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Spline smoothing with model-based penalties
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Nonparametric regression techniques, which estimate functions directly from noisy data rather than
relying on specific parametric models, now playa central role in statistical analysis. Wecan improve
the efficiency and other aspects of a nonparametric curve estimate by using prior knowledge about
general features of the curve in the smoothing process. Spline smoothing is extended in this paper to
express this prior knowledge in the form of a linear differential operator that annihilates a specified
parametric model for the data. Roughness in the fitted function is defined in terms of the integrated
square of this operator applied to the fitted function. A fast O(n) algorithm is outlined for this smart
smoothing process. Illustrations are provided of where this technique proves useful.

INTRODUCTION TO SPLINE SMOOTHING

Cubic Spline Smoothing
The classic spline smoothing method estimates a curve

x(s) from observations,

Yj=x(t)+ty,j=l, ... ,n, (1)

by making explicit two possible aims in curve estimation.
On the one hand, we wish to ensure that the estimated
curve gives a good fit to the data; for example, in terms of
residual sum of squares:

ful references are Eubank (1988), Hartle (1990), and Si
monoff (1996). The three main classes of methods are
kernel smoothing, local polynomial smoothing, and spline
smoothing.

But there is clearly a need to retain some of the flavor
ofearlier parametric investigations. The scientist often has
good reason to propose that a major part ofa function has
a linear, power-law, exponential, or sinusoidal character,
and therefore is quite justified on theoretical grounds for
asking that the functional estimation problem use this in
formation. Moreover, it can be shown theoretically that a
nonparametric regression technique will perform better
in various ways if some large part of the actual relation
ship can be correctly specified in advance ofcollecting the
data.

This paper presents an extension of spline smoothing
technology that allows the investigator to retain some as
pects of a parametric model in a nonparametric regres
sion situation.

Function or curve estimation is among the oldest prob
lems in experimental psychology, and remains one of its
central statistical objectives. Indeed, every paper presented
at the conference to which this was a contribution men
tioned an explicit function-estimation problem or pre
sented results based implicitly on this technology.

Traditionally, curve estimation proceeded by the scien
tist proposing a parametric function family such asf(x) =
axf3 that seemed to both capture the observed features of
the relationship as mirrored in the data and to be consis
tent with a priori intuitions and theoretical considerations.
The statistical problem then reduced to finding appropri
ate estimates of these parameters, in this example a and
{3. But one often discovered that some minor modifica
tions were necessary, and so, for example, might be led to
considerf(x) = a(x - y)f3. But these seemingly innocent
adjustments ofa model often tum out to make the estima
tion ofthe principal or "structural" parameters much more
difficult, and in any case there was often some ambiguity
about when to stop adding "nuisance" parameters such as
the threshold y.

The last few decades have seen an explosion of meth
ods that seek to estimate a function directly, without the
intermediate device of parametric models. That is, in ef
fect the function itself becomes the parameter to be esti
mated. These nonparametric regression methods have
also been extended to multidimensional arguments. Use-
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SSE(xIY) = L [Yj - x(tj)P'
j

(2)

99 Copyright 1997 Psychonomic Society, Inc.



100 RAMSAY, HECKMAN, AND SILVERMAN

On the other hand, we do not wish the fit to be too good
if this results in a curve x that is excessively "wiggly" or
locally variable.

A very common way of measuring the roughness of a
function on an interval 'Tis its integrated squared second
derivative,

PENz(x) = f'T[D Zx(s)]2ds = II DZx liz, (3)

using the notation Dmx to indicate the mth derivative of
x, dmxtdt», We can then define the penalized residual
sum of squares as

The Bias-Variance Tradeoff
In fact, the spline smoothing criterion (Equation 3) sim

ply states one of the basic principles of statistics:

Mean Squared Error = Bias? + Sampling Variance

That is, according to the error model (Equation I) that
is used to motivate most smoothing methods, a completely
unbiased estimate of function value x(t,) can always be
pr?duced by fi~ting Yj exactly, since thi~ observed value
IS Itself an unbiased estimate ofx(t). But, of course, we
recognize that lack of bias is not everything in statistics,
and in fact mean squared error,

SSE;.. (xly) = SSE(xly) + APENz(x). (4)

The parameter A is a smoothing parameter that mea
sures the "rate of exchange" between fit to the data, as
measured 'by residual sum of squares, and variability of
the function x, as quantified by PENix). Our estimate of
the function is obtained by finding the function x that min
imizes SSE;.. (x) over the space of functions x for which
PENz(x) is defined.

For this particular roughness penalty, the resulting
curve xes) can be shown to be a cubic spline with knots
at the data points fj . Many details of the method are dis
cussed by Green and Silverman (1994) and elsewhere,
and we shall discuss it only fairly superficially here. For
any fixed A, the function xes) can be found in O(n) op
erations, for example, by using the S-PLUS function
smooth.spline (Statistical Sciences, 1995), which also
contains options for choosing the smoothing parameter
automatically from the data.

To comment briefly on the role of the smoothing pa
rameter A, note that if Ais very large, all functions that
are not linear will incur a substantial roughness penalty
in SSE;.. (x). For this reason, as A~ "", the fitted curve x
approaches the standard linear regression to the observed
data. On the other hand, for small A, the curve will tend
to become more and more variable, since there is less and
less penalty placed on its roughness, and as A~ 0, the
curve x will approach an interpolant to the data, satisfying
x(tj) = Yj for alljs. However, even in this limiting case,
the interpolating curve will not be arbitrarily variable; in
stead, it will be the smoothest twice-differentiable curve
that can be found that exactly fits the data.

MSE = E[i(f) - x(tj)F, (5)

comes closer to capturing what we usually mean by bad
ness ofestimate (as opposed to fit). MSE can very often be
dramatically reduced by sacrificing some bias in order to
reduce sampling variance, Var[x(tj)], and this is the main
reason why we want to impose smoothness on X. By requir
ing that xvary only gently from one value to another, we
are in fact borrowing information from neighboring data
values and thereby expressing our faith in the regularity
of the underlying function xthat we are trying to estimate.

The L-spline Criterion
The cubic spline smoothing can be extended by using

measures ofroughness other than PENz. There are really
two different (but related) reasons for doing this. On the
one hand, we may wish the class offunctions that have zero
roughness to be wider than, or otherwise different from,
those that are of the form a+bs. For example, ifwe desire
a smooth estimate ofacceleration DZx, we may well want
to penalize the size of D4x , thereby directly controlling
the curvature ofthe acceleration function and at the same
time imposing zero penalty on any cubic polynomial.

On the other hand, we may have in mind that, locally at
least, curves x should ideally satisfy a particular differen
tial equation, and we may wish to penalize departure from
this. For instance, if we were observing periodic data on
an interval [O,T] and there were some reason to suppose
that simple harmonic motion with period rowas a natural
approximate model for the data, we know that rozx+ DZx
= 0 is the linear differential equation satisfied by this type
ofvariation. Ifthe actual x deviates from purely harmonic
behavior, we can expect that rozx + DZx will be nonzero.

We can achieve both ofthese aims by replacing the sec
ond derivative operator DZby a more general linear differ
ential operator L, defined as

Lx = wax + w,Dx +... + Wm-j Dm-'x + Drx, (6)

where wj ' j = 0, ... , m-I are also functions and where m
is the order of the differential operator L. We can then
define

PENL(x) = f'T [Lx(s)]2ds = II Lx liZ, (7)

the integral of the square ofLx(s). For instance, the sim
ple harmonic motion example above would lead us to use
Lx(s) = rozx(s) + DZx(s). Other examples will be given
below.

Now it can be shown (Wahba, 1990) that the integrated
squared bias in a spline smoothing estimatexofa smooth
function x assumed to underly the noisy discrete observa
tions has the following bound:

BiasZ(x) = f {X(f) - E[X(f)]}2 dt ~ f(LxFdt,

or more compactly, BiasZ(x) ~ IILxllz. This is an important
result because it tells us that bias, which we would natu
rally like to be small, is limited by how closely our choice
ofdifferential operator L comes to annihilating the "true"
function x. Thus, if x is predominantly of some known
form and one for which there is a linear differential oper
ator L that annihilates it, then it makes sense to choose this
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SOME LINEAR DIFFERENTIAL
EQUATION FACTS

Figure 2. Age-adjusted incidences of melanoma for the years
1936 to 1972. The solid curve is the polynomial smoothing spline
fit to the data penalizing the norm of the fourth derivative, with
the smoothing parameter chosen by minimizing the GCV crite
rion. The dotted line is the fit of x(t) = c\ + c2t + c3sin(wt) + c3
cos(wt) with period w = 0.65 and coefficients estimated by least
squares.

same L so as to at least annihilate this component,
thereby ensuring that the Lx is probably small, and conse
quently that the estimate x is relatively unbiased when
compared with, say, using L = D2.

TWO EXAMPLES

Gross Domestic Product Data
The gross domestic product of a country shares with

many economic indicators an overall tendency for expo
nential growth. Moreover, when the data are available on
a quarterly basis, there is also obvious seasonal variation.
Figure 1 displays the gross domestic product for Sweden
over a IS-year period (OECD, 1995).

This suggests the use ofthe order 4 composite operator

L = (-yD + D2)(ro2J +D2)

=-yro2D + ro2D2 - yD3 + D4 (8)

to annihilate

u(t) = (1, exp yt, sin rot, cos rot)'.

In this application we know that ro = 21C for time measured
in years, and a nonlinear least squares estimate for y
yields 0.078.

1940 1950 1960
Year

1970

The Melanoma Data
These data, the incidence of malignant melanomas in

the Connecticut Tumor Registry, taken from Andrews and
Herzberg (1985) and displayed in Figure 2, represent an
other complex relationship, with a cyclic effect superim
posed on a linear development. The operator that would
be interesting would be

L = ro2D2 + D4 (9)

for some appropriate constant ro, since this would anni
hilate the four functions

u(t) = (1, t, sin rot, cos rot)'.

1980 1982 1984 1986 1988 1990 1992 1994
Year

Figure 1. The gross domestic product for Sweden with seasonal
variation. The solid line is the smooth using operator L =
(-yD + D2)(W2J + D2), and the dashed line is the smooth for
L = D 4, the smoothing parameter being determined by mini
mizing the GCV criterion in both cases.

In order to present some of the details about how to
smooth data using this more general class ofpenalties, we
need to first mention some basic facts from the theory of
linear ordinary differential equations. It is, ofcourse, far
beyond the scope of this article to offer even a cursory
treatment of a topic as rich as the theory of differential
equations, and there would be little point since there are
many fine texts on the topic. One ofour favorites is Cod
dington (1989), and for advice on a wide range ofpracti
cal matters, Press, Teukolsky, Vetterling, and Flannery
(1992) is recommended. Instead what we offer here are
a few facts about linear differential equations that are
useful in the context of L-spline smoothing.

Identifying Linear Differential Operator L
For a linear differential operator L of order m coupled

with appropriate initial value constraints, the homoge
neous differential equation Lu = 0 has exactly m solutions
Uj that are linearly independent. Such a set is not uniquely
defined, and in fact for any such set an arbitrary linear
combination Lj~ uj is also a solution. Thus the homoge
neous equation in fact defines an m-dimensional space of
functions, called the kernel of L and indicated by ker L.

We have already cited a number ofexamples where we
had a set of known functions u = (UI"" ,urn)' and where
at the same time we were aware ofthe linear differential
operator L that solved the homogeneous linear differen
tial equations LUj = O,j = I, ... ,m. Suppose, however,
that we have the ujs in mind but that the linear differen
tial operator that annihilates them is not obvious, and we
want to find it.

For example, suppose that two functions UI and U2 are
to be annihilated. Then m = 2, and Lis of the form
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This is a linear matrix equation for the unknown weight
functions Wo and WI' and its solution is simple provided
that the matrix

The Green's Function for L
Suppose now that we want to reverse the effect of ap

plying an mth order linear differential operator L. That is,
we have a forcing function f satisfying

and we want to find x. Well, we recognize of course that
the solution will not be unique; ifwe add to any solution
x some linear combination of m functions uj that span
ker L, this function also satisfies the equation. But there
is a unique solution to the equation given the associated
equation

m

G(t;w) = L u/t)v/w)
j=1

= u'(t)v(w), w:::; t, and 0 otherwise. (16)

m n

x(t) = L ~ u/t) + L cik(ti,t). (18)
j=1 ;=1

AN EFFICIENT ALGORITHM FOR
L-SPLINE SMOOTHING

The Reproducing Kernel Associated with L
The concept ofa reproducing kernel plays a central role

in the theory ofspline functions. This is a bivariate func
tion k(s,t) defined by the interesting property that

J'TLsk(t,s)Lx(s)ds = x(t),

provided that Blx = O. The notation L, means that the dif
ferential operator is applied to the second argument. The
reproducing kernel k can be easily calculated as follows

k(s,t) = J'TG(s,w)G(t,w)dw. (17)

Now let us assume that we have in hand m linearly inde
pendent functions uj ' each satisfying LUj = O. Then the
importance ofthe reproducing kernel derives from the fol
lowing theorem, a proof of which can be found in refer
ences on splines such as Wahba (1990):

Optimal basis theorem: The function x minimizing the
spline smoothing criterion (Equation 7) defined by a lin
ear differential operator L oforder m has the expansion

It can be shown that there exists a bivariate function
G(t;w) called the Green 'sfunction, associated with the pair
(BbL) that satisfies

x(t) = J'TG(t;w) Lx(w), dw

= J 'TG(t;w)f(w)dw, x E ker B. (15)

Thus the Green's function defines an integral transform
that inverts the linear differential operator L. Applying
JG(t;·) to Lx gets us back tox itself. The Green's function
G is called the kernel of the integral transform.

There is a simple recipe for constructing the Green's
function corresponding to the initial value constraint BI
and any linear differential operator L. First, compute the
Wronskian matrix W defined in Equation 12. Second, de
fine the vector-valued function v as the vector containing
the elements ofthe last row ofW-I. Then, it turns out that

(14)

(13)

(12)

(11)

Lx =f

W = [u Du]

[u Du] w = -D2u.

is nowhere singular, or in other words, that its determinant
IW Idoes not vanish for any value of the argument t. This
coefficient matrix is called the Wronskian matrix, and its
determinant IW I is called the Wronskian for the system.
Clearly w can be calculated simply as -W-I D2 U if
IWI*O.

Note that the functions to be annihilated need not be
known analytically; in many problems, such as the growth
curve example described at the end of this paper, they are
known only as a result ofnumerical calculations. But nu
merical techniques can be employed to estimate the
weight functions wj in this case. Moreover, Ramsay (1996)
has developed a method for estimating these weight func
tions, and hence the operator L, directly from replicated
curves. This approach, calledprincipal differential anal
ysis, has a strong conceptual connection to principal com
ponents analysis.

Lx = wou + w.Du + D2 u.

The relation LUI = LU2 = 0 defines the differential oper
ator, and it can be expressed as follows by taking the sec
ond derivatives over to the other side of the equation:

wOUI = w,DuI = -D2uI

wOu2 = wlDu2 = -D2u2, (10)

or, in matrix notation,

where Bp: is the set of m values

X o = [x(O), Dx(O), ... ,Dm-'x(O)]'.

The operator BI is called the initial value operator, and
when applied to a function x returns the values ofthe func
tion and its first m -1 derivatives at time t = O. It is as
sumed here that the only function x simultaneously satis
fying Blx = 0 and Lx = 0 is zero itself.

In smoothing long sequences ofobservations, it is crit
ical to devise a smoothing procedure that requires a num
ber ofarithmetic operations that is proportional to n, the
length ofthe sequence. Such an algorithm is referred to as
being O(n), or oforder n, An algorithm that was of O(n2 )

or O(n3 ) would be, for example, quite impractical for thou
sands of sampling points tj .

The following algorithm is based on the theoretical
paper ofAnselone and Laurent (1967), but is also known
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This, too, is symmetric, of order n - m, and band struc
tured.

The Smoothing Phase
The actual smoothing consists of two steps:
1. The solution to the order n - m linear equation

system

computations and can be found in any matrix-oriented
programming language such as MATLAB (MathWorks,
1993) or S-PLUS (Statistical Sciences, 1995), and in all
comprehensive libraries of subroutines or procedures in
lower level languages. The required coefficient e, is sim
ply the last column of matrix Q. In special cases, how
ever, there are also other computational alternatives, and
in the famous polynomial spline-smoothing case, coeffi
cients defining divided differences are employed.

With these coefficients in hand, we can now define the
n by n - m matrix C as follows: In column i are to be
found the m + 1coefficients e, starting in row i; elsewhere
the matrix contains zeros. This defines one of the setup
phase matrices C'C, which is symmetric, oforder n - m,
and band structured.

Now let the symmetric order n matrix K contain the
values k(ti,t}), i.] = 1, ... , n. Then the other setup-phase
matrix is

as the Reinsch algorithm because of the application to
the cubic polynomial smoothing case (L = D 2)by Reinsch
(1967, 1970). It was subsequently extended by Hutchison
and de Hoog (1985). A technical account and rationale
are available in Heckman and Ramsay (1996).

The algorithm requires the computation ofvalues oftwo
types of functions:

1. u}, j = 1, ... , m: a set of m linearly independent
functions satisfying Lu} = 0, that is, spanning ker L. We
shall refer to these collectively as the vector-valued func
tion u.

2. k: the reproducing kernel function for the subspace
offunctions e satisfying B/e = 0, where B/ is the initial
value constraint operator.

These two sets of functions are the user-supplied
components of the algorithm and are, of course, defined
by the particular choice ofoperator L used in the smooth
ing application.

The algorithm naturally splits into three phases: (1) an
initial setup phase that does not depend on the smoothing
parameter A, (2) a smoothing phase in which the data are
smoothed, and (3) a summary phase in which performance
measures for the smooth are computed. This division of
the task is ofpractical importance because we may want to
try smoothing with many values of A, and will naturally
not want to needlessly repeat either the initial setup
phase or the final descriptive phase.

H = C'KC. (20)

The Performance Assessment Phase
The vector of smoothed values x and the values that

were smoothed are related as follows:

Both of these steps can be computed in D(n) operators,
and references on efficient matrix computation such as
Golub and van Loan (1989) can be consulted for details.

for the vector d oflength n - m, where vector y contains
the values to be smoothed.

2. The vector of values x of the smoothing function x
at the n argument values are then computed by

Setting Up the Smoothing Procedure
In the initial phase, we define two symmetric band

structured matrices Hand C'C,both of order n - m,
where m is the order of operator L. A matrix is said to be
band structured if all entries except those no more than a
fixed number ofpositions away from the diagonal are zero.
These band-structured matrices require only (n - m)
(m + 1) storage locations, and can be processed in various
ways in a number of operations that are proportional to
their order, whereas otherwise most matrix operations such
as matrix multiplies take either D(n2 ) or D(n3 ) operations.

The band-structured character of these two matrices
depends on computing for each i = 1, ... , n - m a set of
m + 1 coefficients

(H + AC'C)d = C'y

x = y - ACd.

(21)

(22)

where
n

SSE = L [Yi - x(t;)]2 = Ily - x11 2,
i=l

x = [I - ACCU + AC'C)-IC']y = Sy. (23)

The matrix S defined by S = 1 - ACCU + AC'C)-IC' is
often called the hat matrix and in effect defines a linear
transformation that maps the unsmoothed data into its
smooth image.

Various measures ofperformance depend on the diag
onal values in S. Of these the most important are

GCV = SSE /(1 - n- 1 trace S)2, (24)

(25)
n

CV = L {[Yi - x(t;)]/[1 - sid}2,
i=l

and

(19)

with a special property. Let m + 1 by m matrix Vi have
rows U'(tiH), e = 0, ... , m. The property that c i must
have is

c, = (cil,'" , Ci,m+l)'

That is, coefficients ci must be orthogonal to all columns
of Vi'

There are various ways to compute such a coefficient
vector, but probably the most efficient general method is to
use the QR decomposition:

Vi =QR

where matrix Q is square, oforder m + 1, and orthonor
mal, and where matrix R is m + 1 by m and upper trian
gular. The QR decomposition is a standard tool in matrix
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where sa is the ith diagonal entry ofS. Both measures can
be computed in O(n) operations given the band-structured
nature of the matrices defining S.

One of the main applications ofthese two criteria, both
ofwhich are types of"discounted" error sums ofsquares,
is as a guide for choosing the value of the smoothing pa
rameter A. It is relatively standard practice to look for the
value that minimizes one of these two criteria, just as in
standard regression analysis various variable selection pro
cedures attempt to minimize discounted error sums of
squares. Interestingly, the GCV measure was originally in
troduced by Craven and Wahba (1979) as an approxima
tion to the CV criterion that could be computed in O(n)
operations, but in fact now tends to be preferred in prac
tice, even though CVis also available in O(n) operations
because various simulated studies have indicated that
GCV tends to be a better basis for choosing the smooth
ing parameter A. Hutchison and de Hoog (1985) devel
oped the O(n) techniques for computing these values.

Also ofgreat value is a measure of the effective num
ber ofdegrees offreedom ofthe smoothing operation. Two
measures are

DF) = trace Sand DF2 = trace S'S. (26)

It can be shown that in the limit as A--t 00, both measures
become simply m, and similarly as A--t 0, both measures
converge to n. Inbetween, they give slightly different im
pressions of how much of the variation in the original
unsmoothed data remains in the smoothed version, or,
alternatively, how big the "dimensionality" is of the
smoothing function.

As a rough indication of the time taken for a typical
smooth, our implementation in S-PLUS of this algorithm
running on a Sparcstation 2 was able to smooth 10,000
observations using an order 4 penalty in about 35 sec. Of
course, timings will vary enormously even for the same
machine, depending on factors such as memory available,
programming environment, and disk hardware.

A RETURN TO THE EXAMPLES

The Melanoma Data
The parameter OJ was estimated to be 0.650 by the

minimization of the nonlinear least squares criterion
n

SSE = L
)

[y) - f31 - f320 - f33 sin( OJ0) - f34 sin(OJt)F

with respect to the four linear parameters f3) and the
phase parameter OJ. This yielded to a period of9.66 years,
roughly the period of the sunspot cycle affecting solar
radiation and consequently melanoma. When we smooth
the data with the spline defined by the operator (Equa
tion 9) and select A so as to minimize GCV, it turns out
that Abecomes arbitrarily large, corresponding to a smooth
using only the basis functions u, consuming four degrees
of freedom, and yielding GCV = 0.076. However, the
polynomial smoothing spline with order m = 4-that is,

using the differential operator L = D4-displayed in Fig
ure 2 produced a minimum GCVestimate corresponding
toDF[ = 12.0 and GCV = 0.095. That is, it required three
times the degrees of freedom to produce a fit that was
still worse in GCV terms than the L-spline smooth. Clearly
of the two order-4 methods, the operator (Equation 9) is
much to be preferred to L = D4.

GDP Data with Seasonal Effects
The minimum GCV L-spline for these data is the solid

line in Figure 1, and was fit using OJ = 2n and y= 0.078,
the latter value being estimated by nonlinear least squares
as in the melanoma example. The fit by this spline yielded
GCV = 142.9, SSE = 5,298, and DF[ = 10.4. This
fairly low-dimensional spline is able to track both the
seasonal and long-term variation rather well.

By contrast, the minimum GCVpolynomial spline cor
responding to L = D4 is shown by the dashed line, and
corresponds to GCV = 193.8, SSE = 8,169, and DF1 =
7.4. As both the curve itself and the GCVvalue indicate,
the polynomial spline was completely unable to model the
seasonal variation, and treated it as noise. On the other
hand, reducing the smoothing parameter A to the point
where SSE was reduced to the same value as was attained
for the L-spline required DFj = 28.2, or nearly three
times the degrees of freedom. Again we see that building
into the operator L the capacity to model important sources
of variation pays off handsomely.

SIMULATED HUMAN GROWTH DATA

One of the triumphs ofnonparametric regression tech
niques has been their capacity to uncover previously un
suspected aspects of growth in skeletal height (Gasser,
Muller, Kohler, Molinari, & Prader, 1984; Ramsay, Bock,
& Gasser, 1996). In this illustration, spline smoothing
using an estimated differential operator is applied to sim
ulated smoothing data. The objective was to see whether
estimating the smoothing operator improves the estima
tion ofthe height and height acceleration growth functions
over an a priori "off-the-rack" smoother.

To investigate how the performance of the L-spline
would compare with a polynomial spline in practice, we
simulated data to resemble as much as possible actual
human growth curve records. Two samples were gener
ated: a training sample of 100 records that was analyzed
in a manner representative of actual practice; and a vali
dation sample of 1,000 records to see how these analy
ses would perform on data for which the analyses were
not "tuned."

The simulated data for both the training and validation
samples consisted of growth records generated by using
the triple logistic parametric nine-parameter growth model
proposed by Bock and Thissen (1980). According to this
model, height hi (t) at age t for individual i is

3

hi(t) = L cij/{I + exp[-ai/t - hi)]}' (27)
)=1
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Figure 3. The three weight functions wO' WI' and w2 for the operator L = wol +
WI D + w 2D2 + D3: The points indicate the pointwise-approximation, and the solid
line indicates the basis function expansion.

Figure 4. The lines show the three solutions to the homoge
neous equation Lu = 0 corresponding to the linear differential
operator L estimated for the simulated human growth data.

simplified by dropping the first term. On the other hand,
WI is close to 1 until the age of 15, when the growth func
tion has strong curvature as the pubertal growth spurt ends,
and its strong variation after 15 is undoubtedly helping
the operator to deal with this pronounced curvilinearity.
The acceleration weight w2 varies substantially over the
whole range of ages.

The three solutions uj to Lu = 0, computed by the suc
cessive approximation method, are shown in Figure 4.
Linear combinations ofthese three functions can produce
good approximations to actual growth curves.

The next step is to use the estimated functions uj to
estimate the Green's function G and the reproducing
kernel k associated with this operator. The integrals in
volved were approximated using the trapezoidal rule ap
plied to the values at the 201 argument values.

Now we were ready to actually smooth the training sam
ple data by the two techniques, L-spline and polynomial
spline smoothing, both of order 3, very much as one would
in practice. For both techniques we relied on the GCVcri
terion to choose the smoothing parameter. The polynomial
smooth gave values ofGCV, DF, and A. of487.9,9.0, and
4.4, respectively, and the L-spline smooth produced cor
responding values of348.2, 11.2, and 0.63.

This model, although not completely adequate to account
for actual growth curves, does capture their salient fea
tures rather well. The actual number ofparameters in the
model turns out to be only eight, since it turns out that pa
rameter ai,l can be expressed as a function of the other
parameters.

Each record was generated by first sampling from a
population ofcoefficient vectors having a random distri
bution estimated from actual data for males in the Fels
growth study (Roche, 1992), The errorless growth curves
(in centimeters) were computed for the 41 age values
ranging from 1 to 21 in half-yearly steps, and the simu
lated data were generated by adding independent normal
error with mean 0 and standard deviation 0.5 to these
values. These simulated data had roughly the same vari
ability as actual growth measurements.

Our two smoothing operators, one an L-spline and the
other a polynomial spline, were both oforder 3. The first
step was to use the training sample to estimate the order 3
L-spline that comes as nearly as possible to annihilating
the curves. To this end, the first analysis consisted of
polynomial spline smoothing ofthe simulated data to get
estimates ofthe first three derivatives. The smoothing op
erator used for this purpose was D5, implying that the
smoothing splines were piece-wise polynomials of de
gree 9. This permits us to control the roughness of the
third derivative in much the same way as a cubic smooth
ing spline controls the roughness of the smoothing func
tion itself. The smoothing parameter was chosen to min
imize the GCV criterion. With this amount of replicated
data, this criterion yields a very stable value. Since our
principal differential analysis estimate of the operator L
required numerical integration, we also obtained function
and derivative estimates at 201 equally spaced values
1(.1)21.

A third-order differential operator L was estimated
using both the point-wise technique and the basis func
tion expansion approach outlined in Ramsay (1996). For
the latter approach, we used the 23 order 4 B-splines de
fined by positioning knots at the integer values of age. The
estimated weight functions wo, WI' and w2 for the opera
tor L = wol + WID + w2D 2 + D3 are displayed in Fig
ure 3. Although these are difficult to interpret, we can see
that Wo is close to 0, suggesting that the operator could be
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Figure 5. The left panel displays root-mean-squared error (RMSE) as a func
tion of age for the simulated growth data. The solid line is for smoothing using
the estimated differential operator L, and the dashed line is for polynomial
smoothing using L = D4. The right panel shows these results for the estimated
height acceleration.

How well would these two smoothing techniques ap
proximate the curves generating the data? To answer this
question, we then generated 1,000 new simulated curves
using the same generation process, and applied these two
smoothers using the training sample values of A... Since
we knew the values ofthe true curves, we could compute
the root-mean-squared-error (RMSE) criterion

RMSE(t) = VE[x(t) - x(t)]2,

where the average was computed across the 1,000 curves
for a given specific age t. This yielded the two RMSE
curves displayed in Figure 5. We see that the estimate of
both the growth curve itselfand its acceleration by the L
spline procedure is much better for all but the final adult
period, where the L-spline estimate of the acceleration
curve becomes rather noisy and unstable. The improve
ment in the acceleration estimate prior to and during the
pubertal growth spurt is especially impressive: The mean
square error for the polynomial smooth is about four times
that ofthe L-spline smooth. That is, using the L-spline is
roughly equivalent to using the polynomial smooth with
quadruple the sample size.
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