�(Z) + �(x)�(Z).

(14)Z(x) =

⎧
⎪⎨⎪⎩

𝜇(x) − f (x+) − 𝜉

𝜎(x)
if 𝜎(x) > 0,

0 if 𝜎(x) = 0.

(15)PF(x) =
1

2

[
1 + erf

(
b − f̂ (x)

𝜎(x)

)]
.
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Fig. 10  Generic visualization of three different kernels, their covari-
ance matrices and their characteristic function shape: dot-product 
(left), sine-squared (center) and radial-basis function (right)
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Since the PF function has a codomain of [0; 1], whereas the 
EI function has a codomain of ℝ , the sum of these function 
values does not result in an equivalent weighting of the func-
tions. Therefore, the EI function has to be scaled to the same 
codomain in a preceding optimization step.

6  Results

The following section presents the results of the imple-
mented optimization workflow on different versions of the 
given optimization problem.

6.1  Comparison to alternative algorithms

In order to prove the capability of the Bayesian approach as 
well as its superiority compared to other numerical optimi-
zation methods on nonlinear, non-differentiable and com-
putation-extensive problems, it is evaluated on different test 
functions. As alternative optimization methods, Simulated 
Annealing (Kirkpatrick et al. 1983) and an enhanced Firefly-
Algorithm (Yang 2008) has been chosen for the comparison. 
Respective test functions are the one-dimensional Rastrigin 
function, the two-dimensional Branin function and the Hart-
man function in three and six dimensions. Since the optima 
of these functions are known, the convergence criteria cho-
sen for them is an acceptable relative deviation of 1% and 
an absolute deviation of 0.01 to the optimum. Since at this 
stage there is insufficient knowledge regarding the shape and 
nature of the actual objective function, a variety of different 
test functions were used.

Table 1 shows the required function evaluations of each 
algorithm for each test function. The presented values are 
the mean values of respectively 10 optimization runs per 
combination. Simulated Annealing was not able to con-
verge on the six-dimensional Hartman function and shows 
the weakest performance in general compared to the other 
two approaches. This may be due to its highly randomized 

(16)At = Ao +

nc∑
n=1

Ac,i.
character and its possibility in accepting new but worse 
design proposals. The enhanced Firefly-Algorithm has a bet-
ter performance but still needed a significantly larger amount 
of function evaluations.

Although, it has to be mentioned, that an optimization 
iteration using the Bayesian approach needs more compu-
tation time, not considering the function evaluation itself. 
Optimizing the hyperparameters for fitting the surrogate 
model as well as optimizing the acquisition function are the 
main reasons for the comparably high computation effort. 
Nevertheless, the more complex and time-consuming the 
function evaluation itself will be, the more worthwhile will 
be the usage of Bayesian optimization approaches.

6.2  Simplified optimization of lower GFRP spring

Since the actual simulation model of the given problem is 
quite large and the corresponding optimization will be very 
time- and cost-intensive, some preliminary evaluations on 
the problem can be very helpful. On the one hand, to ensure 
the functionality of the workflow and the optimization, on 
the other hand to learn about the characteristics of the opti-
mization problem itself and to get an idea of the shape and 
nature of the objective function.

In a first step, a simplified version of the GFRP leaf 
spring system based on the actual components will be 
simulated. All non-design components are therefore rep-
resented by simple shell, rigid or connector elements. Only 
the lower springs will be modeled by hexahedral elements 
and optimized in terms of cost. Design variables will be 
the FVC of the lower springs, as well as X and Y coordi-
nates of the corresponding NURBS control point and the 
height and width of the spring’s cross-section. Figure 11 
shows the respective leaf spring in a randomly generated 
start design. Considered technical constraints will be the 
fiber and matrix strength g1 and g2 , as well as the contact 
between lower and upper spring g3 , presented in Sect. 4.2. 
To further simplify the optimization, only two of the five 
given misuse load cases will be simulated: the vertical 
impact, in which a strong force is applied on both wheels 
in the global Z direction, and the extreme curve, in which 
forces in both the global Y and Z directions are applied to 
the left wheel only. Furthermore the objective function in 
this case will be the calculated costs for the spring compo-
nent introduced in Sect. 4.1. To study the influence of the 
lightweight factor CLW , three different optimization runs 
are compared with each other, starting with CLW1 = 0.00 
€/kg to evaluate the conventional cost function. The sub-
sequent runs intend to cover different use cases: a light-
weight factor of CLW2 = 7.00 €/kg represents the current 
development of vehicles with combustion engines, while 
a factor of CLW3 = 18.00 €/kg is common in the devel-
opment of electric vehicles (Siebel 2020). At this point, 

Table 1  Number of function evaluations needed until convergence 
criteria fulfilled for Simulated Annealing (SA), Enhanced Firefly (FF) 
and Bayesian Optimization (BO) on different test functions

Rastrigin Branin Hartman Hartman
(1D) (2D) (3D) (6D)

SA 481 6.820 1.254 –
FF 75 870 582 13.943
BO 12 29 17 77
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it must be pointed out that there are generally very few 
publications providing concrete values. Furthermore, these 
values are very much dependent on the selected scenario 
and its boundary conditions. In principle, it is possible for 
the user to compare different scenarios at this point. For 

reasons of data protection, the cost function is replaced by 
a normalized fitness function in the following.

The normalized cost objective function, as well as the 
components mass for all three optimization runs are shown 
in Fig. 12. Due to the use of the above described lightweight 
factors, the objective functions are located on distinct levels, 
as the price per kilogram is different for each run. Still, the 
costs can be reduced significantly in every configuration. In 
contrast, the mass of the leaf spring takes a different course 
for the first optimization run. In order to further reduce the 
cost objective function, which in the case of CLW1 is equiva-
lent to a reduction of direct material costs, the fiber volume 
content of the component is increased in latter iterations. 
This follows the expectations of the introduced cost model 
by favoring higher values of FVC due to its lower price, 
which again leads to an increase in component mass. Thus, 
the product owner’s decision to assess the design based 
solely on direct material costs would result in a heavier but 
cheaper product. The factors CLW2 and CLW3 again represent 
scenarios, in which the product owner is willing to invest 
in lightweight measures. For these cases, the tipping point 
described in Fig. 7 has been crossed, resulting in a mini-
mization of cost accompanied by a minimization of mass. 
However, this is only worthwhile if the cost difference can 
be offset in the further course of the product life cycle. Fig-
ure 13 shows the cost-optimal design of the first optimiza-
tion run using CLW1.

The development of different input variables is shown in 
Fig. 14, where the geometric variables shown refer solely to 
the center control point. As already stated, the respectively 
chosen configurations for the presented cost model leads to 
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Fig. 11  Randomly generated start design of the leaf spring depicting 
the input variables for the optimization of mass. Blue elements repre-
sent the non-design space, gray elements represent the design space 
of the spring. The shape of the spline curve is defined by the X and 
Y coordinates of the center control point. The first, second, fourth 
and fifth control points are fixed to guarantee a smooth spring curve 
design
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a different behavior in choosing the FVC. It was further-
more found that the coordinates of the spring’s guide curve 
have a comparably low influence on the component’s mass 
as they only influence the length of the spring. In contrast, 

the dimensions of the cross-section have a more direct influ-
ence on the component’s mass and therefore its cost. This is 
mainly caused by the limits chosen for the design variables. 
In the current example, the nominal leaf spring design has 
a total mass of 3.60kg. Nominal design in this case refers to 
the mean value of each design variable being used. Setting 
the spring height to its upper bound increases the mass of 
the spring by 1.53kg and by 0.40kg when setting the spring’s 
width to its upper bound. Changing the coordinates to its 
upper limit only results in a mass increase of 0.06 kg.

Concerning the demanded technical constraints, 
fiber strength seem to be most critical for the given applica-
tion example. While the contact constraint g3 can be satisfied 
in 96% and the matrix strength constraint g2 in 86% of all 
iterations, the fiber strength constraint only achieves a valid-
ity ratio of 58%. The spring’s height seems to have a crucial 
influence on this. While valid design proposals could be 
found inside the limits of all other variables, for the height 
only a small corridor between 13.6 and 25.6 mm resulted in 
valid designs. This makes particular sense when comparing 
these values with the spring heights of the neighboring non-
design areas, which range from 14.7 to 28.2 mm. Thus, espe-
cially springs with a rather constant cross-sectional course 
achieve good values regarding fiber strength.
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Fig. 13  Cost-optimized leaf spring design of iteration 68 using a 
lightweight factor of C

LW1
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Fig. 14  Normalized input variable history of the simplified optimiza-
tion of the lower spring presented in Sect. 6.2 within 100 iterations. 
FVC represents the fiber volume content, X and Y are the coordinates 

of the control point and H and W are the cross-section’s height and 
width. The gray marks represent design proposals in each iteration, 
which are either valid (cross) or invalid (circle)
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6.3  Optimization of the GFRP leaf spring system

After testing the algorithm and evaluating its characteris-
tics, the optimization of the application example presented 
in Sect. 3 will follow. Besides the already introduced con-
straints of strength and contact, the remaining eight con-
straints regarding driving dynamic behavior will be added. 
Furthermore the so far used simplified model will be 
replaced by the full assembly model.

To generate a reasonable initial surrogate model, a DOE 
consisting of 25 designs is calculated. The number of ini-
tial data points should not be too small, as it can give both 
the user and the optimizer a global overview over the result 
space. Again, this number is limited upwards by the avail-
able computing capacity and time, since the DOE is only a 
jump-start of the actual optimization. Based on this initial 
DOE, different kernels are tested on every given output. 
Besides the optimized log-marginal likelihood values for 
the trained GPs, the so-called R2-prediction-value will be 
used as an assessment criterion (Myers et al. 2009). Points 
are removed consecutively from the training data set and are 
then predicted by the reduced model. These predicted values 
ŷi−1 are then compared to the true values yi . By dividing the 
squared sum of these errors with the squared sum of the dif-
ference between the true values yi and the mean value y , the 
R2-prediction-value can be obtained. The closer this value 
is to 1.0 the better the model.

(17)R2
Pred

= 1 −
PRESS

SQT
= 1 −

∑n

i=1
(yi − ŷi−1)

2

∑n

i=1
(yi − ȳ)2

.

Table 2 shows the results of the kernel testing. As can be 
seen in the last row, different outputs lead to very different 
general predictability of the kernels. For example, the cost 
objective function f1 is relatively easy to model by various 
kernels, since most of the input parameters are geometrical 
parameters, directly influencing the mass of the spring and 
therefore the components cost. Outputs regarding strength 
or driving dynamic behavior on the other hand are harder to 
model. However, using the right kernel can improve the pre-
dictability significantly. The entries marked bold in Table 2 
achieved the best results in terms of predictability. Since 
these kernels seem to fit best to the respective response func-
tions, they are used in the upcoming optimization.

The carried out DOE has also confirmed the assump-
tion made in Sect. 4.2. Large areas of the result space will 
be invalid regarding the technical constraints. None of the 
designs proposed by the DOE can fulfill all of the imposed 
constraints. As a consequence, the search for a fully valid 
design seems to be of more importance than finding a cost-
optimal solution. In other words, if the optimizer is able to 
find valid designs, the focus can then be shifted toward cost-
optimal solutions. Therefore, the objective function will not 
be the components cost alone, but a fitness value composed 
of the sum of all normalized constraint values and the cost 
value.

Due to performance reasons, the maximum number of 
iterations of the current optimization has been limited to 
200 iterations. As can be seen in Fig. 15 the optimization 
is able to continuously find better solutions regarding the 
introduced fitness value. The components cost, however, 
varies and is not necessarily descending as design propos-
als are dominant if they are able to satisfy more constraints. 

Table 2  R2-predict values for 
different kernels using the initial 
DOE-set as training

Every value shown in the table represents the mean value of 16 fitting and hyperparameter optimization 
runs. The best prediction values for each output is marked bold, the worst prediction values are marked text 
italics

Kernel type R2-predict (%)

f
1

g
1

g
2

g
3

g
4

g
5

g
6

g
7

g
8

g
9

g
10

g
11

RBF Isotropic 90 56 5 38 58 66 56 67 62 34 70 77
RBF Anisotropic 67 47 13 48 76 68 54 62 64 52 51 61
Matern 0.5 Isotropic 76 58 16 63 64 62 55 65 67 27 68 70
Matern 1.5 Isotropic 99 58 10 46 71 69 67 75 66 21 74 68
Matern 2.5 Isotropic 99 57 10 44 65 68 62 74 65 20 73 73
Matern 0.5 Anisotropic 66 47 14 52 72 68 69 60 70 50 70 58
Matern 1.5 Anisotropic 78 60 17 42 84 77 64 62 69 62 72 70
Matern 2.5 Anisotropic 73 51 15 48 71 75 62 73 51 62 67 73
Rational-Quadratic Isotropic 97 58 13 56 69 69 66 72 66 20 71 71
Rational-Quadratic Anisotropic 84 57 12 61 67 91 69 74 67 63 71 68
Exp Sine Square 91 53 11 39 65 69 60 74 65 21 71 71
Exponentiation Dot 97 0 0 36 54 53 39 52 53 0 35 59
Mean 85 50 11 48 68 70 60 68 64 36 66 68
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Nevertheless, the costs only vary within a relatively small 
range, which indicates that areas outside this range are much 
more invalid. This, in turn, would make it possible to reduce 
the size of the design space of existing design variables in 
order to search for valid solutions in more detail. On the 
other hand, the results has shown that the optimization prob-
lem as formulated may be overconstrained, resulting in null-
feasible regions. Especially the values for g5 (toe-in angle), 
g6 (camber angle) and g8 (longitudinal suspension) were not 

once inside the feasible deviation of 5%. A possible reason 
for this might be an insufficient design space regarding some 
of the driving dynamics constraints. This may be due to the 
defined parameterization, wherefore it will be extended in 
future works (see Sect. 7).

Figure 16 shows the resulting spring geometry of itera-
tion 190. The design is valid regarding six of the eleven 
imposed constraints, including Puck strength, contact, spring 
rate, stabilization rate and wheel load. The corresponding 
history of normalized design variables is shown in Fig. 17. 
Compared to the preceding optimization runs the range of 
found optimal solutions is much broader regarding the given 
design variables. This indicates that the optimizer identifies 
various areas which are similarly promising. These areas are 
then explored consecutively to find better solutions.

To prove the assumption made in Sect. 6.1, claiming that 
Bayesian optimization can be superior to other methods, the 
comparison of algorithms has been repeated on the calcu-
lated meta model resulting from the present optimization. 
The firefly optimization needed 5931 function evaluations 
with the recommended swarm size of 50 to achieve a same 
or better objective value averaged. The simulated annealing 
approach on the other hand reached the same results after 
an average number of 1758 iterations. However, it must be 
mentioned here that recommended default parameters were 
chosen for both algorithms.
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Fig. 15  Objective function history within 200 iterations. The opti-
mum value is reached at iteration 190

Fig. 16  Normalized input variable history within 200 iterations. FVC 
represents the fiber volume content, X and Y are the coordinates of the 
control point and H and W are the cross-section’s height and width. 

The gray marks represent design proposals in each iteration, which 
are either valid (cross) or invalid (circle)
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7  Conclusion and outlook

The presented paper has shown that Bayesian optimization 
can be a powerful tool for solving free-form shape opti-
mization problems of structural components. Preliminary 
studies proved its ability in finding optimal solutions in a 
significantly smaller number of needed function evaluations 
compared to other algorithms. However, a various number 
of problems arose during implementing and optimizing, of 
which the most relevant will be described in the following 
sections.

7.1  Extended parameterization

For the optimization problem of the GFRP leaf spring sys-
tem it has become evident, that the chosen parameteriza-
tion can indeed provide good solutions in terms of cost and 
strength. The imposed driving dynamic constraints on the 
other hand cannot be satisfied completely. Therefore, the 
parameterization will be extended in further steps. Enabling 
the translation, rotation and scaling of the systems’ connec-
tion to the vehicle on the end of the lower spring will likely 
enlarge the response space in the desired way.

7.1.1  Boundary issue

Based on the findings during the optimization process the 
so-called boundary issue has to be addressed in higher 
dimensional problems (Swersky 2017). It arises directly 
from the use of Gaussian processes as surrogate model. 
The larger the distance to any sampling point is to a queried 
point, the variance of the GP generally increases. Since the 
largest distance to any point will be located at the boundaries 
of the given parameter space, these points are likely to have 
the highest variance. Points with a high variance again are 
highly probable to get picked as next evaluation point, since 
the probability to achieve a new optimal solution at this 

point increases. Therefore, Bayesian optimization algorithms 
often explore the boundaries of a given search space. This is 
on the one hand reasonable, on the other hand it consumes a 
significant amount of function evaluations and optimization 
iterations. The given problem consists of 10 input dimen-
sions, totally resulting in 1024 border elements. For the fur-
ther development it is planned to implement approaches, 
which can help to overcome the described boundary issue. 
An example would be the application of special functions, 
such as the horseshoe prior (Carvalho et al. 2009).

7.1.2  Reduced model

In an attempt to further reduce simulation time, the volume 
elements of the spring components have been converted into 
shell elements. By calculating nodal thickness values, the 
spring’s geometry can be modeled in a sufficient manner. 
The reduced model is able to produce similar results at least 
for the driving dynamic values, compared to the volume-
based model. However, the strength values cannot be cal-
culated precisely enough and therefore would have to be 
validated by the former simulation model. An investigation 
on how to use the reduced model to meet the demanded 
driving dynamic constraints can be helpful to shorten the 
optimization process as a whole.

7.1.3  Kernel selection

As shown in Sect.  6.3 a profound kernel selection can 
improve optimization processes significantly. The goal 
should therefore be to implement an automated kernel selec-
tion algorithm into the presented framework. This could be 
the selection of previously defined kernels based on an initial 
DOE. Alternatively, more in-depth methods like the com-
positional kernel search could be realized (Duvenaud et al. 
2013).
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Fig. 17  Cost-optimized design of the GFRP leaf spring system at 
iteration 190. The technical constraints regarding strength are fulfilled 
and improved compared to the reference design. Furthermore, the 
optimization was able to satisfy 3 of 8 driving dynamic constraints



Spline‑based shape optimization of large‑scale composite leaf spring models using Bayesian…

1 3

Page 17 of 19 257

into other optimization environments and thus the reproduction of the 
presented results is possible without any restrictions.
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