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 Existing cache organization suffers from the inability to distinguish different 

types of localities, and non-selectively cache all data rather than making any attempt to 

take special advantage of the locality type. This causes unnecessary movement of data 

among the levels of the memory hierarchy and increases in miss ratio. In this dissertation 

I propose a split data cache architecture that will group memory accesses as scalar or 

array references according to their inherent locality and will subsequently map each 

group to a dedicated cache partition. In this system, because scalar and array references 

will no longer negatively affect each other, cache-interference is diminished, delivering 

better performance. Further improvement is achieved by the introduction of victim cache, 

prefetching, data flattening and reconfigurability to tune the array and scalar caches for 

specific application.   

The most significant contribution of my work is the introduction of novel cache 

architecture for embedded microprocessor platforms. My proposed cache architecture 

uses reconfigurability coupled with split data caches to reduce area and power consumed 

by cache memories while retaining performance gains. My results show excellent 

reductions in both memory size and memory access times, translating into reduced power 

consumption. Since there was a huge reduction in miss rates at L-1 caches, further power 

reduction is achieved by partially or completely shutting down L-2 data or L-2 instruction 



caches. The saving in cache sizes resulting from these designs can be used for other 

processor activities including instruction and data prefetching, branch-prediction buffers. 

The potential benefits of such techniques for embedded applications have been evaluated 

in my work.   

I also explore how my cache organization performs for non-numeric data 

structures. I propose a novel idea called “Data flattening” which is a profile based 

memory allocation technique to compress sparsely scattered pointer data into regular 

contiguous memory locations and explore the potentials of my proposed Spit cache 

organization for data treated with data flattening method.  
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CHAPTER 1 

INTRODUCTION 

Although caching dates back to Von Neumanns’ classic 1946 paper that laid the 

foundation for modern practical computing, it became vital to the performance of a 

processor since the beginning of 1990’s, as the gap between the processor cycle and 

memory latency times increased dramatically. Figure 1.1 shows this famous “memory 

wall” problem; how fast Central Processing Unit (CPU) can process data is no longer a  

 

 

 

Figure 1.1 CPU-Memory Speed Gap (Note that the y axis is log scaled.) [31] 

 

problem, rather the main issue of concern in todays’ computer system is how fast data 

can be provided to CPU. The problem is even more complicated in pointer intensive 

applications, which do not have regularity in data stream as scientific applications and for 

embedded applications, which place requirements along a number of dimensions 

including tighter constraints on functionality and on implementation. 
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As the CPU speed has outstripped the rest of the system by many orders of magnitude, 

more advanced techniques are needed to improve the performance of cache. This makes 

cache design one of the most important research topic in computer architecture field. 

According to Hennessy et al. [31] a bibliographic search for the years 1989-2001 

revealed more than 5000 research papers on the subject of caches. Like most of these 

works, my research is also motivated by the “memory wall” problem. While searching 

for solutions, I have noticed a major drawback in conventional cache designs. 

Conventional caches imply no separation of data based on the nature of the 

characteristics (locality) exhibited by different data references and try to compromise 

between these data by sending them all to a unified data cache. I believe, that while 

transistors are plentiful in current Very-Large-Scale Integration (VLSI) designs, it is 

useful to allocate more resources to allow intelligent control over memory latency 

reducing techniques and that it is better to implement multiple smaller dedicated caches 

because these can be accessed relatively quickly. Being inspired by this realization, I 

propose “Split data caches.” In my framework, the compiler will separate data references 

according to their inherent locality type and send them to appropriate cache. In this study 

I also show that when carefully designed, combination of different cache optimization 

techniques (Viz., prefetching, victim caching, data flattening and reconfigurability.) 

overcomes each other’s deficiency and allows each to provide optimum benefit. 

In this dissertation I show that even very small data caches, when split to serve data 

streams exhibiting temporal and spatial localities and augmented with smarter techniques 

like prefetching, victim caching, data flattening and reconfigurability, can improve 

 2



performance of scientific, embedded and pointer intensive applications without 

consuming excessive silicon real estate or power.  

1.1 Proposed Cache Organization 

First I describe my proposed cache organization in a step by step manner followed by 

the presentation of my final cache design. 

1.1.1 Scalar Cache and Array Cache 

Programs exhibit two types of localities, temporal and spatial. Temporal locality 

implies that, once an instruction or datum is accessed, a high probability exists that it will 

be accessed again in the near future, and less likely to do so as the time passes. Scalar 

data items exhibit this behavior. Spatial locality implies that when an instruction or datum 

is accessed, nearby instructions or data will likely be accessed in the near future. Array 

data items have spatial locality. I propose a split cache architecture that will group 

memory accesses as scalar or array references according to their inherent locality and 

each group will be subsequently mapped to a dedicated cache partition. The “array 

cache” is a direct mapped cache with larger block sizes to exploit spatial localities more 

aggressively by prefetching multiple neighboring small blocks on a cache miss. The 

“scalar cache” is a set associative cache with smaller block sizes to exploit temporal 

locality.   

1.1.2 Integration of Split Caches with Victim Cache and Stream Buffer 

Next I propose the inclusion of a victim cache and a stream buffer together with my 

split cache architecture to further improve my cache designs. Victim caches are based on 

the fact that reducing the cache misses due to line conflicts for data exhibiting temporal 
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locality provides an effective way to improve cache performance. Thus Victim caches 

can augment a direct mapped scalar cache without having to use a set associative cache. 

Stream buffers tend to eliminate cold misses and prefetch data exhibiting spatial locality. 

Thus stream buffers can improve array cache performance. 

1.1.3 Reconfigurability 

Then I try to reduce unnecessary area, power and time consumption by introducing 

reconfigurability.  Reconfigurability is a design alternative that provides flexibility in the 

system so that resource constraints like area, power and performance can be balanced 

based on application needs. Ideally, the split cache organization should be dynamically 

reconfigurable to meet the application requirements. Depending upon the types of locality 

of data my system can partially shutdown a specific portion of the system. For example if 

the application has more scalar data then prefetch buffers and even the entire array cache 

may be shut-down to save power. Or the array cache can be dynamically reconfigured to 

increase the size of the scalar cache. When the unused cache areas are sufficiently large, 

these areas may be utilized for other processor activities such as larger branch prediction 

tables or prefetch buffers. By setting a few bits in a configuration register, the cache can 

be configured in software for optimum sizes for each of my array and scalar caches in 

Level one (L-1) and Level two (L-2) levels to utilize the unused area for other processor 

activities or to shut down. For both cases, the reconfiguration leads to only a small 

overhead in terms of time, power, silicon area and hardware complexity.  
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1.1.4 Data Flattening  

Finally I try to explore how my proposed cache organization performs for non numeric 

data or non-array data structures. I propose a novel idea called “data flattening” which is 

a profile based memory allocation technique to compress sparsely scattered pointer data 

into regular contiguous memory locations (Like array data.). Then I explore the potentials 

of my proposed spit cache organization for pointer data treated with data flattening 

method. 

1.1.5 Final Scheme 

In Figure 1.2 I show the design of my final scheme.  

 

Figure 1.2: Proposed Cache Organization 

 

While other research groups reported on some aspects of cache organizations used in 

my research, the clear benefits of the combined approach to aggressively improve cache 

utilization for scientific, pointer intensive and embedded applications by combining split 

 5



caching, victim caching, prefetching, data flattening and reconfigurability have, to my 

knowledge, not been studied in the literature.  

1.2 Different Application Domains 

In order to fully explore the problems in different application fields and describe my 

solutions, I first study existing cache memories for two classes of application domains: 

“desktop applications” and “embedded applications.” The problems with desktop 

applications are more general as they are also applicable to embedded applications. 

Whereas for embedded applications the situation is more complicated because on top of 

these general problems (Inherited from desktop applications.), they have their own set of 

constraints.  Finally I explore “pointer intensive applications” because both “desktop 

applications” and “embedded applications” utilize pointer based variables in their codes. 

Hence the problems with pointer intensive applications are present in any member of 

either desktop or embedded applications which have intensive non-numeric (pointer) 

data. 

1.2.1 Desktop Applications 

The success of cache memories has been explained by the property of locality of 

reference [74]. Caches exploit locality to shorten the effective access time to data, 

thereby reducing the cost of accessing main memory. To improve cache performance, 

modern processors rely on split cache architecture, at least on the first cache level, with 

separate instruction and data caches, since instruction and data streams exhibit different 

types of localities. The locality within the data address stream is also not uniform. 

However it is not common to see a  separation of data caches based on access localities 

 6



exhibited. Since not all data items exhibit both spatial and temporal localities, using a 

common data cache is inefficient at adapting to spatial and temporal localities. This 

traditional method of using a single data cache causes unnecessary movement of data 

among the levels of the memory hierarchy, causing significant interference between 

unrelated data inside the cache, causing cache pollution (Viz., untimely removal of 

needed data.) and unnecessary increases in miss ratio, memory access time and memory 

bandwidth. 

Hence it seems worthwhile to explore separate caches to deal with the two types of 

localities in data intensive applications. In this work, I have simulated a direct mapped 

array cache with large block sizes for stream and array references exhibiting spatial 

locality in order to permit prefetching and reduce compulsory misses. I use a set 

associative scalar cache with more numbers of smaller blocks to overcome high conflict 

misses. I have experimentally studied the impacts of split data caches using Standard 

Performance Evaluation Corporation (SPEC) floating point 2000 benchmarks. My results 

have shown that the split cache organization achieves lower miss rates and shorter 

average access times even when the combined size of array and scalar caches is roughly 

one quarter the size of a unified data cache.  

This success has encouraged me to extend my research to explore other ideas for 

further improvement. I have investigated the interaction between three established 

methods, split caches, victim cache and stream buffer for improving hit rates in the first 

level of memory hierarchy. In my proposed cache organization, victim cache nicely 

complements the direct mapped scalar cache in terms of minimizing conflict misses, 
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while stream buffers add to my array cache with prefetching capabilities. I show that the 

inclusion of a victim cache and a stream buffer together with partitioned cache 

architectures provides an effective solution for alleviating existing problems in cache 

designs and enhancing the effective cache memory space for a given cache size and cost. 

1.2.2 Embedded Applications  

Challenges to the design of processing elements for embedded applications are more 

stringent than those for desktop applications. Desktop systems afford greater design 

flexibility for cache memories in terms of cache sizes, associativities, block sizes and 

multi-level caches. Where as, the limitations on the physical size, real-time predictability, 

energy budget have made caches less common for embedded systems [35]. Because, 

caches have demonstrated their usefulness in a wide-range of applications, I feel that it is 

worthwhile investigating new cache organizations to address both performance and 

power requirements for embedded applications. While performing design space 

explorations of embedded systems, I have made four key observations.  

Observation 1: Extreme cost sensitivity requires that designers of embedded systems pay 

more attention to physical size and energy requirements than to performance 

requirements. For almost all battery-operated systems, reducing total energy consumed is 

critical. Studies have shown that on-chip caches are responsible for 50% of an embedded 

processor’s total power dissipation [82, 83] and, thus, savings in cache memory power 

can be significant in overall power savings.  

Observation 2: For desktop systems, designers typically emphasize speed or throughput, 

based on average-case behaviors. In contrast, designers of real-time embedded systems 
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emphasize system’s accuracy, predictability, and reliability, all related to the system’s 

worst-case behavior. When a real-time embedded system controls critical equipment, 

execution time variability becomes completely unacceptable. Traditional hardware-

managed caches prove unsuitable for embedded systems because they cannot accurately 

predict the access times to data.   

Observation 3: Traditionally, designers of embedded systems have viewed 

complementing direct-mapped cache with a victim cache as an inappropriate choice [84], 

because fully associative victim caches consume additional energy and silicon area.  For 

similar reasons, prefetching is considered ill suited for embedded systems [35]. Other 

performance optimization techniques such as instruction reuse (Using trace caches.), 

branch predictions are also not implemented in embedded systems as they require 

additional hardware for implementing look-up tables, which lead to increased area and 

power requirements.  

Observation 4: The manufacturer typically selects a fixed cache architecture as a 

compromise across several applications. For embedded systems, since each 

architectural feature must be customized for each application, this “one-size-fits-all” 

fixed cache design philosophy is not adequate, as this will lead to suboptimal 

performance and/or power consumption profiles. Thus it is necessary to provide for 

reconfigurable caches whereby the size of array and scalar caches, their block-sizes, 

associativities, as well as the sizes of prefetch buffers and victim caches can be chosen 

for each application.  
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I claim that my approach that brings together various cache alternatives addresses the 

challenges faced by embedded system designers. Since my design reduces the effective 

memory access times, they can be useful even in real-time systems with strict-deadlines. 

At the same time, because my split cache design leads to smaller cache sizes (To achieve 

the same level of performance as a unified data cache.), with reconfigurability, one can 

either shut down portions of cache to save energy, or use the space to improve system 

performance by converting the unused portions of caches into trace caches (For 

instruction reuse or data predictions.) or branch prediction buffers. 

1.2.3 Pointer-intensive Applications 

It is very obvious that my proposed split cache organization will perform better for 

numeric applications that utilize arrays and streams. But I wanted to explore the benefits 

of my proposed cache organization for non-numeric applications with pointer data. 

Pointer data structures contain dynamically allocated data elements that are linked 

together. In many applications such structures provide for elegant algorithms since the 

number of elements can grow without a predetermined limit. However, the dynamic 

allocation cannot assure that consecutive nodes occupy consecutive areas in memory, 

thus making it difficult to prefetch linked data elements. The lack of (spatial) localities 

also makes traditional cache designs ineffective. This led computer system designers to 

investigate new ways for tolerating memory latencies in accessing linked data elements. 

In my research, I propose to “flatten” the linked data structures into a linear data structure 

similar to arrays and streams so that I can take advantage of my split data caches 

described earlier.  
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Data placement is the method to pack sparsely scattered data into adjacent memory 

locations to take advantage of spatial locality and prefetching. Other researchers have 

proposed innovative data placement techniques to improve localities of non-numeric (Or 

non-array.) data [15, 22]. However they have been proposed in the context of a 

conventional data cache design and not in the context of a reconfigurable split data cache 

design. In my context “data flattening” is a profile based memory allocation technique 

which compresses sparsely scattered pointer data into regular contiguous memory 

locations (Like array data.). I believe since the non-numeric pointer data will exhibit 

similar pattern after being flattened into a linear structure my cache organization will 

prove to be useful for a wide-variety of scientific, non-scientific and embedded 

applications.  

The rest of the dissertation is organized as follows: 

In Chapter 2 I present a description of designs and deficiencies of conventional cache 

memories. I provide a survey on related work on Chapter 3. In Chapter 4 I describe the 

experimental environment used in my study, including performance metrics, benchmarks 

and tools used in my study. I begin Chapter 5 with the initial evaluation of split array and 

scalar data caches and show their uniform superiority over the conventional unified data 

cache design across all of the benchmarks. For example, a 4 kilobytes 32 bytes block 

sized scalar cache and 2 kilobytes 128 bytes block sized array cache show 43.41%, 

24.14%, 11.76% and 43.33% improvements over a 16 kilobytes 64 bytes block sized 

unified scalar cache for ar, eq, am and me benchmarks respectively. Then I demonstrate 

how three inherently different approaches, split cache, victim cache and stream buffer 
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could be combined and make to work together to further improve data access times. For 

example a 4 kilobytes scalar cache (With 256 bytes victim cache.) and 4 kilobytes array 

cache (With 512 bytes stream buffer.) on average show 55% improvement over a 16  

kilobytes unified data cache for the benchmark set. In Chapter 6 I explore how to design 

small caches (Including prefetching and victim caching.) that achieve high performance 

for embedded applications. I also performed a comprehensive evaluation of my proposed 

methods by comparing with a variety of techniques that have traditionally been applied to 

improve cache systems. My cache architecture reduced the overall cache size by 43%, 

access time by 37% and energy consumption by 63% when compared with a unified 2-

way set associative cache. In Chapter 7 I explore how reconfigurability can be used to 

design caches for embedded applications. My cache architecture reduces the cache area 

by as much as 78%, access times by as much as 36% and power consumption by as much 

as 67% respectively when compared with an 8 kilobytes L-1 unified data caches. Then I 

explored how unused cache portions can be used for different optimization methods or 

how power reduction can be achieved by partial/complete shutdown of L-2 caches. I 

evaluate my novel “data flattening” method in Chapter 8. My split data caches with 

flattened data provide excellent improvement for all of the benchmarks; on average 56%, 

73% and 43% reduction in access time, power consumption and performance 

respectively, when compared with original code (Without data flattening.) using unified 

data cache. Finally in Chapter 9 I draw my conclusion with a brief synopsis of future 

work. 
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CHAPTER 2 

DESIGN AND DEFICIENCIES OF CONVENTIONAL CACHE MEMORY 

I begin this chapter with a description of design and deficiencies of conventional cache 

memories. Next I present the traditional cache optimization techniques used for desktop 

applications, followed by a brief description of comprehensive evaluation of my proposed 

design, which includes all of these traditional techniques. Finally I point out the 

challenges involved with cache designing for embedded microprocessors.   

2.1 Cache and Locality of Reference 

In modern systems cache has become the basic and inevitable mechanism for 

effectively reducing memory access latencies and for improving overall system 

performance. Caches are typically placed between a large, relatively slow and 

inexpensive source of information (The lower level of memory.) and a much faster 

consumer of that information, the processor. The success of cache memories has been 

explained by the property of locality of reference [74], which is a property exhibited by 

most programs. The property of locality has two aspects: temporal and spatial. Temporal 

locality implies that, once a location is referenced, there is a high probability that it will 

be referenced again soon, and less likely to do so as the time passes; spatial locality 

implies that when an instruction or datum is accessed it is very likely that nearby 

instructions or data will be accessed soon. Since cache buffers recently used segments of 

information, the property of locality implies that needed information is also likely to be 

found in the cache. A cache exploits this property to improve the effective access time to 

data and reducing the cost of accessing main memory. 
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2.2 Deficiencies of Conventional Cache Designs 

As the Central Processing Unit (CPU) speed has outstripped the rest of the system by 

many orders of magnitude and the memory latency problem has continued to grow, some 

deficiencies of conventional caching have become evident. Conventional caches imply no 

separation of data based on the nature of the locality exhibited by different data 

references. As a result all memory references are handled in a uniform manner – 

whenever a reference misses, a new block is brought into cache at the expense of 

replacing another block. Because not all data items exhibit both spatial and temporal 

localities, this simple-minded treatment to the references makes the data cache inefficient 

at adapting to the two types of localities. Generally, caches exploit temporal locality by 

retaining recently referenced data for a long time, and spatial locality by fetching multiple 

neighboring words as a cache block on a cache miss. If a data item exhibits no temporal 

locality, bringing it into the cache is useless. Likewise if no spatial locality is exhibited 

by data items, bringing an entire cache block leads to wastage. Thus traditional treatment 

of cache misses not only causes unnecessary movement of data between the various 

levels of the memory hierarchy, it may lead to premature displacement of blocks that are 

likely to be re-referenced (A phenomenon known as cache pollution.). This can become 

costly if the newly loaded data tends to be non-temporal. In any case, an unnecessary 

increase in miss ratios, memory access times and wasted memory bandwidths occur.  

References can be easily divided into two groups according to the types of localities 

exhibited by the program – the scalar and array (stream) references. Conventional cache 

techniques perform acceptably for general-purpose scalar references with high temporal 
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locality. But such is not true for array references, which do not reuse data soon or often 

enough to derive much benefit from caching. Because arrays and streams exhibit only 

spatial localities and the data sizes are often very large for caches, computations with 

streams and array access patterns cause mostly compulsory misses (Rather than conflict 

misses.) and perform extremely poorly in terms of cache behavior. 

2.3 Conventional Approaches to Improve Cache Design 

For two decades computer architects have proposed smart cache-control mechanisms 

and novel cache architectures that detect program access patterns and fine-tune cache 

policies to improve both overall cache use and data localities for desktop applications. 

Major cache optimization techniques (To improve either or both miss rate and miss 

penalty.) are generally categorized as: (1) increasing block size and cache size, (2) 

increasing associativity, (3) cache probing, (4) supplementing the regular cache with 

victim cache, (5) prefetching data, or (6) including additional cache hierarchy.  

2.3.1 Increasing Block Size and Cache Size  

The simplest way to reduce miss rate is to use large block sizes; large blocks reduce 

cold misses and aid in data prefetching. Unfortunately, larger blocks increase miss 

penalty, which may outweigh the benefits of reduced miss rates. Actually, increasing 

block size without increasing the total cache size increases other types of misses because 

increasing only block size (Not cache size.) reduces the number of lines, leading to an 

increase in conflict and capacity misses [31].  Current desktop computers have used 

larger caches with larger block sizes for off-chip caches. Some of these caches are as 

large as the main memories of a decade ago [31]. 
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2.3.2 Increasing Associativity  

Another common technique for reducing miss rates is increasing associativity. Caches 

with higher associativity (4- to 8-way associativity.) have become common in both 

desktop and server systems. Unfortunately, the design of a first-level cache always 

involves fundamental tradeoffs between miss rates and access times. Direct-mapped 

caches have proven to be simpler, easier to design and require less silicon area than 

caches with higher associativities. The main disadvantage of a direct-mapped cache is the 

high conflict miss rate—conflict misses typically account for 40% of all direct-mapped 

cache misses [39]. Conversely for caches with higher associativity, the main advantage 

becomes lower miss rate, but such caches have higher access times as they require 

associative searches of sets and multiplexing of the appropriate data words to the 

processor.  

2.3.3 Probe Caches or Modified Set-associative Caches 

Recently researchers have proposed Probe caches (Modified 2 way set-associative 

cache.) that result in miss rates like a 2-way set associative cache, but hit-times like a 

direct mapped cache [1, 2, 14, 17, 75]. These “sequential search” of set associative 

caches or probe caches are based on the key observation that associativity is needed only 

for conflicting blocks and should not be provided at the expense of higher hit latencies 

for all accesses. In most of these schemes, a traditional direct-mapped cache is 

conceptually partitioned into sets with 2 blocks per set. Cache access is sequential; first 

one block is probed, and if the tag doesn’t match the second block in the set is probed. In 

order to achieve fast access different probe caches use different data structures, ranging 
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from simple hash/mru bit, to complicated way prediction mechanisms [1, 2, 14, 17, 75]. 

The examples of probe cache include Hash rehash cache [1], Column associative cache 

[2], MRU cache [17, 75]. Hash rehash cache (HR cache) uses fixed probe order with 

different hash functions to search the cache [1]. The Column associative cache (CA 

cache) improves on Hash rehash cache by associating rehash information with each block 

and improving the replacement algorithm, which reduces the number of second probes 

required [2]. MRU cache uses a dynamic probe ordering based on most recently used 

information [17, 75].   

2.3.4 Supplementing Cache with Victim Cache 

A Victim cache is a fully associative cache, with typically 4 to 16 cache lines that 

reside between a direct-mapped Level one (L-1) cache and the next level of memory [39]. 

On a main cache miss, the victim cache is checked before going to the next level of 

memory. If the address hits in the victim cache the desired data is returned to the CPU 

and swapped (Or promoted.) with the data currently occupying the primary cache. Upon 

a miss in victim cache, the next level of memory is accessed and the arriving data is 

placed in the primary cache, moving the current data to victim cache. In this case an 

element from victim caches has to be removed (Or written back to next level of memory.) 

to make room for the newly victimized data. 

While set-associative caches, with fewer conflict misses, offer lower miss rates than 

direct-mapped caches, they cost more and incur longer access times on a hit. Victim 

caches, in contrast, reduce conflict misses of direct-mapped caches without affecting its 

fast hit access times.  Because victim caches are fully associative (Albeit small.), they can 
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hold many blocks simultaneously that might otherwise conflict in direct-mapped cache. If 

most of the conflicting blocks can fit in victim cache, both the miss rates and the average 

access times improve.  

2.3.5 General Prefetching 

As another technique to improve efficiency, prefetching or exploiting the overlap of 

processor computations with data access has proven to be effective in tolerating large 

memory latencies in desktop systems [8, 52]. Although increasing line size presents the 

simplest way of prefetching, line sizes cannot be made arbitrarily large without both 

increasing miss rates and greatly increasing the amount of data transferred on cache 

misses (Thus increasing miss penalties.) [31]. Prefetching can be either hardware or 

software based [8], [52]. Hardware-based prefetching [8] requires additional hardware 

connected to the cache. Software prefetching [52] relies on compiler technology to insert 

explicit prefetch instructions. Typically, on a miss the processor fetches additional blocks 

along with the requested block. The processor places the requested block in the primary 

cache and places the prefetched blocks either in the primary cache or in an external 

buffer. On a future reference, if the processor locates the requested block in the buffer, 

the original cache request to next level of memory is cancelled, the processor reads the 

block from buffer and issues the next prefetch request. For data with spatial locality, 

prefetching is beneficial.  

Stream buffer is a fully associative, First In First Out (FIFO) buffer with 4 or 5 entries 

specially designed to support direct-mapped cache through hardware based prefetching 

[39]. A miss induces fetching of the missed block along with successive blocks stored in 
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the buffer rather than the cache. My intent is to use the stream buffer for prefetched 

blocks and avoid cache pollution. 

2.3.6 Multilevel Caches 

Inclusion of additional cache hierarchy provides a common technique to improve 

performance of desktop applications. Adding a second level of cache between the 

original cache and the main memory improves access times. The L-1 cache can remain 

small enough to match the clock cycle time of fast CPU, while the L-2 cache can become 

large enough to capture most accesses, thereby lessening the access time. Some recent 

architectures contain a third level cache, whereby an even larger cache is placed between 

the L-2 cache and the main memory.  

2.4 Comprehensive Evaluation 

I have provided a survey of most popular traditional approaches (Described in section 

2.3.) that have been used to improve the cache performance of desktop applications and 

have selected one or more representatives of each technique. In this research I employed 

a simulation environment representing each of these traditional techniques and performed 

a comprehensive evaluation of my proposed methods by comparing them with each of 

these traditional cache organizations. Results of this comprehensive evaluation are 

described in chapter 6. 

2.5 Issues in Designing Caches for Embedded Systems  

Unfortunately the optimization methods described in section 2.3 (Which work well for 

desktop application.) are not suitable for embedded applications. For desktop 

applications, the simplest way to improve performance is to increase the cache size and 
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block size. Whereas, embedded systems cannot include large caches or arbitrarily large 

block sizes because of the physical size and power constraints. Caches with higher (Or 

modified.) associativity remain unpopular for embedded systems mostly because higher 

associativity leads to high power consumption [67, 82]. Thus most cache design efforts 

have concentrated on optimizing direct-mapped cache organizations. Although victim 

caches commonly appear in desktop computing, designers have viewed supplementing 

direct-mapped cache with a victim cache as an inappropriate choice for embedded 

systems [84], because fully associative victim caches require additional energy and 

silicon area.  Similarly, although successful prefetching can reduce miss rates, any 

unnecessary prefetching not only wastes the embedded system’s valuable power but may 

also cause cache pollution which leads to additional misses and wasted energy. 

Additional level of cache hierarchy is also not popular in embedded applications [35]. 

Because the requirements of cache design in embedded systems differs from that in 

desktops, I propose reconfigurable split data caches for embedded applications, which 

will be described in later chapters.  
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CHAPTER 3 

RELATED WORK 

In this chapter I provide a survey of related work. In later chapters (Chapter 5-8.) when 

I describe different stages of my work, I try to distinguish my work from the related work 

described here. 

3.1 Cache in Desktop Applications 

I divide this chapter in to two sections. First I describe the related work with data cache 

splitting, which is followed by the description of the related work with victim cache and 

stream buffer.    

3.1.1 Related Work in Data Cache Splitting 

Supplementing the cache with a small extra module to exploit temporal and spatial 

localities was first proposed by Jouppi [39]. Subsequent to Jouppi’s work, two 

approaches emerged; the first approach retains Jouppi’s original idea and supplements the 

regular cache with a small buffer for prefetching all data items regardless of the nature of 

locality exhibited by the data; the second approach is real cache partitioning to exploit 

data localities exhibited by different data types. Partitioning of the cache can be either 

static or dynamic.  

The most extensive and prominent work belonging to the first trend is done by Mckee 

et al. [54]. They designed a stream memory controller (SMC), a combination of a small 

buffer and an intelligent scheduling unit for supporting the regular cache. When the 

program enters a loop that accesses one or more streams, compiler-generated code 

provides the scheduling unit with the base addresses, the number of elements, and the 
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strides for any streams accessed in the loop body. A Memory Scheduling Unit (MSU) 

uses this information to reorder the requests so that even though the processor still issues 

requests to the Stream Buffer Unit (SBU) in the natural order, the order in which 

associated requests are made to memory will maximize the use of its bandwidth. Because 

the stream accesses no longer affects the cache, the cache can be designed more 

optimally for the remaining requests.  

Sanchez et al. [71] propose a dual data cache, composed of two modules. The temporal 

module is a fully associative buffer, built to exploit just temporal locality and spatial 

module, is a direct mapped cache targeted to exploit spatial locality. The temporal 

module has only 16 short blocks (Each 8 bytes.) and the spatial module has larger blocks 

(32 bytes per block.). At compile time, memory instructions are tagged as bypass (Data 

that do not exhibit any type of locality.), spatial, or temporal. On a miss both modules are 

checked in parallel to find the required data. References tagged as bypass are sent to 

directly to the Central Processing Unit (CPU)  rather than bringing them into cache. If the 

reference receives a spatial or temporal tag, a new block is brought into the module 

indicated by the tag. Previously they proposed a similar architecture [28], where rather 

than using compile time annotations, they tagged memory references at execution time 

using an additional hardware unit called locality prediction table. 

Tomasko et al. [78] reported on a preliminary experimental evaluation of architecture 

with separate array and scalar caches to exploit the potential benefits to a cache 

organization based on a specific type of locality. In their experiment they assumed a 

model where the tagging of data as array or scalar to be allocated in one or the other 
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caches would be done statically by compiler and the model does not assume any 

extensive analysis of references to determine the nature of the locality of access; rather it 

allocates the data only on the basis of the data type declaration.  

Split Temporal/Spatial (STS) cache proposed by Milutinovic et al. [56] differs slightly 

from other proposed split caches I have already discussed. Because for “temporal” data 

hierarchy is needed (To reduce miss penalty for subsequent misses.) but fetching the 

entire block is unnecessary, the temporal part is organized as a two level hierarchy with 

one word block size. The spatial part is one-level with four 32-bit words with a hardware 

implemented prefetching mechanism. The STS cache contains four variants STS1, STS2, 

STS4a STS4b, each with same sized temporal module but larger spatial modules. Spatial 

and non spatial modules are 4-way set associative with Least Recently Used (LRU) 

replacement. Initially all data blocks are regarded as “spatial,” a data block may be 

changed to “temporal” and re-allocated through optimization of relevant parameters 

(Using different counters to detect locality.) during profiling or during runtime by means 

of a monitoring hardware unit. 

In order to avoid the problem of determining counter thresholds present in STS method 

and also the problem of complicated memory hierarchies for each module, Milutinovic et 

al. [57] proposed a simple method of detecting useful spatial locality which is tested by 

incorporating it into a new split cache design, called the Split Spatial/Non-Spatial 

(SS/NS) cache. For detecting different types of locality the design used a flag-based 

method, requiring fewer cache bits than counter implementation of STS. For exploiting 

the locality the system has two separate modules with same associativity and equal 
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hierarchy. Prefetching is used if spatial locality is too large to be exploited by larger 

cache block. 

The Hewlett Packard-7200 Assist cache [46, 68] design tries to avoid both cache 

conflict and cache pollution due to prefetching. The primary direct-mapped cache is 

coupled with a small fully associative buffer (the Assist buffer), with a one-cycle lookup 

in both units. The direct-mapped primary cache and the buffer units are designed with 

equal sized blocks. Until a block is identified as temporal, if it is requested either by a 

cache miss or a prefetch, the block is first loaded into the Assist buffer. It is promoted 

into the direct-mapped unit only when it exhibits temporal reuse. Spatial-only data, 

especially array data, may bypass the direct-mapped cache entirely, moving back to 

memory in First In First Out (FIFO)  fashion from the Assist buffer. In this system 

dynamic associativity is provided by allowing up to N+1 conflicting blocks, which 

belong to the same direct-mapped set, to co-exist in the cache simultaneously, where N is 

the number of block entries in the Assist buffer. Since only a uni-directional 

communication exists between the direct-mapped unit and the Assist buffer no swapping 

between the two units is allowed. 

The Non-Temporal Streaming (NTS) cache proposed by Rivers and Davidson [69] 

dynamically detects temporal (T) and non-temporal (NT) data and cache them separately. 

The NTS cache consists of a Data Storing Unit (DSU) which is a conventional direct 

mapped cache supplemented with a small fully-associative buffer (NT buffer) and a Non-

Temporal Detection Unit (NTDU), which is a hardware bit-map structure attached to the 

main cache in order to monitor the reuse behavior of the blocks. Cache block size is 
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uniform across the direct-mapped cache primary cache, the buffer units and the next level 

of memory. The strategies adopted in the NTS cache for detecting and caching temporal 

and non-temporal references are very similar to those implemented in Hewlett Packard -

7200 Assist cache [46, 68].  

Lee et al. [49] have proposed a cache system called Selective Temporal and 

Aggressive Spatial (STAS) cache. Although they claimed to have two separate caches for 

temporal and spatial references with different block sizes, the module for spatial locality 

is actually a buffer rather than a cache. In this system, on every memory access, both 

modules are accessed simultaneously. If a miss occurs at both places the block is brought 

to the spatial buffer. However a write back of dirty block in spatial buffer cannot occur 

directly - the dirty block is always placed in the direct mapped cache before being 

replaced. Later Lee et al. [50] extended the STAS cache into another cache structure 

Selective Mode Intelligent (SMI) cache which consists of three parts: a direct-mapped 

cache with a small block size, a fully associative spatial buffer with large block size and a 

hardware prefetching unit. 

3.1.2 Related Work with Victim Cache and Stream Buffer 

Albera and Bahar [4] combined software code placement and associative-buffer 

solutions for high performance processors and showed that the buffer can improve 

performance even more after code layout optimization is applied than when used without 

the code optimization. In a later study Bahr et al. compared the use of victim caches to 

more traditional techniques and showed that use of a victim cache is usually a better 

choice for both power and performance [9]. 
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Espasa and Valero [25] considered the usefulness of adding a victim cache next to the 

register level of a vector processor and show that such placement can provide speedups 

by allowing a good tolerance of large memory latencies. Hormdee et al. proposed an 

architecture of a self-timed victim cache with a forwarding mechanism suitable for use 

within an asynchronous environment [33].  

Except for the addition of the non-swapping option, no other extension to Jouppi’s 

original victim cache [39] was implemented by any of these above-mentioned studies. 

Bahar et al. [9] tried to add some extra flavor in their “penalty buffer” but failed to gain 

much improvement. Only one group, Stiliadis et al. proposed an improvement of victim 

caching called “selective victim caching” [77]. In this method a prediction scheme based 

on each block’s past history of utilization is used to selectively place a block either in the 

main cache or victim cache on a cache miss in either cache and to decide whether to 

perform swap or not in the case of victim hit.  

As described in section 3.1.1, the most extensive and prominent work with stream 

buffers is that of McKee et al. [54]. Their designed SMC is a combination of a stream 

buffer and an intelligent scheduling unit for supporting regular cache. Palacharla and 

Kessler [65] have proposed the use of multiple stream buffers to replace big secondary 

cache.  

To date, no study has combined the implementation of victim cache and stream buffer 

with separated data cache approach. Johnson et al. [37] proposed a method where a single 

4–way set associative buffer is used to serve the function of both victim cache and stream 

buffer on groups of data that have been differentiated based upon the reuse behavior.  
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Johnson et al. [37] presented a method to improve the efficiency of cache by bypassing 

data that is expected to have little reuse in cache and allowing more frequently accessed 

data to remain cached longer. The bypassing choices are made by a Memory Address 

Table (MAT), which analyzes the usage patterns of the memory locations accessed. In 

order to characterize memory locations they introduce the notion of macro-block, which 

is a group of statically defined blocks of memory with uniform size (1 kilobytes). They 

used a direct mapped 16 kilobytes Level one (L-1) data cache and 256 kilobytes Level 

two (L-2) data cache with fully associative buffers of 8 and 256 entries respectively, 

which hold bypassing data and are accessed in the same manner as a victim cache. Since 

fetching the entire cache block for bypassed data with little spatial locality will cause 

cache pollution and extra traffic, they used small lines (Equal to the element size.) for the 

buffers and optionally filled in consecutive blocks when spatial locality is detected. As 

we can see they are using a single buffer to serve the purpose of both a victim cache (For 

scalar data.) and a prefetch buffer (For stream data.). In a later study [38] they extended 

their scheme by adding an extra structure Spatial Locality Detection Table (SLDT) and 

extra counter for each MAT entry to detect spatial locality so that the system can adapt to 

varying spatial locality by dynamically adjusting the amount of data fetched on a cache 

miss. 

3.2 Caches for Embedded Systems 

Exploitation of various cache parameters such as associativity and block sizes offer the 

most common approaches to improve cache performance for desktop systems [74]. 

Following this approach, Givargis, et al. explored the effects of cache size, block size and 
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associativity on the cache performance in embedded systems [27]. For desktop 

applications, other cache performance improvement techniques include augmentation of a 

cache with additional structures and hardware prefetching. Zhang et al. [84] explored the 

role of victim caches in embedded systems. They concluded that because of its high 

energy requirement, victim caches do not offer a good option for embedded systems. 

Data prefetching, has long been known to significantly decrease cache miss latency and 

both hardware and software prefetching approaches have been studied for desktop 

applications [8, 52]. However, these techniques have not been investigated for embedded 

systems because designers believe that such structures add to the embedded processors’ 

energy requirements [31]. Another common practice in desktop application includes 

additional cache hierarchies [10], Ross-Gordon et al. has evaluated L-2 caches for 

embedded systems [29]. In the arena of embedded processors, static or dynamic cache 

partitioning has been investigated. Unsal et al. [79] proposes a minimax cache which has 

a 8  kilobytes 2-way set associative cache for non scalar data while the scalar data are 

directed to a 512 bytes fully associative minicache. The system also has a secondary 

cache and the block size is the same across the buffer and caches. Intel’s [34] 

StrongARM SA-1110, a low-power processor for embedded system, has an 8  kilobytes 

data cache with 32-way set associativity and 512 bytes fully associative mini data cache 

to enhance caching performance when dealing with temporal references. This system 

does not contain a L-2 cache. 
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3.3 Reconfigurable Caches 

Albonesi et al. [5] propose reconfigurable unified data caches for desktop systems, 

where as Ranganathan et al. [67] and Zhang et al., [82, 83] propose reconfigurable 

unified data caches for embedded systems. In their customizable reconfigurable unified 

data cache, Albonesi et al., [5] selectively shut down portions of cache to achieve power 

reduction. The unified data reconfigurable cache proposed by Ranganathan et al. [67] 

allows the cache array to be divided dynamically into two or more partitions that can be 

utilized by the processor for various purposes. Zhang et al. [82, 83] proposed a 

reconfigurable unified data cache for embedded applications. They emphasize more on 

associativity as an important reconfigurable design parameter. In a later work [29] they 

also analyzed the possibilities of reconfigurability with L-2 cache. 

3.4 Data Flattening 

As no study has combined the implementation of restructuring computation or data 

layout with separated data cache approach, in this section I generally discuss the related 

work done with computation and data reconstruction. Both approaches of “restructuring 

computation” and “restructuring data” have received considerable attention in the past. 

Research with “restructuring computation” attack the processor-memory gap by 

reordering computations to increase spatial and temporal locality [16, 81]. Carr et al. [16] 

use a simple model of spatial and temporal reuse of cache lines to select compound loop 

transformations. Wolf and Lam [81] develop a loop-transformation theory, based on uni-

modular matrix transformations, and use a heuristic to select the best combination of loop 

transformations.  
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Over the years, researchers have also proposed data placement optimization techniques 

to employ “restructuring data.” Early work on improving the spatial locality on data 

streams with pointer data structures occurs in the context of LISP [19, 47, 58] and aimed 

to increase page reference density. Clustering has been used to improve virtual memory 

performance of LISP systems [47, 58] by reorganizing data structures during memory 

allocation or garbage collection. Database researchers also used clustering [11, 12] and 

compression [23] to improve virtual memory performance. Recently Seidl and Zorn [73] 

and Calder et al. [15] have shifted focus to cache-conscious allocation and added profile 

feedback to this process. Seidl and Zorn [73] combined profiling with a variety of 

different information sources present at the time of object allocation to predict an object’s 

reference frequency and lifetime. They show that program references to heap objects are 

highly predictable. Calder et al. [15] applied placement techniques developed for 

instruction caches and data caches. They use a compiler directed approach that creates an 

address placement for the stack (Local variables.), global variables, heap objects, and 

constants in order to reduce data cache misses.  

Concurrently, Chilimbi et al. developed several techniques for optimizing heap data 

placement. In [20] they describe a data placement optimization for tree-like structures. 

Their approach is semiautomatic, permitting more aggressive optimizations, such as the 

splitting of structure variables. In [21] they extend this approach to support on-line 

profiling and data placement for Cecil, an object-oriented language with generational 

garbage collection. They collect low-overhead, real-time profiling information about data 
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access patterns and applied a new copying algorithm that uses this information to produce 

a cache-conscious object layout.  

Luk and Mowry [52] present a case for history-pointer prefetching, which augments 

linked structure nodes with prefetching pointer fields, and data-linearization, in which 

pointer data structures are programmatically laid out at runtime to allow sequential 

prefetch machinery to capture their traversal.  

In this chapter I have included discussion of research related to my work. I will further 

discuss these works as I introduce my technique in later chapters. As stated previously, 

the literature is rich with cache design techniques. I do not claim to have included all 

relevant research in this chapter. 
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CHAPTER 4 

EXPERIMENTAL ENVIRONMENT 

In this chapter I describe the experimental environment used in this study. First I 

define performance metrics and power models used in my studies. Then I investigate the 

interactions between different parameters. Finally I describe the benchmarks and the 

simulation environment of my study. 

4.1 Performance Metrics 

First I define performance metrics and power models used in my studies.  

4.1.1 Cache Miss Rate 

Miss rate is the percentage of cache accesses that are not found in the cache. Because a 

reduction of the miss rate leads to time and power savings, I include miss rate as a 

performance metric. Unfortunately, miss rate does not always depict the true picture. For 

example, although 2-way set associative, MRU [17, 75] and Column associative [2] 

cache will result in the same miss rates, each of these organizations has different access 

times and power consumptions. Although reducing miss rate can lead to improved access 

times, miss penalties may also affect access times. Additionally, energy consumed by an 

application is also affected by miss rates. Because I use an array cache and a scalar cache, 

I can represent the effective (Or combined.) miss rate as 

Effective miss rate = Array miss rate * (Number of Array references/Number of total references) + 

Scalar miss rate * (Number of Scalarref rerences/Number of total references)  

I use this formula to calculate effective miss rates in my experiments, and compare this 

effective miss rate with miss rates of unified data caches.  

4.1.2 Cache Access Time 
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Cache access time is the average number of cycles required to successfully access a 

referenced address. I use CACTI [80] using a 0.8 micron technology to compute access 

times for cache hits. The equations for different cache configurations are included in 

Table 4.1. This metric proves useful in evaluating the performance of a cache scheme 

because, although a particular cache design may demonstrate lower miss rates, the lower 

miss rates may have been achieved at the expense of the hit access times. For example, a 

cache with higher associativity can have lower miss rates than a direct-mapped cache, but 

an associative cache will have longer access times. (All the terms I use in Table 4.1 are 

defined in Table 4.3.) 

Table 4.1. Timing Equations Used to Compare Performance 
Cache name Equation to compute the Access Time 

Direct mapped  ((Hit * HAT) + (Miss * (FTM + OAT))) 

Set associative ((Hit * HAT) + (Miss * (FTM + OAT))) 

Hash  rehash ((Prob 0 Hit * prob0 HAT) + (prob 1 Hit * (prob0 FTM + prob1HAT + prob1SW)) + (Miss * (prob1 

FTM + MSW + OAT))) 

Column 

associative  

((Prob 0 Hit * prob0 HAT) + (prob 1 Hit * (prob0 FTM + prob1HAT + prob1SW)) + (Miss * (prob0 

FTM + FTM + MSW + OAT))) 

MRU ((Prob 0 Hit * (prob0 HAT + MI)) + (prob 1 Hit * (prob0 FTM + prob1HAT)) + (Miss * (prob1 FTM + 

OAT))) 

Victim ((Hit * HAT) + ((Victim cache Hit * (FTM + Victim cacheHAT + Victim cacheSW)) + (Miss * (FTM + 

MSW + OAT))) 

Prefetching  ((Hit * HAT) + (Miss * (FTM + OAT+ EWP))) 

Array/scalar 

cache 

((Hit * HAT) + (Miss * (FTM + OAT))) 

Array- stream 

buffer 

((Hit * HAT) + (Stream bufferHit * (FTM + Stream buffer HAT)) + (Miss * (FTM + OAT+replacement 

cost + (4*EWP)))) 

Scalar- victim 

cache 

((Hit * HAT) + ((Victim cache Hit * (FTM + Victim cacheHAT) + (Miss * (FTM + MSW + OAT))) 
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4.1.3 Area Analysis 

As embedded systems designers are interested not only in the performance but also in 

better use of silicon area, my performance evaluation also includes silicon area 

consumption of cache systems. I use CACTI [80] for computing silicon areas needed by 

caches. 

4.1.4 Static and Dynamic Power Consumption 

To complete my experimental evaluations, in my calculations I also include the 

amount of energy consumed by cache systems as an application executes. In 

Complementary Metal–Oxide–Semiconductor (CMOS) circuits, the major sources of 

power consumption are dynamic and static power. Dynamic power dissipation is due to 

logic switching current and the charging and discharging of the load capacitances, 

whereas static power dissipation arises with leakage current. In this study, to evaluate 

dynamic power consumption, I include the power consumed due to cache misses and off-

chip accesses. My model uses the following general equations to compute the dynamic 

power consumed by a cache. 

Dynamic_power = Hit * power_hit + Miss * power_miss  

power_miss = OPC + PCW + FTM 

I obtained values for hits and misses for each cache type by executing the selected 

benchmarks using corresponding cache simulators. Power _hit is the power consumed to 

access the cache (Computed using CACTI [80].). Here it should be mentioned that 

different cache structures possess different power_hit values based on the cache type, size 

and hit type of each access. For example, in the case of HR [1] or CA [2] cache, when a 
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hit occurs on the second probe, additional swapping energy is needed. In Table 4.2 I 

describe the equations used to compute power for specific cache types. The PCW is the 

power consumed to write an entire line to the cache, which is computed using CACTI 

[80]. OPC, the power needed for off-chip access, I calculate as 0.5 * Vdd
2
 * (0.5 *Wdata + 

Waddr)) * 20pF [42], where Wdata and Waddr are the number of bits for both the data 

sent/returned and the address sent to the next level of memory on a miss. The last term is 

the load capacitance for off-chip destinations. For any miss the FTM (First Time Miss.) 

includes the overhead for searching in cache . (All the terms used in Table 4.2 are defined 

in Table 4.3.) 

For static power estimation, I (Using a 0.13 micron technology.) include 30% of Level 

one (L-1) cache power as leakage power as reported by Agarwal, et al. [1]. 

Table 4.2. Power Consumption Equations Used to Compare Performance 

Cache name Equation to compute the Power Consumption 

Direct mapped ((Hit * PCR) + (Miss * (FTM + OPC +PCW))) 

Set associative ((Hit * PCR) + (Miss * (FTM + OPC +PCW))) 

Hash  rehash  ((Prob0Hit* prob0 PCR)+(prob1Hit*(prob0FTM + prob1 PCR + prob1SWPC)) + 

(Miss*(pro1FTM+MSWPC+OPC+PCW))) 

Column associative  ((Prob0Hit* prob0 PCR)+(prob1Hit*(prob0FTM + prob1 PCR + prob1SWPC)) + 

(Miss*(prob0FTM+MSWPC+OPC+PCW))) 

MRU  ((probe 0 Hit * (prob0 HPC + MI)) + (prob 1 Hit * (prob0 FTM + prob1HPC)) + (Miss * (prob1 FTM + 

OPC + PCW))) 

Victim cache ((Hit*HPC)+ ((Victim cache Hit* (FTM+Victim cacheHAC+Victim cacheSWPC))+(Miss*(FTM + 

MSW + OPC +PCW))) 

Prefetching cache ((Hit * HPC) + (Miss * (FTM + OPC +PCW + EWP PC))) 

Array/scalar cache ((Hit * HPC) + (Miss * (FTM + OPC+PCW))) 

Array-streamBuffer ((Hit * HPC) + (SBHit * (FTM + SB HPC)) + (Miss * (FTM + OPC+ PCW + (4*EWP PC)))) 

Scalar- victim cache ((Hit * HPC) + ((Victim cache Hit * (FTM + Victim cacheHPC) + (Miss * (FTM + OPC+PCW))) 
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Table 4.3. Definition of Terms Used in Timing and Power Consumption Equations 
Abbreviation Definition 

HAT Time to read a cache line in case of hit 

FTM Time overhead to search in case of miss 

OAT Time to get data from next memory level 

MSW Time need to swap line for HR/CA or victim cache miss 

EWP Time need to prefetch for stream buffer or prefetching cache 

PCR Power Consumption to read a cache line in case of hit 

PCW Power Consumption to write a cache line in case of miss 

OPC Power Consumption of getting data from next memory level 

 

4.1.5 Execution Cycles  

Experiments with data cache design involve only load and store instructions. Hence, 

cache access time only reflects the time needed to access cache for load and store 

instructions. However, many instructions reside in a program. Load/store instructions 

comprise only a portion of these instructions. For instance, if for a benchmark on 

average, 25% of the instructions are load and store, time analysis with only cache access 

time does not provide the whole picture of execution cycles. For example, if I show an 

average 80% improvement in cache access time for this benchmark, the actual 

improvement of execution time for the whole program is only 20%. For this reason, I 

include execution cycles as a performance matric to demonstrate the actual speed up of 

the entire program.  

4.2 Influence of Different Parameters 
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In this section I discuss the impact of different parameters on my proposed cache 

system.  

4.2.1 Interaction among Area, Performance and Power Consumption 

Let me first analyze the interaction between area and power consumption and then the 

interaction between performance and power. Then I explore interactions among all  
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Figure 4.1: Increase in Power Consumption as Cache Size Increases 
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Figure 4.2: Decrease in Number of Cycles as Cache Size Increases 

 

three metrics. The individual impact of area or performance on power consumption is 

straightforward. A smaller cache is more energy efficient; a faster cache potentially 

reduces overall energy consumption, by completing execution in a shorter time. In Figure 

4.1 I show the increase in cache power consumption as size of the cache increases. In 

Figure 4.2 I show the decrease in execution cycles for each benchmark as cache size 

increases. 
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Figure 4.3: Instruction (a) and Data (b) Cache Miss Rates for Increasing Cache Size 
 

In Figure 4.3, I show the reduction in miss rates with increasing cache size for both 

instruction (a) and data (b) caches. For several benchmarks (ad, cr, bc in Figure 4.3(a) 

and bc in Figure 4.3(b).), miss rates are too small (Compared to other benchmarks.) to be 

visible in the Figure. 
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Evaluation of the three parameters (Area, power, and performance.) together becomes 

complicated.  Size and performance are usually conflicting requirements. In Figure 4.4 I 

show the increase in cache power consumption as the size of the cache increases. I also 

show the average decrease in execution cycles (In 100 millions.) and the average miss 

rate for my benchmarks as the cache size increases.  
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Figure 4.4: Changes in Power Consumption, Average Execution Cycles (In 100 millions.) 

and Miss Rate as Cache Size Increases 

 

For most applications reducing cache size will result in more cache misses which in 

turn causes more visits to main memory—resulting in increased time consumption and in 

higher power consumption. Thus, although a larger cache requires more power per 

access, that extra power may be compensated for by reductions in execution time and 

power consumption as there are fewer cache misses than may occur when using a smaller 

cache. It should also be mentioned that although overall reduction in execution cycles 

results in a proportional decrease in the amount of power consumed by an application, 

improving cache performance will more profoundly impact energy savings, because 

cache is responsible for 50-80% of processor’s total power consumption [82, 83]. Hence, 
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the need for tuning the cache size and miss rate for each particular application to reduce 

overall power consumption motivates the need for a reconfigurable partitioned cache.  

4.2.2 Influence of Associativity 

Higher associativity in both data and instruction caches is identified as the most 

important reconfigurable parameter by Zhang et al. [82, 83]. However, when the data 

cache is split (In this case into array and scalar caches.), associativity is no longer a 

significant reconfigurable parameter. At L-1 cache (My primary concern.), it is important 

to maintain a balance between miss rates and access times. I believe in my design, direct-

mapped caches provide for such a balance as my split cache organizations eliminate 

conflicts between different classes of data (Namely, arrays and scalars.). Additionally, 

because I provide for a small victim cache with the direct-mapped scalar cache, my split 

cache organizations further reduce the miss rates, without having to resort to higher 

associativities. For instruction cache, I believe that cold misses are more problematic to 

performance than conflict misses, and I use a small pre-fetch buffer to reduce cold 

misses. 

4.3 Benchmarks 

I believe the biggest advantage of my proposed cache system is its efficiency over a 

wide ranged of applications. Being equipped with a special array cache, my split cache 

design should be beneficial for scientific applications and should show significant 

improvement for Standard Performance Evaluation Corporation (SPEC) floating point 

benchmarks. For data flattening (Designed for pointer-intensive applications.) I use 

pointer-intensive Olden benchmarks. However, my cache system for embedded 

 40



applications also show significant benefits. To evaluate my proposed cache for embedded 

systems, I have used benchmarks from Mi-bench benchmark suit.   

4.3.1 Scientific Applications: SPEC Floating Point Benchmarks  

At the initial phase of my work, I evaluate the proposed cache architecture for the 

SPEC  floating point 2000 benchmarks[32]: ar, am, me and eq. Descriptions of the SPEC 

benchmarks appear in Table 4.4. Each program is written in C. I used gcc compiler 

version 2.3. In my study, I used the exact benchmark codes and did not modify the codes 

to efficiently use split cache (Such as reordering array references or including prefetching 

hints.). The percentage of array references ranged from a low of 6.58% in mesa to a high 

of 26.92% in ar.  

Table 4.4: Descriptions of SPEC Floating Point Benchmarks  
Benchmark name Description Name 

In figure 

179.art Image Recognition/Neural networks ar 

188.ammp Computational Chemistry am 

183.equake SeismicWavePropagation Simulation eq 

177.mesa 3-D Graphics Library me 

172.mgrid Multi-grid Solver: 3D Potential Field mg 

191.fma3d Finite-element Crash Simulation fm 

200.sixtrack Nuclear Physics Accelerator Design sx 

173.applu ParabolicPartialDifferentialEquation ap 

 

To collect data, I traced complete program runs and did not limit my traces to array 

and in-loop references. Non-array references, especially scalar and stack variables, 

contribute most to temporal reuse and are the main victims of cache pollution. Therefore, 

excluding non-array references from traces will not provide the true picture of a 

program’s memory reference behavior. In a later experiment I included additional 

benchmarks from SPEC floating point Benchmark suite, fm, mg, ap and sx [32]. The 
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number of instructions executed by each application ranged from 1 billion to 129 billion.  

4.3.2 Embedded Applications: Mi-bench Benchmarks  

In my experiments I used the benchmarks of Mi-Bench suite [30] as representative of 

embedded applications. To cover a wide range of applications, I included benchmarks 

from (1) Automotive (2) Office Automation, (3) Networking, (4) Security, 

(5) Telecommunications and (6) Consumer groups. I selected only those benchmarks that 

I could compile on a Simplescalar system. The descriptions of the benchmarks used in 

my studies are listed in Table 4.5. 

Table 4.5: Descriptions of Mi Bench Benchmarks 
 

Benchmark Description % of 

load/store 

Name in fig 

bit counts Test bit manipulation 11 bc 

qsort Quick sort algorithm 52 qs 

dijkstra Shortest path problem 34.8 dj 

blowfish Encription/decription 29 bf 

sha Secure Hash Algorithm 19 sh 

ri Encryption Standard 34 ri 

string search Search mechanism 25 ss 

adpcm Variation of PCM standard 7 ad 

   CRC32 Redundancy check  36 cr 

FFT Fast Fourier Transform 23 ff 

 

 

 

 

 

 

Because the performance of my system depends on the percentage of memory 

references application issues, I also include the load/store percentages for each 

benchmark. As can be seen, I included very memory intensive benchmarks, benchmarks 

that are moderately memory intensive, and some that execute very few load/store 

instructions.  
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4.3.3 Pointer-intensive Applications: Olden Benchmarks     

I attempt to evaluate my data flattening method by running pointer-intensive 

applications selected from different Benchmark suits. To select benchmarks exhibiting 

wide-ranging memory allocation behaviors, I chose three benchmarks from the Olden 

pointer-intensive benchmark suite [70], three from SPEC integer 2000 benchmark suite 

[32], one from the memory pointer benchmark suite [70] and one from Mi-bench suite 

[30]. The benchmarks from Olden benchmark suite [70], SPEC integer benchmark suite 

[32] and memory pointer benchmark suite [70] contain pointer-intensive benchmarks and 

used by memory allocation researcher. Because I also want to evaluate my data flattening 

approach for embedded applications, I selected one pointer-intensive benchmark qs from 

the Mi-bench suite [30]. A summary of the benchmarks is shown in Table 4.6. 

Table 4.6: Descriptions of Pointer-intensive Benchmarks 

 

 

 

 

 

 

 

Benchmark 

name 

Suit 

name 

Description of  

Benchmark 

% of 

load/store 

Name in fig 

129.compress Compress and decompress file in 

memory 

8.3 co 

132.ijpeg Image compression/decompression 

on in-memory images based on the 

JPEG facilities 

18.6 ij 

vortex 

 

SPEC integer 

Object-oriented database 32.1 vo 

qsort Mi-bench Quick Sort 52 qs 

cfrac Memory Factoring numbers  27.8 cf 

treeadd Summing values in a tree  20.6 tr 

BH Barnes-Hut’s N-body force 

calculation algorithm 

29.1 bh 

voronoi 

 

Olden 

 

Graphics utilities routine 14.3 vo 

4.4 Simulation 

For my work, I marked traces as array accesses and scalar accesses. I identified array 

references by assuming that such references involve some form of indexing. While I 

cannot ensure that my method captured all array data items, my analyses for selected 
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sample programs showed that my approach correctly identified better than 99% of the 

array data items. In an actual implementation of split caches, compile time analyses can 

be used to separate array and scalar data references. By using different instructions (e.g., 

Array_Load and Array_Store, Load and Store.) data can be directed to array and scalar 

caches. This capability eliminates the complex hardware needed to detect and direct 

spatial and temporal localities to split data cache partitions (As has been proposed in [28, 

46, 66, 69].). Arul, et al. and Kavi, et al. both use a similar approach in dataflow 

architectures [7, 43].  

To compare cache design alternatives I developed a suite of simulators. The 

experiments shown in chapter 5 and 6 were performed using the ATOM instrumentation 

and analysis tool [26] on Hewlett Packard alpha Dec processor. The experiments 

discussed in chapters 7 and 8 were done using the Simplescalar simulator [13].  

4.4.1 Simulation with ATOM Tools 

In the initial phase of my work, I used trace-driven simulation as my evaluation 

methodology. The executables of the benchmarks are instrumented using ATOM, a 

performance measurement tool [26]. ATOM instrumentation routine produces a new 

executable file a.out.atom. When a.out.atom is executed in the same manner and same 

input as the original program, a highly compressed trace file of every load and store 

reference the program made is produced. This trace file is fed to the ATOM’s analysis 

routine to simulate different cache organizations for split array and scalar cache. The 

routine generates number of hits, misses, and other relevant statistics for the program. I 

mark traces as array accesses and scalar accesses. In this study, I identified array 
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references by assuming that such references involve some form of indexing. ATOM 

analysis program tracked indexes so that any data item that used an index was marked as 

an array reference. 

4.4.2 Simplescalar Simulator  

In a later phase of my work, I use an execution-driven simulator. I designed a cache 

simulator as an extension of the Simplescalar simulator [13]. This Simplescalar 

simulator, a cycle-by-cycle simulation written in C, includes an out-of-order speculative 

processor, memory, and peripherals. To collect data, I replaced the cache memory of 

Simplescalar with my split, multi-level cache hierarchy. This change offered a tunable 

cache size for reduced power, time and area consumption.  

These experimental approaches are similar to those used by other researchers. I was  

unable to compile all Mi-Bench and SPEC on my system. This is primarily because 

ATOM tools are no longer maintained and Simplescalar simulator do not compile some 

of the Mi-Bench benchmarks.   
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CHAPTER 5 

SPLIT DATA CACHE: AN APPROACH FOR SCIENTIFIC APPLICATIONS 
In this chapter, I explore a cache organization which provides architectural support for 

distinguishing between memory references that exhibit spatial and temporal locality and 

mapping these memory references to separate caches. 

5.1 Introduction 

In prior work, I explored use of a separate cache for I-structure memories within the 

context of dataflow-based, multithreaded systems [7, 44]. I-structure memories in 

dataflow systems store arrays and other indexed or stream data items. In this chapter I 

show that using separate (data) caches for indexed or array data and scalar data items in 

conventional architecture can lead to substantial improvements in terms of cache misses. 

In addition, such a separation allows for cache design that can be tailored to meet the 

properties exhibited by different data items. 

Selections of a proper block size or associativity to maximize performance while 

staying within the cost constraints are the hardest choices in designing cache memories. 

By partitioning the cache as I propose, my cache system can implement configurations 

that exploit cache parameters more selectively and effectively. Array cache, a direct-

mapped cache, uses large block sizes to exploit spatial localities more aggressively by 

prefetching multiple neighboring small blocks on a cache miss. Scalar cache, either a 2-

way or 4-way set associative cache, uses small block sizes to exploit temporal locality. A 

combination of block sizes and associativities together with a partitioned cache 

architecture provides an effective solution for the existing problems in cache designs. 
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Because significant amounts of compulsory and conflict misses are avoided, each cache’s 

size (Whether array or scalar.) as well as the combined cache capacity can thus be 

reduced. According to my simulation results, a partitioned, 4 kilobytes scalar cache with 

streams (Or arrays) mapped to a 2  kilobytes array cache can be more efficient than a 16  

kilobytes, unified data cache. Even if the program displays only a small percentage of 

scalar references (As in the case of scientific applications.) or very few arrays or streams, 

I feel that it is better to use separate scalar and stream caches. 

The success of my proposed split data caches encourages me to extend my research to 

achieve further improvement. To that end, I investigated the interaction between three 

established methods for improving hit rates in the memory hierarchy’s first level: split 

caches, victim caches, and stream buffers. I show that the inclusion of a victim cache and 

a stream buffer together with partitioned cache architectures provides a solution for 

alleviating existing cache design problems and for enhancing the effective cache memory 

space for a given cache size and cost. 

In his paper, Jouppi [39] proposes both victim caches and stream buffers. Victim 

caches are based on the fact that reducing the cache misses due to line conflicts for data 

exhibiting temporal locality is an effective way to improve cache performance, whereas 

stream buffers are oriented towards eliminating cold misses coming from the portion of 

the code exhibiting spatial locality. Each approach (Split caches, victim caches, and 

stream buffers.) possesses valuable strengths. Each works well for the patterns it is 

designed for.  
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To date, no split cache has considered the existence of a victim cache or a stream 

buffer and their interaction with data references. Similarly, a victim cache or stream 

buffer does not normally consider what optimizations have already been incorporated by 

locality enhancing split cache techniques. In this chapter I combine these techniques and 

study their interaction. Here, I propose an integrated scheme that partitions a program 

into regions, each with its own locality type. My approach then sends the partitioned 

memory references to appropriate caches and, finally, selectively applies either a victim 

cache for program regions exhibiting temporal locality or a stream buffer for regions with 

spatial locality, to further enhance the split cache organization. 

5.2 Design of Split Data Caches 

My proposed architecture tags memory accesses as either scalar or array references 

according to their inherent locality and subsequently maps each group to a dedicated  

 

Figure 5.1: Split Data Cache Organization 
 

cache partition equipped with architectural constructs built to exploit that particular 

locality type. Figure 5.1 provides a block diagram of my spilt data cache. Figure 5.1 also 

shows the victim cache attached with scalar cache and the array cache augmented with 

stream buffer. 
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5.3 Related Work  

To contrast my approach with the designs summarized in section 3.1.1, I propose a 

very simple design by providing two separate caches, named array and scalar. These 

caches employ individual design parameters optimized to meet the specific data type’s 

needs. For instance, scalar cache will exploit temporal locality for some data items, while 

the array cache will exploit spatial locality exhibited by other types of data items. Among 

the approaches mentioned in section 3.1.1, SMC [54], Dual data cache [71], Assist cache 

[46, 68], Non-Temporal Streaming (NTS) [69], Selective Temporal and Aggressive 

Spatial (STAS) [49], Selective Mode Intelligent (SMI) [48] use multiple stream buffers to 

supplement a single data cache. Split Temporal/Spatial (STS) [56], Split Spatial/Non-

Spatial (SS/NS) [57], Array/Scalar [78], Minimax cache [79], and StrongARM [34] are 

real split cache architectures. My design allows one to build correspondingly simple 

hardware controllers. I believe that rather than using a multiple-streamed First In First 

Out (FIFO) buffer it is more practical to use a cheaper, faster, and well-established 

architectural construct such as cache. The performance of the split caches can be 

improved with compile time analysis and direct memory accesses to appropriate cache. 

In addition to taking advantage of three approaches, my architecture permits the use of 

different block sizes and different associativities within a single Central Processing Unit 

(CPU) design. STS [56], SS/NS [57], and Array/Scalar [78] cache systems use the same 

associativity with different block sizes. Victim [39], Assist [46, 68], NTS [69] cache 

systems, as well as the Minimax [79], and Intel StrongARM SA-1110 [34] cache systems 

use different associativities but the same block size. None of these designs permit 
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variations of blocks sizes and associativies in a truly split cache model. For stream 

references with spatial locality, which causes more compulsory misses, I use a direct-

mapped array cache with large block sizes. By doing so, I benefit from prefetching. For a 

scalar reference, which causes more conflict misses, I use a 2-way set associative cache 

with small block sizes and more blocks in cache. In this way, I avoid the high conflict 

and the thrashing effect associated with direct-mapped caches. 

I compare my work with the most closely related work by Johnson and Hwu  [37]. The 

first difference between their work and mine is that rather than using locality types  

Johnson and Hwu employ the “reuse” behavior of data as a metric for data separation. 

Because the  Memory Address Table (MAT) retains the reuse pattern for all data in a 

program, it is possible for an array element to have higher reuse count at some point 

during execution than scalar data has. In that case, Johnson and Hwu’s MAT scheme 

bypasses the data which, in any case, may have had a few hits before being displaced 

from the cache. Therefore, not caching that data will not incur more than one additional 

miss, whereas not displacing the more frequently accessed data removes only one miss. 

Second, after identifying data as scalar or array, I cache both in separate caches. Johnson 

and Hwu implemented bypassing for data with history of low use. The third and the most 

significant difference is the number and types of architectural constructs. I not only use 

two separate caches for two data types, I also implement two additional structures: victim 

cache and stream buffers. This allowed me to tune the amount of data cached and 

fetched, and to fully exploit the victim cache’s functionality. I can reduce conflict misses 

of scalar data by holding data longer. In addition, I use the stream buffer to reduce the 
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cold miss of array data by prefetching. In Johnson and Hwu [37] using 8 lines of buffer, 

as both victim cache and prefetch buffer will negatively affect each others performance. 

5.4 Experimental Methods 

The cache architecture proposed in my initial work (Section 5.5.) has been evaluated 

for the following Standard Performance Evaluation Corporation (SPEC) floating point 

2000 benchmarks, ar, am, me and eq [32]. My integrated approach (Section 5.6.) has 

been evaluated for the following SPEC floating point 2000 benchmarks, ar, am, me, eq, 

fm, mg, ap and sx [32]. I used trace-driven simulation as my evaluation methodology. 

The benchmark executables are instrumented using ATOM tools. To evaluate the optimal 

split cache configuration, I examined a variety of array and scalar cache sizes, block 

sizes, and associativity. In these experiments I simulated three cache sizes for array cache 

(1, 2 and 4 kilobytes.) and five cache sizes for scalar cache (4, 8, 16, 32 and 64 

kilobytes.). Block sizes ranged from 32 bytes to 128 bytes for both array and scalar 

caches. I choose two common approaches, a direct-mapped cache and a 2-way set 

associative cache for both array and scalar cache. For 2-way set associativity I used both 

Least Recently Used (LRU) and random replacement policies. I also simulated a 

conventional cache with corresponding configurations for comparison with my 

experimental results. Table 5.1 presents the configurations for the memory hierarchy I 

implemented in this study. 
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Table 5.1. Configurations of Memory hierarchy for Array, Scalar, Victim Caches and 

Stream Buffer  
Scalar cache configuration 4k, Directmapped, 64bytes block 

Access time of Scalar cache 1 cycle 

Number of lines in victim cache 8 lines, non swapping 

Victim cache associativity Fully associative 

Replacement Policy LRU 

Victim cache block size 64-bytes 

Access time of Victim cache 1 cycle 

Array cache configuration 4k, Direct mapped, 64bytes block 

Access time of array cache 1 cycle 

Number of stream buffer 2 

Number of lines in stream buffer 8 

Stream buffer block size 64 bytes 

Access time of stream buffer 1 cycle 

Level two (L-2) cache configuration 256k, Directmap, 64bytes block 

Access time of L-2 cache 10 cycle 

 

5.5 Initial Evaluation of Split Data Caches 

In the initial phase of my experiments, I was more concerned about the selection of 

different cache parameters. I will begin this section discussing about the selection of 

optimum parameters. I follow this discussion with description of achieved results with 

cache splitting. 

5.5.1 Finding Optimum Associativity, Block Size and Cache Size 

In my proposed cache system, I believe, not only both caches will be designed more 

optimally according to their specific needs but other issues and concerns that arise when 

designing cache would be simplified, such as selection of associativity, cache block size, 

and cache capacity. Cache designers always need to find a compromise between 

parameters. In the following subsections I discuss these issues in general cache design 

and envisage how my cache can be tailored to find an optimum for each cache parameter 

to meet the properties exhibited by different data items.  
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5.5.1.1 Cache Block Size 

The selection of block size depends on both the latency and the bandwidth of the 

lower-level memory [31]. It is possible to achieve higher memory bandwidths on modern 

memories that are supported by technologies such as wider buses, multiple banks, 

additional pins, integrated circuit properties of Dynamic Random Access Memory 

(DRAM) and Synchronous DRAM [54]. However, high memory latency remains an 

issue that must be addressed. Although high latency and high bandwidth both encourage 

larger block sizes because the cache gets many more bytes per miss for a small increase 

in miss penalty, not all applications benefit from access to larger blocks. Increasing block 

size to reduce the memory latency’s impact implies use of prefetching of data for 

applications exhibiting greater spatial localities, such as applications using streams. On 

the other hand, applications exhibiting very little spatial but large temporal localities (As 

exhibited by scalar data items.) cannot benefit from prefetching or larger cache blocks. In 

fact, for scalar references, it is better to have smaller cache block sizes and more cache 

lines to eliminate conflict misses and even capacity misses when smaller caches are used 

[31]. My work is motivated by the observation that it is not possible to design a single 

cache that works well for the types of localities and data types present in programs. I 

propose separate data caches designed with different block sizes to meet the needs of 

different data types.  

5.5.1.2 Cache Capacity 

Increasing cache size will obviously reduce capacity misses; however, as Hennessy 

and Patterson note [31], as cache size increases, a capacity miss becomes a conflict miss. 
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In addition, when the number of capacity misses is small, increasing cache capacity will 

not benefit the application. Jouppi, et al. [39] report increasing cache capacity actually 

increases the significance of cold-start (Or compulsory) misses. Also, these misses will 

more likely be sequential. This is particularly the case with stream data types. A larger 

cache can benefit applications that access several sets of data but not benefit applications 

that access a single stream [39]. Similar results have been reported for media processing 

workloads [67]. 

5.5.1.3 Associativity 

For a cache of given size, set-associativity is dictated by a number of criteria, that 

include implementation cost, access time (Both on hit and miss.) and miss rate. Direct-

mapped caches are simpler and easier to design and require less silicon area than set 

associative caches. However, direct-mapped caches also have higher miss rates. 

Conversely, for caches with higher associativity the main advantage is a lower miss rate, 

but such caches are more expensive and incur longer access times on hit. The goal of a 

computer architect is to maximize performance while staying within the cost and power 

constraints. A more desirable cache design would reduce the conflict miss rate to the 

same extent as a set associative cache, but at the same time, the design would maintain 

the critical hit access path of the direct-mapped cache. Because of a lack of temporal 

locality, stream references cause more compulsory misses than conflict misses. Direct-

mapping offers a better option for an array cache. For a scalar cache, increasing 

associativity leads to a reduction of conflict misses and exploitation of temporal locality. 

5.5.2 Empirical Results with Split Data Caches 
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By changing block size, cache capacity, and associativity, designers have attempted to 

obtain the best configurations for array and scalar caches. My work continues these 

efforts. The next three subsections present my experimental results. In this section I 

compare the effective miss rate of split cache against that of conventional unified cache 

(For both stream and scalar data types.) to support my view that completely separating 

array and scalar data items can be a key to boosting cache performance. 

5.5.2.1 Selection of Block Size 

In a fixed-sized cache, increasing block size results in decreased number of lines. 

Consequently, when using a single data cache, it is impossible to achieve a balance 

between block size and number of lines.  
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Figure. 5.2. Decrease in Cache Miss Rate with Increase in Block Size of 4 Kilobytes 

Array Cache 

 

Figure 5.2 shows the decrease in miss rate with increasing block sizes in a 4  kilobytes 

array cache. As shown in Figure 5.3, for the benchmark me (Testing scalar cache.), 

increasing block size actually caused an increase in miss rate. Similar results have been 

found for the other three benchmarks. Consequently, in my proposed architecture I take 
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advantage of both techniques—using larger cache blocks for array caches and using 

smaller block sizes for scalar cache. 
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Figure. 5.3. Increase in Cache Miss Rate with Increase in Block Size of Scalar Cache for 

Benchmark 177 Mesa 

 

5.5.2.2 Selection of Cache Size 

As mentioned in section 5.5.1.2, an important criterion for selecting cache size is the 

frequency of capacity misses. I expected that when separate scalar and array caches  
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Figure. 5.4. Changes in Cache Miss Rate with Increase in Cache Size of Scalar Cache 
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were used, the scalar cache could be small (Say a 4 kilobytes level one.) because the 

number of capacity misses was small with scalar data items. As Figure 5.4 shows, almost 

no improvement was achieved for scalar cache even when cache size was doubled or 

quadrupled. For this reason, Idecided to use a 4 kilobytes or 8 kilobytes scalar cache. 
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Figure. 5.5. Changes in Cache Miss Rate with Increase in Cache Size of Array Cache 

 

Figure 5.5 shows that for array cache increasing cache size with increasing block size 

reduced the miss rate. But, I did not repeat my experiments with larger array caches than 

4 kilobytes.  Jouppi [39] and Ranganathan, et al. [67] have already demonstrated that for 

stream references miss rate increases with cache size unless even larger block sizes are 

used. 

 5.5.2.3 Selection of Associativity 

Several experiments were performed to determine the optimum associativity for each 

cache type. The cache miss rates for each benchmark were then plotted. From Figure 5.6 

we can see that for array cache, except for me, increasing associativity was not worth its 

cost. This observation is consistent with my initial expectations.  

 57



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ar      eq       am     me 
C

ac
h
e 

 M
is

s 
R

at
e

Direct mapped

cache

2-way set

associative cache

 

Figure. 5.6. Changes in Cache Miss Rate for Array Cache with Different Associativity 
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Figure. 5.7. Changes in Cache Miss Rate for Scalar Cache with Different Associativity 
 

In my test suite, the percentage of capacity misses was very low and after removing 

streamed references for my scalar cache, conflict misses were my main concern. For the 

scalar cache, while the lack of capacity misses first directed me to use a small scalar 

cache, this decision and the higher conflict miss rate that resulted then convinced me to 

select 2-way set associativity. It is obvious from Figure 5.7 that for scalar cache 

increasing associativity reduces the miss rates. 

5.5.2.4 Comparison of Split Array and Scalar Data Cache with Conventional Unified 

Data Cache 

 58



After evaluating my results to determine optimal configurations for both array and 

scalar caches, I compared weighted effective miss rates for array and scalar caches for the 

four benchmarks against the miss rate of a unified, 16  kilobytes data cache. Figure 5.8 

shows the effectiveness of cache splitting across the benchmark suite. The split array and 

scalar  
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Figure. 5.8. Reduction in Effective Miss Rate with Split Array and Scalar Caches 

 

cache demonstrate uniform superiority over the conventional unified data cache design 

for each of the benchmarks. For 4 kilobytes, 32 bytes block sized scalar cache and 2 

kilobytes, 128 bytes block sized array cache, I achieved 43.41%, 24.14%, 11.76% and 

43.33% improvement over a 16 kilobytes, 64 bytes block sized unified scalar cache for 

the ar, eq, am and me benchmarks. Some of these results were published in [59]. 

5.6 Split Data Caches Integrated with Victim Cache and Stream Buffer: An Approach for 

Further Improvement 

Now I will describe my integrated approach and its performance. 

5.6.1 Victim Cache, Stream Buffer and the Integrated Approach 
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As my approach combines three techniques within a single framework, I will first 

review each of these techniques. I follow this overview by describing my integrated 

approach in 5.6.1.3. In 5.6.2, I present the results I achieved when implementing an 

integrated approach.  

5.6.1.1 Functionality of Victim Cache   

The design of a Level one (L-1) cache always tries to establish a balance between miss 

rate and access time. Addition of a victim cache to a direct-mapped cache can ease this 

problem by reducing the conflict miss rate to the same extent as a set associative cache 

while maintaining the critical hit access path of a direct-mapped cache. Victim cache 

temporarily holds data evicted from the cache and, because of its full associativity, it can 

simultaneously hold many blocks that would conflict in direct-mapped cache. If the 

number of conflicting blocks are small enough to fit in victim cache, both the miss rate to 

the next memory level and the average access time will be improved due to relatively low 

miss penalty for fetching from victim cache.  

5.6.1.2 Functionality of Stream Buffer  

Although increasing line size provides the simplest means of prefetching, Jouppi [39] 

argues that line sizes cannot be made arbitrarily large. Other conventional prefetching 

methods also have deficiencies [8, 52]. The stream buffer not only mitigates traditional 

problems with larger cache lines and extensive prefetching; a stream buffer functions 

more effectively than other investigated prefetch techniques [39]. Because in a cache 

with Stream buffer, the successive blocks are stored in the buffer rather than in the cache, 

stream buffer can avoid premature displacement of data (Cache pollution). However the 
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biggest problem with stream buffers is that non-spatial data needs to be flushed when 

detected. Jouppi’s investigation did not explore the stream buffer only for data with 

spatial localities (Such as streams.), rather the buffer was used for all data items. 

5.6.1.3 Functionality of the Integrated Approach 

So, can I design a combined approach that provides better performance than either 

applying only one or applying each independently? Until now there has not been 

significant research investigating the interaction among split caches, victim cache, and 

stream buffers. In section 5.5 I already have shown that using separate (data) caches for 

indexed or array data and for scalar data items can lead to substantial improvements in 

terms of cache misses. Although victim caches and stream buffers can reduce miss rates 

in L-1 cache, the reduction achieved depends on the cache configuration as well as the 

data reference types. Now, we will see how a separation of caches can benefit from 

victim cache and stream buffer.  

A conflict miss occurs when data with temporal locality is referenced multiple times 

but is replaced by another data item in between the references. Victim caching is based 

on the principle of temporal locality and provides dynamic associativity by allowing up 

to N+1 conflicting blocks that belong to the same direct-mapped set to co-exist in caches 

simultaneously, where N is the number of block entries in the victim cache. In his 

original paper, Jouppi [39] implemented a victim cache for a unified data cache. As a 

result, array or stream elements remove scalar data from the victim cache causing 

expensive victim cache pollution. In my work, as I remove the array references from the 

scalar cache, the victim cache not only has to deal with fewer references (Victim cache is 
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reported to work better for small cache [39].) but also without being polluted by stream 

references. The reduced cost of using small victim cache with direct-mapped data cache 

outweighs the performance gains of having a cache with large associativity.  

A cold miss occurs when stream or array data are traversed linearly by using the elements 

only once or very few times during traversals. Stream buffers exploit spatial locality and 

perform prefetching for stream or array data. Jouppi’s analysis [39] also included the 

stream buffer for a unified data cache. For that reason every time scalar data detected, the 

buffer was flushed. In my study because I am removing the contaminating scalar data 

from array cache the performance can increase significantly by augmenting array cache 

with stream buffers. In this study, I implemented the promising aspects of victim cache in 

keeping conflicting blocks to satisfy the requirements of scalar cache and the prefetching 

ability of stream buffer was included with the array cache to exploit its capability of 

streaming data.  

5.6.2 Empirical Results with Integrated Approach 

To test my hypotheses about the effectiveness of an integrated approach I completed a 

series of simulations. The next three subsections present the selection of cache 

organizations in the same order as these parameters were described in section 5.6.1. I also 

compare the effective miss rate of my cache against that of conventional unified cache. 

The results support my view that a complete separation of array and scalar data items 

with victim cache and stream buffer can be a key to boosting cache performance.  

5.6.2.1. Results with Victim Cache 

 62



In Table 5.2 I compare the miss rates of a 4  kilobytes direct-mapped scalar cache 

without victim cache, a 4  kilobytes 2-way set-associative scalar cache, and a 4 kilobytes 

direct-mapped scalar cache with victim cache (256 bytes) respectively. Figure 5.9 

presents the percentage reduction in access time by switching from 2-way set associative 

to direct-mapped scalar cache with victim cache. From Table 5.2 we can see that direct-

mapped scalar cache with victim cache does not always results in reduction in cache miss 

rate (For benchmarks eq, me, fm.). However for each of the benchmark my scalar cache 

with non-swapping victim cache provides huge reduction in cache access time. From this 

example we can see that access time is more useful than miss rate in evaluating the 

performance of a cache scheme. In this case although a 2 way set-associative cache 

design demonstrate lower miss rate, this lower miss rate is achieved at the expense of the 

longer hit access times. Where as the small victim cache allowed a significant reduction 

in access times for scalar data items. Given that access time is a better metric of cache 

performance than miss rate, my experiments show the significant benefit possible with a 

victim cache. 

Table. 5.2. Comparison of Miss Rates of Direct-mapped Scalar Cache without Victim 

Cache, 2-way Set-associative Scalar Cache, and Direct-mapped Scalar Cache with Victim 

Cache 

Benchmark 

name

Direct-mapped  scalar 

cache without victim 

cache

2 way associative 

scalar cache

Direct-mapped scalar 

cache with victim 

cache

ar 0.159 0.03 0.03

eq 0.172 0.11 0.12

am 0.171 0.16 0.16

me 0.095 0.06 0.07

mg 0.82 0.82 0.81

ap 0.139 0.12 0.12

fm 0.075 0.05 0.06

sx 0.11 0.113 0.1  
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Figure.5.9. Percentage Reduction in Access Time by Switching from 2-way  

Set-associative to Direct-mapped Scalar Cache with Victim Cache 
 

5.6.2.2. Results with Stream Buffer  

To evaluate the benefit of stream buffers with the array cache, I used multiple (2) 

stream buffers of 8 elements. The cache miss rates of a 4  kilobytes array cache without 

stream buffer and a 4  kilobytes array cache with stream buffers are plotted in Table 5.3. 

Figure 5.10 shows the percentage reduction in access time by addition of stream buffers. 

From Table 5.3 and Figure 5.10 I can see that for each benchmark, addition of stream 

buffers with direct-mapped array cache results in huge reduction in cache miss rate and 

cache access time respectively.  

Table. 5.3 Comparison of Miss Rate of a 4 Kilobytes Array Cache without Stream 

Buffer and a 4  Kilobytes Array Cache with Stream Buffer 

Benchmark 

name

4k Direct-mapped array 

cache without stream 

buffer

4k Direct-mapped 

array cache with 

stream buffer

ar 0.357 0.034

eq 0.108 0.017

am 0.111 0.023

me 0.05 0.01

mg 0.37 0.045

ap 0.125 0.015

rm 0.052 0.01

sx 0.135 0.018  
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Figure. 5.10. Percentage reduction in Access Time by Addition of Stream Buffers 

 

5.6.2.3 Results of combining Victim Cache, Stream Buffers, and Split Caches 

After evaluating to determine optimal configurations for victim cache and stream 

buffers, I compared the weighted effective miss rate for array and scalar caches against 

the miss rate of 
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Figure. 5.11. Reduction in Effective Miss Rate with Integrated Approach 
 

a unified 16 kilobytes data Cache. The results are shown in Figure 5.11. For a 4 kilobytes, 

64 bytes block sized scalar cache with 256 bytes Victim cache and a 4 kilobytes, 64 bytes 

block sized array cache with 512 bytes stream buffer on average, my integrated approach 

achieved a 55% improvement over a 16 kilobytes, 64 bytes block sized unified scalar 
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cache for the benchmark set. Some of these results were published in [60]. Based on 

these results, I believe my integrated approach demonstrates a uniform superiority over 

conventional unified data cache design across all of the benchmarks I tested.  

5.7 Conclusions   

The widening gap between processor and memory speeds makes data locality 

optimization an important issue when designing modern cache systems. Computer 

architects focus on optimizing data cache locality using intelligent cache management 

mechanisms. In this chapter, first I presented the evaluation of a split array and scalar 

data caches. Then I investigated the interaction between three established methods: split 

cache, victim cache and stream buffer and proposed a strategy to optimize cache locality 

for scientific applications. Simulation results showed that my technique improved miss 

rates with respect to the base configuration, even while using a smaller, combined cache 

footprint. My investigations further demonstrated how designers can combine three 

inherently different approaches to work together to further improve data localities. 
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CHAPTER 6 

PROSPECTIVE OF PROPOSED CACHE IN THE ARENA OF EMBEDDED 

SYSTEMS 

So far I have evaluated my proposed caches only for desktop applications. More 

recently investigators have begun to focus on the use of cache memories for improving 

embedded systems’ performance. Because my cache design offers a reduction in cache 

size, I believe it will be equally beneficial for embedded applications. As power 

consumption is of paramount importance for embedded applications, I also include power 

consumed by an application as a performance metric.   

6.1 Introduction 

Computing elements can be found embedded in almost every device and gadget we 

use. Challenges to the design of processing elements for embedded applications are more 

stringent than those for desktop applications. Embedded applications place requirements 

along a number of dimensions including tighter constraints on functionality and on 

implementation. Not only must the application’s functionality be correct, it often must 

meet strict timing constraints and be designed to function within limited resources such 

as memory size, available power, and allowable weight. Unfortunately, physical size, 

real-time predictability, and small energy budgets have made caches less commonly used 

for embedded systems [35]. So, I feel that it is worthwhile investigating new cache 

organizations to address both the performance and the power requirements of embedded 

systems. In this chapter I explore how to design small caches that achieve high 

performance for embedded applications while remaining both energy and area efficient. 
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In chapter 5 I proposed implementing split data caches for desktop applications by 

employing an array cache and a scalar cache. My results in those studies have shown that 

a split cache organization achieves lower miss rates and shorter average access times—

even when the combined size of array and scalar caches is roughly one quarter the size of 

the unified data cache used in my comparisons. In this chapter I report on my 

investigations into whether split caches can also benefit embedded applications. In this 

research I hypothesized that these benefits would be evident particularly when working 

with small Level one (L-1) caches often found in embedded systems.  

This work makes several significant contributions. First, leveraging my previous 

studies of split data caches for scientific applications, I evaluated split data caches for 

applications often encountered in embedded systems.  Second, I evaluated my integrated 

cache architecture that used split data caches with a victim cache and stream buffers to 

further reduce (silicon) area, access time, and dynamic power consumed by cache 

memories. When my augmented split caches are used for embedded applications, results 

showed excellent reductions in both memory size and memory access time, translating 

into reduced power consumption. My cache architecture (Scalar cache 512 bytes, array 

cache 4096 bytes, victim cache 256 bytes and stream buffer 128 bytes.) reduces the 

overall cache size by 80%, access time on average by 39%, and energy consumption on 

average by 26% when compared with an 8  kilobytes unified direct-mapped cache with a 

32 kilobytes Level two (L-2) cache.  

Finally, I performed a comprehensive evaluation of my proposed methods. I survey a 

variety of techniques that have traditionally been applied to improve cache systems for 
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desktop applications (Described in section 2.3.). I employed a simulation environment 

and developed a power evaluation model. I examined direct-mapped caches, conventional 

set-associative caches, three different probe caches (Hash rehash [1], Column associative 

[2] and MRU [17, 75].), direct-mapped caches with prefetching and direct-mapped 

caches augmented with victim cache as representatives of traditional approaches. 

Following the same organization in as I used in section 6.2, first I present my evaluation 

of split caching with all these traditional cache organizations. Next I investigate the 

inclusion of a victim cache and a stream buffer together with split data cache architecture. 

I compare the miss rate, access time, area and power consumption of proposed integrated 

cache against that of different conventional cache architectures in the context of Mi-

bench benchmarks. For all of the benchmarks except one, my split data caches deliver 

higher performance than the alternate organizations. My cache architecture reduced the 

overall cache size by 43%, access time by 37% and energy consumption by 63% when 

compared with a unified 2-way set-associative cache. In my study the reduced costs of 

using victim cache with tiny scalar cache and stream buffer with array cache allow to 

achieve up to 33% reduction in power consumption when compared with a traditional 

unified caches with victim cache and 80% when compared with a traditional unified 

caches with prefetching for embedded applications. Some of these results were published 

in [61, 63]. 

6.2 Proposed Cache Organizations 

In this chapter I propose a split data cache organization for embedded systems. I 

believe that cache splitting is a step in the right direction because it plays a role in 
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achieving cost-performance goals for embedded systems. This cache organization allows 

to exploit temporal and spatial localities to improve performance, minimize the memory 

footprint, and to lower energy consumption. As I discuss in the next sections, to prove 

this claim, I first evaluate the effectiveness of a split data cache employing separate array 

and scalar caches. The design of my work in this area are reported in 6.2.1. Next I 

investigate the integration of victim caches and stream buffers to further evaluate the 

efficacy of my split cache design for embedded systems. This investigation is discussed 

in 6.2.2.   

6.2.1 Evaluation of Split Data Caches for Embedded Systems 

As noted in the previous chapter, I found split data caches to provide significant 

improvements in the performance of desktop applications. In this series of studies I 

extend my case for split data caches to embedded applications. To evaluate the efficacy 

of such caches for this purpose, I used a simulation environment and modeled various 

major cache techniques as I described in section 2.3. This allowed me to compare my 

split data cache organization’s results with these achieved using alternate organizations. 

(Details of these comparisons are included in Section 6.5.1.) I compared my cache design 

with four conventional organizations: a direct-mapped cache, a 2-way set-associative 

cache, a cache supported by prefetching, and a direct-mapped cache augmented by a 

victim cache. For prefetching, I used a simple prefetching scheme where every miss 

induced prefetching of the next two blocks. The victim cache was an 8-line, fully 

associative cache with swapping of cache lines between the primary and victim caches on 
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a miss. For each of these cache configurations I measured miss rates, access times, and 

power consumption. 

6.2.2 Generalization of Split Caches with Victim Cache and Stream Buffer 

In my next set of experiments, I augmented my split cache design with a small victim 

cache and small stream buffers. My goal was to determine the applicability of victim 

caches and data prefetching to embedded systems. I compared my cache designs with set-

associative caches, with hardware prefetching where every miss induced prefetching of 

the next two blocks, and with victim cache, augmenting a unified data cache. In this 

chapter I also compared my organization, which does not use L-2 cache, with a direct-

mapped cache supported by L-2 cache. Other alternate cache organizations (2-way set-

associative cache and unified data cache augmented with victim cache or prefetch.) did 

not include L-2 cache. I compared the designs for average access times, silicon areas and 

energy consumptions.  

6.3 Related Work  

My proposed integrated cache differs from the split caches for embedded systems 

(Described in section 3.2.) in two ways. First, my proposed cache is augmented by a 

victim cache and stream buffers while the others are not. Second, unlike the other 

reported studies (Except minimax cache.), I performed analyses not only with miss rates 

but also on power consumption and access times.  

6.4 Experimental Methods 

In experimental evaluations of my proposed integrated approach for embedded 

applications, I use benchmarks from the Mi-Bench suite.  
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Table 6.1: Memory configurations for Cache Designs Used in Comprehensive 

Evaluation 
Scalar cache configuration Size – 512 bytes, Block size – 32  bytes, Associativity – Direct mapped 

Array cache configuration Size – 4096 bytes, Block size – 32 bytes,   Associativity – Direct mapped 

Scalar Victim cache configuration Size – 256 bytes, Block size – 32 bytes, Associativity - Fully associative,  

Replacement policy – LRU, non swapping 

Stream buffer configuration Total Size – 128 bytes, Block size – 32 bytes, Number of stream buffer - 2 

Direct-mapped cache configuration Size - 8192 bytes, Block size – 32 bytes, Associativity – Direct mapped 

2-way set-associative configuration Size - 8192 bytes, Block size – 32 bytes, Replacement policy – LRU 

Hash rehash cache configuration Size – 8192 bytes, Block size – 32 bytes 

Column associative cache configuration Size – 8192 bytes, Block size – 32 bytes 

MRU cache configuration Size – 8192 bytes, Block size – 32 bytes 

Main cache Size – 8192 bytes, Block size – 32 bytes, Associativity – Direct mapped Victim cache 

configuration 

Victim cache Size – 256, bytes, Block size – 32 bytes, Associativity - Fully associative, 

Replacement policy – LRU, swapping 

Prefetching cache configuration Size – 8192 bytes, Block size - 32bytes, Associativity – Direct-mapped Prefetches 2 

lines 

 

To compare the various cache design alternatives I developed a suite of simulators, 

with ATOM instrumentation and analysis tools. Table 6.1 lists the architectural 

parameters for each cache configuration used in my studies. 

6.5 Empirical Results 

The next two sections present the results of my study. In the section 6.5.1 I show the 

results for my split data cache. Section 6.5.2 shows the results for my split caches 

augmented by a victim cache and stream buffers. 

 6.5.1 Results with Split Data Caches for Embedded Systems 

I compare my split cache organization (With an array and a scalar cache.) with a 

direct-mapped cache, with a conventional 2-way set-associative cache, with a direct-
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mapped cache that uses prefetching and with a direct-mapped cache augmented by a 

victim cache for cache miss rate, cache access time and power consumption. 

Table. 6.2. Comparison of the Miss Rate of Split Cache with Traditional Cache 

Architectures 

Name of 

Benchmark

Direct 

Mapped 

Cache

2 way Set-

Associative 

Cache

Direct 

Mapped 

with Victim 

Cache

Direct 

Mapped 

with 

Prefetching

Split 

Cache

art 0.205 0.175 0.177 0.187 0.116

ammp 0.11 0.09 0.103 0.136 0.09

mesa 0.03 0.02 0.0229 0.027 0.017

bf 0.167 0.151 0.159 0.21 0.16

bc 0.0001 0.00007 0.00009 0.0001 0.0001

cj 0.11 0.097 0.112 0.165 0.1
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Figure. 6.1 Percentage Improvement in Access Time by Using the Split Data Caches 
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Figure. 6.2. Percentage Improvement in Power Consumption by Using the Split Data 

Caches 
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In Table 6.2 I compare the weighted effective miss rates for my split cache method 

with the miss rates of the studied conventional cache architectures. In Figures 6.1 and 6.2 

I compare my split data cache organization with other cache organizations in terms of 

percentage improvement of access times and power consumptions. In each figure, I also 

include the average for the selected benchmarks. Although from Table 6 I can see that my 

split cache does not result in significant reduction in cache miss rate, both Figure 1 and 2 

indicate that the split data cache organization led to a significant reduction in access time 

and in power consumption. As access time and power consumption are better metrics of 

cache performance than miss rate, my experiments showed the significant benefits. For 

example, for benchmark ar my split cache showed a more than 60% reduction in access 

time when compared with a direct-mapped cache augmented with a victim cache. For 

benchmark bc my split data cache showed a more than 60% reduction in power 

consumed when compared with a 2-way set-associative cache. The average across all 

benchmarks indicated a 23% reduction in access times when compared to direct-mapped 

cache, 21% when compared to 2-way set-associative cache, 32% when compared to 

direct-mapped cache with a victim cache, and 31% when compared to direct-mapped 

cache with prefetching. Likewise, in terms of power consumption, my cache offered 

reductions of 27% when compared to direct-mapped cache, 26% when compared to 2-

way set-associative cache, 23% when compared to direct-mapped cache with a victim 

cache and 35% when compared to direct-mapped cache with prefetching. 

6.5.2. Results with Generalization of Split Caches with Victim Cache and Stream Buffer 
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In this section I present the experimental results achieved using my split caches 

augmented by a victim cache and stream buffers. Because access time, area and power 

consumption are more important than the miss rates for embedded systems (And because 

I am actually using the miss rate to compute both access time and power consumption.), 

in this section my evaluation compares cache designs for three metrics: cache area, access 

time, and power consumption.  

In Figure 6.3, I show the percentage improvement in silicon area (Reduction in area.) 

achieved by my cache organization when compared to the area needed by other cache 

organizations. It should be mentioned that the silicon area required depends solely on the  
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Figure. 6.3. Percentage Improvement in Area Consumption by Using the Integrated 

Approach 
 

cache design; it does not depend on the actual application. The Y-axis shows the 

percentage improvement (i.e., reduction in silicon area.) my cache design exhibited. For 

example, my cache organization shows an 80% reduction in the area required when 

compared to a unified, 8 kilobytes, 32 bytes block sized direct-mapped cache with a 32 

kilobytes, L-2 cache and a 43% reduction when compared to a unified, 8 kilobytes, 32 

bytes block sized 2-way,   
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Figure. 6.4. Percentage Improvement in Access Time by Using the Integrated 

Approach 
 

set-associative cache without an L-2 cache. It should be noted that my cache organization 

does not include an L-2 cache. As Figure 6.3 clearly shows, my cache architecture 

requires a smaller silicon area when compared to the area used by the other cache 

organizations. 

In Figure 6.4 I compare my cache organization with other cache organizations in term 

of access times. Here I show the percentage reduction in access times resulting from my 

cache system when compared to the access times for alternate organizations. My 

organization consistently had faster access times across all of the benchmarks than the 

access times of the other cache designs. For example, for benchmark qs my split cache 

achieved a more than 69% reduction in access times when compared to an 8 kilobytes, 32 

bytes block sized direct-mapped cache using a 32  kilobytes, L-2 cache. In this figure I 

also report the average reductions achieved for all the tested benchmarks. My cache 
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design improved access time on average by 39% when compared with a direct-mapped 

cache with L-2 cache; 27% when compared to a 2-way, set-associative cache; 27% when 

compared to a direct-mapped cache with a victim cache, and 43% when compared to a 

direct-mapped cache with prefetching. 
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Figure. 6.5. Percentage Improvement in Power Consumption by Using the Integrated 

Approach 

 

The percentage improvements in power consumption achieved by my design when 

compared to other cache organizations are plotted in Figure 6.5. In this experiment, my 

split data caches resulted in significant energy savings for all benchmarks except is. This 

benchmark is a spelling checker that contains more scalar data items than array data. As a 

result, my 512 bytes scalar cache was too small to accommodate the benchmark’s needs. 

This size problem led to more cache misses that had to be satisfied by longer access paths 

to main memory. These longer access paths in turns led to higher energy consumption. 

Note that I do not employ L-2 cache; thus, L-1 misses must be satisfied by accesses to 

main memory. It would have been beneficial if the space unused by the array cache were 
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reconfigured to support scalar data for this application. I will discuss such options in next 

chapter.  

For streaming benchmarks ra and bc my approach achieved a more than 60% energy 

reduction when compared with a conventional 8  kilobytes, 32 bytes block sized 2-way, 

set-associative cache configuration. The average reductions for all benchmarks I used are 

also included in the figure. The average across the benchmarks indicates that my cache 

reduced power consumption by 25% when compared to a direct-mapped cache with an L-

2 cache; 24% when compared to a 2-way, set-associative cache; 21% when compared to a 

direct-mapped cache with a victim cache; and 38% when compared to a direct-mapped 

cache with prefetching. 

6.6 Comprehensive Evaluation of Proposed Caches  

In this section I present complete results of my experiments. For the comprehensive 

evaluation of my proposed approach, I used a simulation environment and modeled all 

major cache techniques as I described in section 2.3. I compared my cache design with 

direct-mapped cache, with a 2-way set-associative cache, with a Hash rehash cache[1], 

with a Column associative cache [2], with a MRU cache [17, 75], with a cache supported 

by prefetching, and a direct-mapped cache augmented by a victim cache. I did not include 

probe caches with way-prediction mechanisms because of their higher energy 

requirements (Due to hardware complexity.). For prefetching I used a simple prefetching 

scheme where every miss results in prefetching of the next block. The victim cache was 

an 8-line, fully associative cache with swapping. My evaluation of split caching compares 

the cache designs for three metrics: the miss rate, the access time and the power 
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consumption. I have found that my split cache method offered improvements for all three 

metrics when compared to other cache architectures. The results support my view that a 

complete separation of array and scalar data caches can decidely boost cache 

performance in the embedded systems.  

Table 6.3: Comparison of the Miss Rate of Split Cache with Traditional Cache 

Architectures 

Name of 

Benchmark

Direct 

Mapped 

Cache

2 Way Set-

Associative 

Cache

HashRe

hash 

Cache

Column 

Associative 

Cache

MRU 

Cache

Direct 

Mapped 

with Victim 

Cache

Direct 

Mapped 

with 

Prefetching

Split 

Cache

ar 0.205 0.175 0.184 0.175 0.175 0.177 0.187 0.116

am 0.11 0.09 0.11 0.09 0.09 0.103 0.136 0.09

me 0.03 0.02 0.026 0.02 0.02 0.0229 0.027 0.017

bf 0.167 0.151 0.154 0.151 0.151 0.159 0.21 0.15

bc 0.0001 0.00007 0.00009 0.00007 0.00007 0.00009 0.0001 0.0001

cj 0.11 0.097 0.101 0.097 0.097 0.112 0.165 0.09  

 

In Table 6.3 I compare the weighted effective miss rates for my split cache method 

with the miss rates of the other studied cache organizations. Where as in Figures 6.6 and 

6.7 I compare my split data caches with other cache organizations in terms of access time 

and power consumption. These figures reveal that the percentage improvement resulting 

from my approach when compared to other organizations. In each figure, I also include 

the average improvement for all benchmarks. From Table 6.3 I can see that my split 

cache does not results in huge reduction in cache miss rate. However Figures 6.6 and 6.7 

show that for each of the benchmark my split cache provides huge reduction in cache 

access time and power consumptions over all of the traditional methods. For example for 

benchmark ar, my split cache achieves a more than 60% improvement in access time 

when compared with a direct-mapped cache with a victim cache. When compared for 

power consumption, my split data caches show almost 60% improvement for benchmark 
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bc over both 2-way, set-associative caches and MRU [17, 75] caches. From this example 

again I can see that access time and power consumption are more useful than miss rate in 

evaluating the performance of a cache scheme.  
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Figure 6.6: Percentage Improvement in Access Time by Using the Split Data Caches 
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Figure 6.7: Percentage Improvement in Power Consumption by Using the Split Data 

Caches 
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After evaluating my split data cache, I perform the comprehensive evaluation of my 

integrated approach. Because miss rate does not depict the true picture, (As seen from 

previous example.) for results of my integrated approach I did not show the reductions in 

miss rates. Rather I include analysis of reduction of area consumption, because for 

embedded systems, it can be beneficial. Here it should be mentioned that in evaluating of 

split cache, I did not perceive a reduction in cache area consumption because each of my 

array and scalar cache was 4 kilobytes and their combined area was proportional to the 8  

kilobytes unified caches. However, my integrated approach reduced my scalar cache’s 

size by 88% of its previous size. In Figure 6.8, I compare the percentage improvement in 

silicon area needed by my proposed integrated cache when compared to the size of areas 

needed by other cache architectures. For cache parameters see Table 6.1. Figure 6.8’s Y-

axis presents the percentage improvements for my cache. For example, my cache 

organization showed a 43% reduction in area when compared with a unified, 8  kilobytes, 

2-way, set-associative cache. I was unable to compare the area savings of my integrated 

cache with probe caches (Hash rehash [1], Column associative [2] and MRU [17, 75].) 

because published literature provided too little information on their hardware 

implementations. However, I posit that the silicon area required for these three 

alternatives will be at least as much as a 2-way set-associative cache. As we can see from 

Figure 6.8 my proposed cache architecture consistently showed a reduction in area over 

all other organizations used in my study.  
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Figure 6.8: Percentage Improvement in Area Consumption by Using the Integrated 

Approach 
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Figure 6.9: Percentage Improvement in Access Time by Using the Integrated Approach 
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Figure 6.10: Percentage Improvement in Power Consumption by Using Integrated 

Approach 
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The percentage improvements in access time achieved by my integrated approach 

when compared with access times achieved by other cache organizations are plotted in 

Figure 6.9. My results show that split data caches allowed a significant reduction in 

access time for all benchmarks except ff. This benchmark is a fast fourier transform loop. 

For ff because both 8 kilobytes 2-way set-associative and 8  kilobytes MRU are providing 

faster access to data, I believe the benchmark has more conflicting scalar data. As a 

result, my 512 bytes scalar cache was too small to accommodate the benchmark’s needs. 

This led to more time being required as main memory had to be accessed. Still, as we can 

see in Figure 6.9, for the streaming benchmark bc my approach achieves a 37% 

improvement in access time over conventional 8  kilobytes, 2-way, set-associative cache 

configurations.  

In Figure 6.10, I compare my split data caches with other cache organizations in term 

of power consumption. My cache organization shows significant improvements for 

streaming benchmarks. For example, for benchmark bc, my split cache achieves a 63% 

reduction in power consumption when compared with an 8 kilobytes, 2-way, set-

associative cache. The average savings for all benchmarks are also included in Figures 

6.9 and 6.10. 

6.7 Conclusions 

In this chapter I have shown that, when carefully designed, embedded systems can 

benefit significantly from small split caches. My integrated method permits a systematic 

trade-off between memory size, power and performance, which has up to now, been 

unexplored for embedded systems. My approach can significantly reduce the power 
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consumed as well as the memory size while providing better performance (By reducing 

execution time.) than the same applications executing with conventional direct-mapped 

or set-associative caches. By separating data accesses into scalar and array (Or stream) 

references, we learned, one can eliminate conflicts between competing locality types. 

This conflict elimination, in turn, allows to reduce total cache size. A smaller (combined) 

cache leads to smaller footprints and reduced power requirements.  

The most significant achievement of my work is the ability to include prefetching and 

victim caches for embedded systems. As mentioned earlier, because of their high-energy 

requirements, victim caches and prefetching are seldom used in embedded systems. My 

experimental data using a unified, direct-mapped data cache with a victim cache and a 

unified, direct-mapped data cache with prefetching both support this assertion. However, 

I have found that a split data organization with very small scalar and array caches can 

benefit from the use of victim caches and stream buffers. While traditional prefetching 

techniques have been explored [8], (premature) prefetching resulted in poor performance 

due to cache pollution which caused displacing needed data in an untimely manner. This 

formed the primary reason for not using prefetching in embedded systems. However, my 

findings in this study persuade me that a carefully designed cache system not only solves 

the deficiencies of general prefetching; it also solves the problem of stream buffers. 

Jouppi’s analysis [39] included a stream buffer for a unified data cache, and the buffer 

required flushing each time a scalar data was accessed (Because stream buffers assume 

contiguous data items.). Because I remove contaminating scalar data from array caches, 

stream buffers associated with the array cache are flushed less frequently. This results in 
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a huge reduction (As high as 80%.) in power consumption. Likewise, victim caches are 

unpopular in embedded system design because fully associative victim caches consumes 

significant amounts of energy. Again, I show that carefully designed cache systems can 

benefit from victim caches while maintaining low energy requirements. In a split cache 

organization, as the array references are removed from the scalar cache, the victim cache 

encounters fewer scalar references. Reduced costs of using non-swapping victim cache 

that augments my 512 bytes scalar cache allow to generate a 33% reduction in power 

consumption when compared with the reduction obtained with a traditional unified cache 

with victim caches. My integrated cache also performs better than larger unified caches 

using additional levels of cache hierarchy (Such a large L-2 cache.). Ideally, a split cache 

organization should be dynamically reconfigurable to meet application requirements. For 

example, for applications possessing very few array or stream references, the array cache 

supplements the scalar data cache. However, such dynamic reconfigurations require 

additional hardware. I will investigate trade-offs and reconfiguration options in next 

chapter. 
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CHAPTER 7 

RECONFIGURABLE SPLIT DATA CACHE: AN APPROACH FOR EMBEDDED 

APPLICATIONS 

In this chapter I evaluate my reconfigurable cache architecture with split data caches 

(Separate array and scalar data caches.) and instruction cache complemented by a very 

small prefetch buffer. My goal is to reduce (silicon) area, access time, and dynamic 

power consumed by embedded systems’ cache memories while retaining performance. 

7.1 Introduction 

The performance of a given cache architecture is largely determined by the behavior of 

the applications running on the system. Unfortunately the manufacturer sets the cache 

architecture as a compromise across several applications. This leads to conflicts in 

deciding on total cache size, line size and associativity. For embedded systems, where 

every parameter needs to be customized to be cost effective, this “one-size-fits-all” 

design philosophy is not adequate. This will lead to suboptimal performance and/or 

power consumption profiles.   

Reconfigurability is a design alternative that provides flexibility in the system so that 

resource constraints like area, power and performance can be balanced based on 

applications’ needs. In the previous chapter I explored the trade-offs in embedded 

system’s area, power and performance within the context of my split data caches. Since 

for embedded applications, it is necessary to provide the required performance within 

specified size and power budgets, reconfigurability will be an appropriate option. For that 
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reason I feel that it is worthwhile investigating new reconfigurable cache organizations to 

address area, performance and power requirements of embedded applications.  

The key contributions of this work are as follows. In my design, I first address the 

problem of improving Level one (L-1) data cache performance for embedded systems 

through the use of reconfigurable separate array and scalar data caches. I extend my 

architecture by augmenting the scalar cache with a victim cache [39]. For my 

reconfigurable L-1 instruction caches, I augment a direct mapped instruction cache with a 

small prefetch buffer. The sizes of all cache componens can be configured for each 

application. For L-1 caches my configurations are based on exhaustive searches of cache 

sizes to find the optimum configuration in terms of three metrics: area, access time and 

power. Finally, inspired by the reduction in silicon areas and power consumptions 

resulting from my L-1 caches I implement reconfigurable Level two (L-2) caches. By 

using a simpler tuning method, at L-2 I emphasized more on area reduction and find an 

optimum cache size for each application needed to achieve the desired performance. 

When using my proposed caches for embedded applications, my results show excellent 

reductions in both memory size and memory access time, translating into reduced power 

consumption. If we consider tradeoffs in performance of data caches we can achieve as 

much as 83% reduction in area consumption (Without any increase in execution time.) 

and as much as 61% in cycles (Without any increase in silicon area.).  My cache 

architecture reduces the cache area by as much as 85% for L-1 instruction and 78% for L-

1 data caches, access times by as much as 72% for L-1 instruction and 36%, for L-1 data 

caches and power consumption by as much as 75% for L-1 instruction and 67% L-1 data 
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caches respectively when compared with an 8  kilobytes L-1 instruction and 8 kilobytes 

L-1 unified data caches. These reductions can be profound when working with small L-1 

caches often found in embedded systems. For L-2 instruction cache I achieved on average 

50% improvement for power and more than 80% reduction in access time. Whereas for 

L-2 data cache the average improvement was 50% for power and more than 60% in 

access time. 

My design enables the cache to be divided into multiple partitions so that unused 

portion can be used for other processor’s activities to improve performance (Such as 

hardware prefetching, instruction reuse, branch predictions.) or the unused portions can 

shutdown to save power. These performance improving techniques have not been 

recommended for embedded systems as they require additional hardware for 

implementing look-up tables, which lead to increased size and power requirements. Since 

reductions in cache sizes are possible in my designs, the prefetch buffer or look-up tables 

for these optimizations could be implemented in a partition of the reconfigurable cache 

instead of using other valuable chip area. Since my reconfigurable approach leverages the 

sub array partitioning that is already present in modern caches, only minor changes to 

conventional caches are required. In this chapter I first evaluated how the unused cache 

sub arrays can be used for instruction or data prefetching. I show that such a use will lead 

to as much as 67% reduction in execution times when compared with the base case (8 

kilobytes direct-mapped unified data cache with a 32 kilobytes L-2 cache.). Even 

accounting for additional power consumed by prefetching, my structures show an average 

power reduction for embedded applications of 64% over traditional unified data caches. 
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Then I explored how unused cache portions can be used for branch predictions. Finally I 

explored the static and dynamic power reduction by partial/complete shutdown of L-2 

instruction and data caches. By setting a few bits in a configuration register, the cache 

can be configured in software for optimum sizes for each of my caches (In L-1 and L-2 

levels.) to utilize the unused area for other processor activities (Such as larger branch 

prediction tables or prefetch buffers.) or to shut down. For both cases, the reconfiguration 

leads to only a small overhead in terms of time, power, and silicon area and hardware 

complexity. Some of these results were published in [62, 64]. 

7.2 Architectural Design of Reconfigurable Split Caches 

Figure 7.1 shows my reconfigurable split data cache architecture, with L-1 array and 

scalar data caches, victim cache with scalar data cache, the L-1 instruction cache 

augmented by a small prefetching buffer and L-2 instruction and data caches. My cache 

organization with separated component caches can be reconfigured to meet the specific 

needs of an application.  

In section 7.2.1 I describe the sub array cache partitioning that is usually present in 

modern caches. The basic design of cache architecture and the modifications needed to 

design a reconfigurable cache are described in section 7.2.2. In section 7.2.3 I describe 

my reconfigurable split cache in details.  
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Figure 7.1. Reconfigurable Split Cache Organization 
 

7.2.1 Segmentation of Tag and Data Arrays 

Current cache implementations are partitioned into multiple sub arrays. For example, 

the SA-110 embedded microprocessor [34, 55] uses 32-way associative 16 kilobytes L-1 

instruction and data caches, each of which is divided into 16 fully associative sub arrays. 

The Hewlett Packard PA-8500 microprocessor uses two 512 kilobytes data banks of 1 

megabytes 4-way set associative L-1 data cache that are partitioned into four 128 

kilobytes sub arrays [51]. 

In a basic cache organization the data and tag arrays consist of S rows and 8*B*A bit 

columns, where B is the line (Or block) size in bytes, A is the associativity of the cache, 

and S is the number of sets. Such an organization is oblong in either along the columns or 

rows, making accesses slower. To alleviate this problem, cache arrays are broken 

horizontally and vertically into multiple sub arrays, each approximating a square. Two 

parameters Ndwl and Ndbl indicate to what extent the array has been divided -- Ndwl 

indicates how many times the array has been split with vertical cut lines (Creating more, 

but shorter, word-lines.), while Ndbl indicates how many times the array has been split 
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with horizontal cut lines (Causing, shorter bit-lines.). The total number of sub arrays is 

Ndwl * Ndbl. With this partitioning in place, the partitioning required for my reconfigurable 

caches can easily be implemented if there are at least as many sub arrays as the maximum 

number of partitions (Because for reconfigurable cache different partitions must be 

implemented in physically different sub arrays of the cache to be indexed by different 

addresses.). 

7.2.2 Hardware Organization 

Figure 7.2 [67] shows the structure of a cache using Static Random Access Memory 

(SRAM) technology. This figure also includes the areas where additional multiplexors 

are added to implement reconfigurability (Referred by numbered blocks.). 

Decoder: The decoder decodes the address and selects an appropriate row by driving one 

word-line in the data array and one word-line in the tag array. Each sense amplifier 

monitors a pair of bit-lines and detects the value of the bit.  

Comparators: The information read from the tag array is compared with the tag bits of the 

address. In an A-way set-associative cache, comparators are required to select a line from 

the set.  

Multiplexors Drivers and Output Drivers: The results of the A comparisons are used to 

drive a valid (hit/miss) output as well as to drive the output multiplexors. These output 

multiplexors select the proper data from the data array (In set-associative cache or a  
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Figure 7.2. Additional Logic for Reconfigurable Cache [67] 

 

cache in which the data array width is larger than the output width.), and export the 

selected data out of the cache.  

In order to implement reconfigurability only a small amount of additional logic is 

required. The main difference between conventional and reconfigurable cache is that for 

the later case, the different partitions must be indexed by different addresses. As a result 

extra multiplexors are added for each of the above-mentioned structures to make sure that 

the correct address is forwarded to the selected partition. Additional wiring is also 

necessary from the cache to the processor for directing data to/from the various partitions. 

In Table 7.1 I identify the additional multiplexors with their functionality.  

The additional logic will add to silicon area, access time and power consumed. 

Ranganathan et al [67] have studied the impact of reconfigurable cache organizations on 

cache access times and showed that for a small number of partitions, reconfigurable 

caches increase the cache access time by less than 5%. In a different study, Zhang et al 
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Table 7.1 Additional Multiplexors to Implement Reconfigurability 
Multiplexors Functionality 

For address decoder Correct address selection 

For tag comparators Route tag bits from correct address 

For output drivers Select correct hit/miss signals  

 

have shown that the reconfigurable cache does not consume significantly additional 

power over traditional cache structures [82, 83]. In this chapter I have used the CACTI 

timing model to obtain values for these overheads of  reconfigurability. 

7.2.3 Reconfigurable Split Cache Organization  

 The most challenging part in designing a reconfigurable cache is the implementation 

of a mechanism to divide the cache into different (Variable sized) partitions and design 

an addressing scheme that can address any partition. Ranganathan et al. [67] have already 

proposed two partitioning and addressing schemes: “associativity based partitioning” and 

“overlapped wide-tag partitioning.” The former approach requires only minor changes to 

well-understood set associative cache organizations. However the key drawback with this 

scheme is that the number and granularity of the partitions are limited by the associativity 

of the cache. In my design I use “overlapped wide-tag partitioning” scheme. In this 

scheme, the key challenge is to devise a mechanism so the size of the array tag can be 

dynamically changed with the size of partitions (Since the number of bits in tag and index 

fields of the address will vary based on the size of the partition.). I restrict the size of each 

partition to a power of 2 and support a limited number of possible configurations 

(Usually two or three.). 
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A reconfigurable cache with N partitions must accept N addresses and generate N 

hit/miss signals. In order to track the number and sizes of the partitions and control 

hit/miss signals, a special hardware register is needed. This register will be a part of 

processor state and be designed as any other control register.  

A reconfigurable cache can be used in different ways. The best configuration for an 

application can be determined by extensive simulations (Or actual executions). Software 

profiling tools, used to identify portions of code that exhibit different cache behaviors, 

can also be used. Reconfiguration can also be implemented dynamically with appropriate 

hardware profiling and an automatic cache tuner. I advocate the use off-line analyses to 

find an optimum cache organization for each application (Or domain), and select that 

configuration when the application is scheduled. This reduces the hardware complexity 

resulting from dynamic adaptations. Other major issues in designing reconfigurable split 

caches include determining how to find the best configuration and maintaining data 

consistency. For detailed information about maintaining data consistency the reader is 

referred to [67]. 

7.3 Related Work  

Ranganathan et al. [67] proposed reconfigurable unified data cache architecture for 

general-purpose processors. They proposed dividing cache into different partitions that 

could be used for different processor activities. Ranganathan et al. did not provide an 

analysis of silicon area involved in the reconfigurable cache, but explored different 

design alternatives, focusing on one option that of using the saved silicon area for 

“instruction reuse.” I provided a detailed analysis of silicon area savings, reduction in 
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execution cycles and power consumed when my reconfigurable cache structures are used. 

I also perform detailed analyses of achieving additional performance improvement by 

using saved silicon area for prefetching and branch prediction. I concentrate on 

embedded benchmarks for my evaluation. Albonesi et al. [5] proposed “selective cache 

ways” to selectively disable portions of unified data cache, trading off performance with 

power. In my analyses, in addition to trading off performance with power, I also explore 

how unused cache portions can be used for other purposes (Such as prefetch buffers.), 

providing further options in design trade-offs. Unlike mine neither of these analyzed the 

impact of reconfigurability on instruction cache or on L-2 caches.  

Work by Zhang et al. [82, 83] is closely related to my research, as they evaluate 

reconfigurable unified data caches for embedded applications. Unlike the work by this 

research team, I do not see associativity as an important reconfigurable design parameter. 

This is because, both my array and scalar caches are designed as direct mapped caches, 

and I use victim caches to solve associativity for scalar data. Also inclusion of a very 

small instruction buffer allows to remove the cold misses in my direct mapped instruction 

cache. In addition to showing performance gains and power reductions, I also analyze 

silicon area savings obtained from my caches. Instead of shutting down cache area to 

save power, I also explore how the unused portion of cache area can be used for other 

architectural features (Other than as a conventional cache system.) that can improve 

applications’ performance. In a later work [29] they also analyzed the possibilities of 

reconfigurability in L-2 cache.  
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The most significant aspect of my work is using split data cache with reconfigurability. 

Previous research did not consider reconfigurable caches within the context of split data 

caches [56, 57, 69, 71, 78]. Although there are several works on prefetching [8, 52] this 

study is not about prefetching per se. In this study I am just implementing prefetching as 

one use of unused cache portions to improve performance.   

7.4 Experimental Methods 

The experimental environment is built on the Simplescalar (Version 3.0d) simulation 

tool set [13] modeling an out-of-order speculative processor with a two-level cache 

hierarchy. I rely on default parameters defined by Simplescalar as shown in Table 7.2. 

The base cache system, which is the cache with which I compare my designs, uses an 8  

kilobytes L-1 instruction cache, an 8 kilobytes L-1 data cache, a 32 kilobytes L-2 

instruction cache and a 32 kilobytes L-2 data cache. My performance evaluation includes 

silicon area needed for cache structures, because I am interested not only in the 

performance but also in better use of silicon area. I use CACTI [80] for computing silicon 

areas needed by caches. I use a modified CACTI timing model to obtain access time and 

po

 different 

parameters I explored all possible combinations. At L-1, for each benchmark I  

 

 

wer overheads incurred by reconfigurable caches. 

In exploring optimal configuration, I varied only cache-size (Not line-size)—I start 

from smaller to larger sizes in order to avoid cache flushing (256 bytes to 8 kilobytes 

range.). Assuming array and scalar (Also instruction and data.) cache-size as
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 Table 7.2: Simulation Configurations of Simplescalar 

 

 

 

 

 

 

 

 

 

 

Pipeline Parameters Memory Parameters 

Issue Width 4 L-1Instruction Cache 8k, Direct-mapped 

Functional Units 
4 I-alu, 1 I-mul/div, 1 fp alu, 1 fp-

mul/div 
L-1 Data Cache 8k, Direct-mapped 

RUU 8 L-2 Unified Cache 4 - Way, 32 K 

LSQ 4 Line Size 32  bytes 

Integer ALU 1 cycle L-1 Hit Time 1 cycle 

Integer Multiply 4 cycles L-1 Miss Penalty 10 cycles 

Integer Divide 20 cycles Mem Latency/Delay 40/20 cycles 

FP Multiply 4 cycles   

FP Divide 12 cycles   

 

Table 7.3: Cache Configurations Yielding Lowest Power, Area and Cache Access 

Time 

 
Benchmark L-1Instruction 

cache 

Array  

Cache 

Scalar  

Cache 

L-2 

Instruction 

cache 

L-2 Data 

 Cache 

bit counts 256 bytes 512 bytes 512 bytes 2 kilobytes 2 kilobytes 

qsort 256 bytes 1 kilobytes 4 kilobytes 2 kilobytes 32 kilobytes 

dijkstra 1  kilobytes 512 bytes 4 kilobytes 4 kilobytes 8 kilobytes  

blowfish 1 kilobytes  512 bytes 4 kilobytes 2 kilobytes 8 kilobytes 

sha 256 bytes 512 bytes 1 kilobytes 1 kilobytes 8 kilobytes 

rijndael 512 bytes 1 kilobytes 4 kilobytes 4 kilobytes 32 kilobytes 

stringsearch 256 bytes 512 bytes 1 kilobytes 1 kilobytes 16 kilobytes 

adpcm 256 bytes 1 kilobytes 512 bytes 1 kilobytes 4 kilobytes 

CRC32 256 bytes 512 bytes 512 bytes 4 kilobytes 2 kilobytes 

FFT 1  kilobytes 1 kilobytes 4 kilobytes 4 kilobytes 16 kilobytes 

 

exhaustively explored all cache configurations to find the best configuration for 

optimizing power, area and access times. My L-1 augmented split data caches achieve 

excellent reductions in the number of cache misses, translating to fewer visits to L-2 

caches. Since the number of accesses (Which is the number of misses from L-1 caches.) 

to L-2 caches is small, it is unnecessary to perform an exhaustive search of all possible L-

2 cache configurations (As done for L-1 cache, see Figure 7.5 and Table 7.3.). I only 

explored configurations that reduce the silicon area needed for L-2 caches. I start with a 
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very small L-2 cache, and continuously increase the sizes of the caches until no further 

reductions in misses are achieved (Compared to the base configuration of 32 kilobytes L-

2 instruction and data caches.). Since both cache access times and the number of misses 

determine power consumption, this method allows me to find the smallest cache 

sufficient to meet performance requirements without increasing power consumption. In 

Table 7.3 I provide the optimum configurations for each benchmark. 

7.5 Evaluation of Reconfigurable Split Data Caches 

In following two sections I describe my empirical results with two different strategies. 

First I describe the improvement achieved with L-1 data caches while considering trade 

offs. In this case my goal is to optimize only a single parameter, while not decreasing 

others. Next I try to find the optimum configuration for each of my parameters, area, time 

and power consumptions. The results of the second strategy with both L-1 and L-2 data 

and instruction caches are described in section 7.5.2.  

7.5.1 Results with Holding One Parameter Fixed 

The standard way to evaluate the impact of several parameters is to vary one of the 

parameters while keeping the others fixed, which I follow in following two subsections.  

7.5.1.1 Area 

For some embedded applications size reduction is far more important than being faster 

or less power consuming. As a side-benefit, in many of these applications, reducing the 

footprint of processing resources can also lead to reduced power consumption. In this 

section I show how my cache design leads to substantial reduction in size (In terms of 

silicon area needed.). For this purpose I compare the areas consumed by my cache while 
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achieving equal or fewer execution cycles as compared to an 8  kilobytes base cache. In 

other words, I fix the number of cycles to show how my design requires a smaller 

footprint. The first series in Figure 7.3 shows the percentage reduction in area needed by 

using my system instead of the base cache, while requiring no more execution cycles than 

the base case of 8 kilobytes unified data cache. From Figure 7.3 I can see that for half of 

the benchmarks, my system offers more than 80% reduction in silicon area.  
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Figure 7.3: Percentage of Area and Cycle Reduction 

 In Figure 7.3 I also compare the number of cycles (Total execution time.) needed 

when using my cache system with that using unified data cache of equal size. By this I 

mean, if there is 75% reduction in area for my cache leading to a total L-1 size for scalar, 

victim and array portions, I allocate the same cache capacity for the unified data cache – 

thus keeping cache sizes equal in both designs. For some benchmarks (cr, bf, ri) we can 

see that there is a large increase in execution time for a unified data cache with smaller 

overall cache capacity (As compared to my split data caches.). For these benchmarks 

separation of data into array and scalar data significantly reduces the number of conflict 

cache miss. For other benchmarks (ss, ff) we can see that my cache shows only negligible 

reduction in execution time. This is easy to see (Also check Table 4.5.) since these 

 99



applications have very small number of load/store instructions and thus any optimization 

to cache substructures has very minimal impact on the program execution. For these 

cases my cache structure can be reconfigured to gain other benefits including shutting off 

portions of caches to save energy, or utilizing unused portions of caches for purposes 

other than caching. I will explore these options in a later section. 

7.5.1.2 Performance 

Most modern embedded applications are demanding higher performance and added 

features. In such applications, faster execution of programs may be more important than 

reducing the footprint of the computing system. Such systems may afford larger caches, 

say 8 kilobytes or larger L-1 data caches. Here I will show how my design reduces the 

execution times while using equal (or smaller) amounts of area for caches. Note that my 

system uses 3 cache structures -- (Scalar cache, victim cache and array cache.). This 

presents more design choices in terms of selecting a size for each of these structures.  
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Figure 7.4: Percentage of Cycle Reduction without Increased Area 

Optimal sizes for each of the cache structures are selected in order to obtain overall 

reduction in execution cycles while maintaining the same overall silicon area needed (As 
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that of the base case using an 8 kilobytes unified data cache.). Sometimes the optimal 

selections of sizes for the different structures may lead to overall cache areas that are 

somewhat different from my target sizes. For example if I use 4 kilobytes scalar, 512 

bytes victim cache and 2 kilobytes array cache, the total size is less than 8 kilobytes, but 

rounded to the nearest power of 2 (Which is 8 kilobytes.). For most cases the total area 

needed by my cache is smaller than the size of the base cache. In a few cases, I needed 

less than 512 additional bytes when compared to the 8 kilobytes base cache. Figure 7.4 

shows the percentage improvement in execution times of applications assuming 

(approximately) equal numbers of bytes of cache for my designs and the base case. Those 

benchmarks that showed significant improvement in terms of silicon areas (Figure 7.3) 

also show reductions in execution cycles (Figure 7.4). The benchmarks, for which my 

design did not show reductions in area, do not show significant performance gains with 

my designs. Once again this should be expected since these benchmarks do not involve 

many memory accesses. For two benchmarks sh and ff, although the percentages of 

memory references are small (19 and 23%) large improvements are achieved by my 

cache. For these applications, the separation of data types into scalar and stream (Or 

array) is the main source of the performance gains. In Figure 7.4 I am also showing the 

average execution time gains across all the benchmarks used in my experiments. 

7.5.2 Results with L-1 and L-2 Instruction and Data Caches  

The most important concern for the designers of any embedded system is power 

consumption. My overall goal is the reduction of energy consumption by capitalizing on 

both the split cache organization and the reconfigurability of my cache structures. 
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Moreover the concomitant reductions in execution cycles and silicon areas, can further 

contribute to energy savings. In this section I will show the overall improvement in 

energy consumption by combining the efforts described in previous sections in both L-1 

and L-2 data and instruction caches. 

7.5.2.1 Results with L-1 Instruction and Data Caches 

I believe the main problem with L-1 data cache is the negative interaction between two 

different locality types - temporal and spatial localities, exhibited by different data types. 

To solve this problem, for L-1 data cache, I use separate scalar and array caches, and 

augment direct mapped scalar caches with a small victim cache. In addition, with 

reconfigurability I permit varying the sizes of scalar and array caches for each 

application. I augment my L-1 instruction cache with a small buffer to permit for 

effective prefetching of instructions.  Even with the additional power needed by the 

prefetching, I show significant reductions in total power consumed by all my caches (By 

47% on average.). 

The three series in Figure 7.5 represent percentage reductions in power, area and 

access times for L-1 instruction and data caches respectively. In order to obtain these 

results, I exhaustively searched for optimal cache sizes for each cache structure (Array, 

scalar, victim data caches and instruction cache.). In this figure I also show the average 

power, area and cache access time across all the benchmarks used in my experiments. As 

can be seen, for instruction cache, on average I achieve 47% reduction in power, 62% in 

area and 37% in cache access time. Here it should be mentioned that for benchmark ss 

the best configuration of instruction cache is 8 kilobytes. 
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Figure 7.5: Percentage Reduction of Power, Area and Cache Access Time for L-1 (a) 

Instruction and (b) Data Caches 

 

Hence for this benchmark I did not achieve any reduction in power or area. For data 

caches, on average I show more than 50% reduction in both power and area. For each of 

the benchmarks I also achieve reduction in cache access times.  

7.5.2.2 Results with L-2 Instruction and Data Caches 

Unlike L-1 caches where cache behavior is mainly controlled by locality types, for L-2 

cache, the main concern is the number of misses from L-1 caches. My L-1 reconfigurable 

split data caches achieve excellent reductions in the number of cache misses, translating 

to fewer visits to L-2 caches. For benchmark ff I was able to achieve as much as 96% 
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reductions in the number of misses. In Figure 7.6 I show the percentage reduction in the 

total number of access (Which is number of misses in L-1 caches.) in my L-2 caches  
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Figure 7.6: Percentage Reduction of Number of Access in L-2 Caches 

(Both instruction and data caches.) compared to that of the L-2 caches of the base cache 

system. This implies that we can reduce the size of L-2 caches for applications to 

maintain the desired level of performance, and the size of L-2 caches must be configured 

based on each application. Since the number of access (Which is number of misses from 

L-1 caches.) to L-2 caches is small I did not see a need for split L-2 data caches. Also  
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Figure 7.7(a): Percentage Reduction of Area, Power and Cache Access Time for L- 2 

Instruction Caches 
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I felt that it was unnecessary to perform an exhaustive search of all possible L-2 cache 

configurations (As done for L-1 cache, see Figure 7.5 and Table 7.3.). 

The three series in Figure 7.7 represent the percentage reductions in area, power and  
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Figure 7.7(b): Percentage Reduction of Area, Power and Cache Access Time for L-2 

Data Caches 

 

access time for L-2 instruction (7.7a) and L-2 data (7.7b) caches respectively. In these 

figures I also show the average area, power and cache access time reductions across all  
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Figure 7.8: Percentage Reduction of Execution Cycles 

 

the benchmarks used in my experiments. My goal is not only to reduce silicon area, cache 

access time and power consumption, but also to confirm that there is no degradation in 

overall performance. In Figure 7.8 I compare the execution cycles of the selected 

benchmarks of my proposed cache systems (With optimal configurations for various L-1 
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and L-2 structures as outlined previously.) with that of base cache systems. It should be 

mentioned that here I am comparing total execution cycles for the application – not just 

7.

t down the additional 

ns I evaluated both options. 

7.

memory access cycles.  

6 Achieving Further Improvement with Reconfigurable Split Data Caches 

From the results shown in section 7.5 we can make two observations. First my cache 

design will result in huge silicon area savings. Second, my designs also consume less 

power than conventional unified data caches. When provided with larger caches than 

needed for an application, we can either disable unused sub-arrays to save power or use 

the sub-arrays for purposes other than traditional caching, so that the overall execution 

performance of an application can be further improved. The space savings resulting from 

my cache structures may be used for many architectural features to further improve the 

performance of embedded systems. On the other hand, if savings of static and dynamic 

power consumption is our main concern then we can simply shu

saved area. In the following two sectio

6.1 Utilization of the Unused Areas 

In this section I propose my reconfigurable cache to enable its dynamic partitions to be 

assigned to processor activities other than conventional caching. Techniques such as 

hardware prefetching, instruction reuse, value prediction and branch prediction have been 

used effectively in desktop applications. However, these techniques require additional 

space for implementing look-up tables or buffers (Viz trace caches, branch prediction 

buffers.) and the achievable performance gains increase with the size of these tables [72]. 

Because of additional tables, these techniques are often viewed as inappropriate for 
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embedded systems [84]. Since I show reductions in cache sizes needed for my designs 

(While not sacrificing performance or increasing power consumptions.), these savings 

may be used to implement look-up tables or buffers to implement elaborate branch 

prediction or instruction reuse ideas. To provide evidence of the benefits of 

reconfigurable caches, I first study one such technique, hardware prefetching, which is 

ptimization techniques. 

7.

followed by explorations of other hardware o

6.1.1 Hardware and Software Prefetching 

Prefetching or exploiting the overlap of processor computations with data access has 

proven to be effective in tolerating long memory latencies  [8, 52]. Successful prefetching 

can reduce miss rates, but scheduling the prefetching requests is still a challenge. 

Prefetching too far ahead not only wastes the embedded system’s valuable power but 

may also cause cache pollution, since the prefetched data may displace data that will be 

used before the prefetched data. This in turn leads to additional misses and wasted 

energy. On the other hand prefetching too late will not hide the latency. For these reasons 

prefetching is not used in embedded systems. However in this section I show that a 

reconfigurable split data organization with very small scalar and array caches can benefit 

significantly from prefetching. I used prefetching for both array data items and 

instruction cache at L-1 level. In my reconfigurable cache I can use separate partitions for 

prefetched data and avoid cache pollution. The prefetching areas can be implemented in 

cache arrays with minor hardware and software changes. Several software-profiling tools 

have been developed to identify portions of code that exhibit different cache behavior, to 

provide insights to programmers. Such tools can be used to implement smarter 
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prefetching, especially for my scalar cache. For my array cache, a simple prefetching 

method one in which bringing blocks to the cache will also prefetch next two lines to the 

prefetch buffer, can be very useful. One can explore other prefetching and lookup 

techniques. For example checking for a line in the cache can also be accompanied by 

checking the tag for the line two blocks before. If it is a miss for the current line but a hit 

for the previous line, only then the buffer will be checked (The current line must be 

available in the buffer.). Other smarter look up variations can also be implemented to 

7.

reduce cache access energy.   

6.1.2 Hardware Optimization Techniques with Branch Prediction Tables 

Modern processors utilize speculative execution of instructions based on branch 

prediction; instruction reuse and function reuse technique to improve performance [18, 

76]. It has been found that many instructions and functions are repeatedly executed with 

the same inputs, producing same outputs [76]. Similarly for branch instructions, branch 

decisions are correlated and can be predicted. This observation can be exploited to reduce 

the number of instructions/functions executed dynamically as follows: by buffering the 

previous result of the instruction/function, future dynamic instances of the same static 

instruction (Or function) can use the result by establishing that the input operands in both 

cases are the same [76]. For all of these optimization techniques as the microprocessor 

tries to make the prediction based on a record of what this instruction/function has done 

previously, having a larger look up table is very helpful [72]. Unfortunately none of these 

optimization techniques have been studied in detail for embedded applications. I 

anticipate that since I can save the space needed for cache memories using my cache 
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structures (On average 62% for instruction cache and 49% for data cache.), the saved 

space can be used to build needed look-up tables to implement instruction and function 

re

r is 1024 with a history width of 8. The meta-table size of combined 

7.

, we should shut down the 

7.

plications. I 

partitions are shut down. 

7.

 

7.7.1.1 Results with Hardware and Software Prefetching 

use in embedded systems. 

In my study I compare the percentage improvement in the number of execution cycles 

for each application using branch prediction when compared to the base cache system 

without branch prediction. In this study I used combined prediction with both bimodal 

predictor and 2-level adaptive predictor. The table size for bimodal predictor is 2048 and 

for 2-level predicto

predictor is 1024. 

6.2 Shut Down Portions of L-2 Instruction and Data Caches 

Even if we do not use a portion of a cache it will still consume static power as leakage 

current. Hence in order to save both dynamic and static power

cache portion, which is not used for the running application.   

7 Results after Achieving Further Improvement with Reconfigurable Split Data Caches 

In following sections I show the improvements achieved by using my saved cache area 

for other processor activities including instruction and data prefetching, branch prediction 

buffers. I evaluate the potential benefits of such techniques for embedded ap

also explore the energy savings if the unused cache 

7.1 Results with Utilization of the Unused Areas 

Results are provided in the same order as section 7.6.1.
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Figure 7.9 shows the percentage improvement in power consumed and cache access 

time for applications using prefetching in for both L-1 instruction cache and L-1 data 

cache (Along with my scalar, victim and array caches.) when compared to the base cache  
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Figure 7.9: Percentage of Power and Access Time Reduction with Prefetching for (a) 

Instruction and (b) Data Caches 

 

system. As can be seen, for all the benchmarks there are a significant reduction in cache 

access times and power consumption. While access to memory is hidden by prefetching, 

additional energy is consumed by prefetching. The data in Figure 7.9 accounts for the 

added power for prefetching. In Figure 7.10 I present the percentage improvement in 
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terms of execution cycles of an application using prefetching (Along with my scalar, 

victim and array caches.) when compared to the base cache system. As we can see for 

benchmark ri I obtain as much as 85% reductions in the number of execution cycles. For 

two benchmarks, ad and bc, as the percentage of memory references are very low (7 and 

11 % respectively.) prefetching did not show further improvements in execution cycles.  

The average reduction in execution cycles is 47%. Thus my data shows that my split data 

cache augmented by prefetching and victim cache can improve performance and reduce 

power consumption of embedded benchmarks when compared to a unified data cache.  
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Figure 7.10: Percentage Reduction of Execution Cycle after Implementing Prefetching 

 

7.7.1.2 Results with Hardware Optimization Techniques with Branch Prediction Tables 

Figure 7.11 shows the percentage improvement in number of execution cycles for each 

benchmarks using branch prediction when compared to the base cache system without 

branch prediction. For loop intensive benchmark ff I achieved 75 % reduction in 

execution cycle; the average reduction across all applications is 47%. 
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Figure 7.11: Percentage Reduction of Execution Cycle after Implementing Branch 

Prediction 
 

7.7.2 Results with Shut Down of L-2 Instruction and Data Caches  

The most important concern for the designers of any embedded system is power 

consumed by applications. As my proposed design for L-1 instruction and data caches  
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Figure 7.12: Percentage of Dynamic and Static Power Reduction without and with Prefetching for 

(a) Instruction and (b) Data Caches 
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result in reductions in the number of misses, translating into fewer accesses in L-2 

caches, we may want to shut down unused portions of L-2 cache. In this section I explore 

the power savings from shutting down the unused portions. This requires to model both 

static and dynamic power consumed by cache memories. In previous sections I only 

accounted for dynamic power since all cache portions were still active (Not shut down.). 

In Figure 7.12 I show the percentage reduction in total power consumption (Both 

dynamic and static.) for (a) instruction and (b) data caches. In each figure I show the 

power reductions without and with prefetching. Here for prefetch buffer I am using area 

saved from L-I instruction and data caches. Here it should be mentioned that although 

prefetch consumes additional power, the benefits achieved in terms of reduced cache 

misses outweighs the extra cache and hardware needed for prefetch. 

7.8 Conclusions   

In this chapter I introduced novel cache architecture for embedded microprocessor 

platforms that explores reconfigurable L-1 and L-2 cache memories. At L-1, my cache 

configurations consist of an instruction cache with prefetching and split data cache with a 

scalar data cache augmented by a victim cache, and a separate array data cache. The size 

of these different units can be configured for each application to achieve optimum 

performance. In addition, at L-2, I can configure the sizes of instruction and (unified) 

data caches. My results show that I achieve significant reductions in the number of cache 

misses translating into reduced cache access times, reductions in silicon areas, power 

consumptions and finally reduction in the number of execution cycles. 
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I believe there are three reasons behind the success of my cache architecture. First, I 

used reconfigurability to tune the cache sizes and miss rates for a particular applicatio to 

reduce overall power consumption. Reconfigurability allows to implement most 

appropriate size for each of these different caches (For example split array and scalar data 

caches at L-1; L-1 instruction caches augmented by prefetch buffers, and shutting down 

L-2 instruction and/or data caches partially or completely.). Second, the separation of 

array and scalar data items eliminates mutual interference caused by these two types of 

data and reduces conflict misses. The third reason behind my success is the greater 

reconfigurable design space afforded by my cache structures allowing for more choices 

for improvement. 

I also show that the saving in cache sizes resulting from my designs can be used for 

other processor activities including instruction and data prefetching, branch prediction 

buffers. I evaluate the potential benefits of such techniques for embedded applications. I 

also explore the energy savings if the unused cache partitions are shut down. Since my 

reconfigurable approach leverages the sub-array partitioning that is already present in 

modern caches, only minor changes to cache implementations are required. The 

reconfiguration only requires a small overhead in terms of silicon area, power and 

execution times.  
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CHAPTER 8 

DATA FLATTENING: AN APPROACH FOR POINTER INTENSIVE 

APPLICATIONS 

8.1 Introduction 

So far, in my proposed cache design, I have been concerned with two data types: array 

and scalar data. In initial evaluation of my proposed split data cache design, I emphasized 

scientific applications that store data in array structures and do not support pointers. 

Many applications (Especially those written in languages such as C and C++ —for 

example, databases and operating systems.) use of pointer structures to store data 

extensively. I call such applications pointer intensive programs. Because of their dynamic 

nature and their reliance on heap allocated storage, pointer structures tend to have less 

regular access patterns than arrays. As a result, techniques developed to reduce and 

tolerate latency (That were created primarily for applications that manipulated data stored 

in arrays, including my split cache design.) do not perform as effectively for pointer-

intensive programs. For this reason, I propose data flattening, a data placement method 

for pointer-intensive applications. I augment data flattening with my split cache design. 

My proposed split data cache organization allows me to retain a simple design to 

eliminate conflicts between data types (Scalar and array data, so far.). At the same time, 

the array cache of my split cache design can take advantage of the uniform regularity of 

array data through larger lines, stream buffers, and other types of prefetching. I want to 

utilize array cache even for heterogeneous structures like linked list. In order to achieve 

this, I convert linked list to linear array. By using data flattening, I hope to improve data 
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cache performance by locating heap variables in contiguous locations in the virtual 

memory space (Such as an array.). This approach employs data profiling to characterize 

heap variable usage. Profile information then guides the variable placement solution that 

increases predicted cache line use and block prefetch. Finally, using array cache for these 

flattened data decreases inter-variable conflicts. This data flattening solution can be 

implemented by using a modified linker and customized dynamic allocation routines. 

8.2 Proposed Design  

Before I describe my data flattening techniques in detail, let me first identify the 

differences between array and pointer data, and different options for data placement. 

8.2.1 Array vs. Pointers 

Pointer data structures such as lists and trees are widely used in large applications, 

including compilers, databases, and graphics applications (Systems that use linked object 

graphs and function tables.). Typically, all pointer data structures are allocated via 

dynamic memory management (e.g., malloc) and labeled as heap objects (I  

interchangeably call them heap or pointer data.). Pointer data are constructed by 

explicitly connecting data elements, where each data element contains fields that name 

adjacent elements by address. This connectivity permits easier construction and 

manipulation of data structures with arbitrary shape, such as trees and graphs. 

Unfortunately, this flexible, dynamic construction allows pointer data structures to grow 

to large, irregular foot-prints, which is not only difficult to cache but also noncondusive 

to prefetching. On the other hand, compact, uniform, contiguous data patterns makes 

 116



arrays tailor-made candidates for today’s prefetching methods, which rely on address 

stream regularities to extract arithmetic patterns that can be used to predict.  

Conventional prefetching techniques analyze the address history associated with an 

instruction or datum and exploit regularity in the stream to produce prefetching 

addresses. Because address sequences corresponding to sequential array traversal exhibit 

arithmetic regularity, we can easily compress address sequences to a pair of numbers: a 

base value and a stride. These two numbers can be used as a formula to generate 

previously unseen addresses that closely match actual program accesses. Using a 

mathematical formula makes the address computation so fast that, finding enough work 

to overlap the latency is no longer an issue. Historically, however, prefetch mechanisms 

have had trouble with pointer data structures [20]. Pointer intensive applications 

generally lack the address stream regularities which allow extracting arithmetic patterns 

that can be used to make predictions. At the same time, accesses to successive pointer 

data elements cannot be overlapped, as the process of address generation itself requires 

an inherently serial evaluation through memory. This condition, which effectively 

exposes the full latency of each pointer datum access, is known as the pointer chasing 

problem.  

Another major difference between array and pointer data structures is their creation 

time. An object is assigned an address when it is created. For global variables such as 

array data, addresses are assigned at compile time, typically when the program is linked. 

For pointer data variables, however, addresses are assigned at run time when dynamic 

storage is allocated. The address assigned to a data object affects its location in the data 
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cache, as it is determined by this object’s address modulo the number of cache blocks.    

Consequently, data placement offers a mechanism to control both the cache block’s 

contents and location within the cache. With data placement to control the contents and 

location, we can influence the data cache’s performance [15].  

8.2.2 Different Data Placement Techniques 

Programs locality of reference can be improved either by changing a program’s data 

access pattern or its data organization and layout [53]. Hence, cache performance 

depends on two factors: the time data items are accessed and their location in the address 

space. Usually, cache performance optimization techniques rely on one of two options: 

either they restructure the computation or they restructure the data layout. Implementing 

restructuring computation assumes that, given a fixed data layout, we wish to manipulate 

the ordering of accesses in such a manner that multiple accesses to the same data item (Or 

cache line.) occur closely in time, thereby enhancing locality. A common example of a 

restructuring-computation approach is manipulation of dense matrices in scientific 

programs. Figure 8.1 illustrates this restructuring computation with an example. If we can 

interchange the loops (As shown in the code snippet on the right.), the resultant data 

reference pattern will step through all array elements in a cache block before accessing 

the next block, reducing the number of potential cache misses by a factor of four. Other 

examples of “restructuring computation” include loop tiling, loop unrolling [16, 81].  
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Figure 8.1 An Example of “Restructuring Computation” Approach [21] 

In contrast, data placement assumes that, given a set of data items which are accessed 

closely in time in the original computation, we wish to actively arrange them in the 

address space such that we create spatial locality by allocating them contiguous 

addresses. This allocation enhances the effectiveness of long cache lines and simplifies 

prefetch address generation. We also avoid cache conflicts because data placement 

ensures that conflicting data do not reside in separate lines which map into the same 

cache sets [53]. An example of a data placement technique is “list linearization,” an old 

technique for compacting lists in Lisp programs [19, 58]. List linearization relocates a 

linked list’s nodes so that they reside in contiguous memory locations. Other examples of 

“data placement” include coloring, copying, and clustering [12, 20, 21, 23].  
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While both “restructuring computation” and “data placement” approaches have 

received considerable attention in the past, my focus in this study is on facilitating data 

placement optimizations.  There are two approaches to implement data placement 

method. Data relocation (Or simply relocation.), the first approach, moves the heap data 

(Perhaps more than once.) after it has been allocated. Although relocation, can adapt to 

dynamic program behavior, it will need complicated hardware modifications. List 

Linearization is an example of relocation-based optimizations. In the second approach, 

Static placement, we could assign the optimized address during allocation (When the 

heap data is created.) [15].  The advantage of static placement is its simplicity. Data 

flattening, the placement technique proposed by me is a static allocation method.  

8.2.3 Data Flattening Method 

Data flattening is a profile-based memory allocation technique that compresses 

sparsely scattered pointer data into regular contiguous memory locations. To apply the 

approach, I first profile a program to characterize how the program uses data. The profile 

information then guides the placement of heap variables at run time using customized 

allocation routines to increase cache line utilization and block prefetch.  

 As pointer data are scattered sparsely throughout the address space, a straightforward 

method of actively improving spatial locality would be to take data items that are 

accessed closely in time and pack them into adjacent memory locations. This form of 

data placement makes cache lines more effective and potentially reduces the number of 

capacity (Through compaction.) and compulsory (Through prefetching.) misses. This 

method also reduces space consumption, alleviates the pointer-chasing problem, and 
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makes a case for array cache for pointer data. Figure 8.2 shows an example of my data 

flattening method. Without flattening the four nodes, RED, BLUE, PINK and GREEN are 

scattered throughout memory (See Figure 8.2(a).) As a result, they reside in four separate 

cache lines (Assuming each cache block contains two nodes.). 

 

Figure 8.2: Locations of Different Nodes in Memory of a List without Data Flattening (a) 

and with Data Flattening (b) 

 

When flattening is used (Figure 8.2 (b)), however, the four nodes will be allocated to a 

contiguous memory region. As a result, rather than occupying four separate lines, the 

nodes occupy only two lines. Hence data flattening not only eliminates as much as half of 

the space consumption but also potentially eliminates half of the cache misses this list 

causes as it is continuously revisited. At the same time, I reduce pointer chasing problem, 

the major concern with Pointer data. Consider the same figure (8.2) with regard to pointer 

chasing.  Assume that we wish to hide the entire miss latency and, to do so, we need to 

prefetch three nodes ahead. If so, we want to prefetch node GREEN as soon as we arrive at 

node RED. However, with prefetching, we do not know the address of node GREEN until 
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we have dereferenced nodes RED, BLUE, and PINK. In contrast, with data flattening, we 

have linearized the list, and we can prefetch node GREEN at node RED by prefetching the 

next cache line.  Finally, my biggest achievement is the effect of my proposed split data 

caches for pointer-intensive applications. Because these data are now processed through 

data flattening into more uniform patterns (No longer scattered.) the data are now tailor 

made for my array cache.  

However, compressing a pointer data access stream can be a difficult task. Linear 

layout of pointer data is usually the result of allocator strategy, compacting garbage 

collection, or careful hand optimization and this linear layout is often compromised as the 

data structure evolves [15]. In my simulation framework, I have implemented a simple 

approach. I assume that all pointer data elements of equal size belong to a single data 

structure. I first profile a program to be optimized to gather information characterizing its 

data usage, including total number of equally sized nodes. For example, let me assume 

that through profiling I found that 64 equally (16 bytes) sized nodes have been allocated. 

In the original run, when the first request for a node of 16 bytes occurs, instead of 

allocating 16 bytes, I allocate 1 kilobytes as a free list and mark the byte for this 

particular data structure. The first 16 bytes determine the data segment’s new starting 

location. During this custom allocation, any later request for a 16 bytes node will be 

fulfilled from this corresponding free list (Chosen by tag.) so that the data flattening is 

performed.    

In real environments, this procedure becomes more complicated. Once the profiling 

data are generated, they are fed back into the compiler/linker for data-placement 
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optimization. Heap-allocation placement is implemented at run-time using a customized 

malloc routine. The modified malloc first computes the heap-allocation name. The data 

placement framework requires that profile information collected in one program run be 

used to direct variable placement in subsequent runs [15]. To implement this binding, 

profile and placement tools must assign names to all variables. Generating names for 

heap variables presents a more challenging task, as heap variable addresses can change 

with different inputs to the program. In reality, we can model previously proposed heap 

allocators that map objects of similar sizes to the same pages of memory during 

allocation [73]. The difference is, we use data placement to guide heap objects into 

particular address spaces, along with the elements of same data structure (list or tree). In 

my data flattening custom allocator, there will be several free lists. Each list will have an 

associated tag corresponding to a particular data structure. Heap objects belonging to the 

same data structure (allocation locality) will be assigned the same allocation tag. Objects 

with the same tag will use the same free list for allocation and benefit from potentially 

being allocated close to one another. 

8.3 Related Work  

This work totally differs from the work of Carr et al. [16] and Wolf et al. [81]. First of 

all, instead of reconstructing computation, I focus on facilitating data layout optimization.  

Also both of these work focused on regular array accesses, whereas my work considers 

an entirely different class of data structures. Pointer based structures do not support 

random access, and hence changing a program’s access pattern is impossible in general.  
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My work relates with the work of Seidl and Zorn [73] and Calder et al. [15] as we all 

implement an allocation strategy, based on a history of the previously allocated object 

obtained by profiling. However Seidl’s [73] studies focused on a program’s paging 

behavior, not its cache behavior. My work differs, not only because of the vast difference 

in cost between a cache miss and a page fault, but also because cache blocks are far 

smaller than memory pages. On the other hand, although Calder et al. [15] focused on 

cache, they did not emphasize on only heap objects. Their technique, shows little 

improvement for heap objects but significant gains for stack objects and globals. By 

contrast, I provide tools for cache-conscious heap layout that produce significant 

improvement. 

Unlike my work, Chilimbi’s first placement optimization technique which implements 

structure splitting is designed only for tree data structures [21, 22]. In addition, they used 

an entirely different allocation strategy, based on programmer-supplied hint to co-locate 

objects, rather than using profile data gathered by running a training program. Whereas 

like this work, their second approach [20] relies on profile information to guide heuristic 

algorithms in placing instructions to minimize instruction cache conflicts, and maximize 

cache line utilization and block prefetch. However their design is for instruction cache. 

Also their work relies on properties of object-oriented programs and requires copying 

garbage collection, whereas my study focuses on C programs.  

The major difference between my work and that of Luk and Mowry [52], is the timing 

as I implement data flattening during alloction. Unlike my work, their schemes incur 
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serious overheads in the form of runtime storage and additional code needed to maintain 

history pointers and linear data layout, respectively. 

The major way my proposed cache organization differs from all of these above 

mentioned work that they used placement optimizations to improve the performance of a 

unified data cache. These works complement this one, as they are also concerned with 

improving the cache performance of a data structure by reorganizing its internal layout, 

while the orthogonal techniques in my study improve performance by arranging 

collections of flattened data in separate array and scalar data caches. 

8.4 Experimental Methods 

In my experimental evaluations of the data flattening I use select three benchmarks 

from the Olden pointer-intensive benchmark suite [19], three from Standard Performance 

Evaluation Corporation (SPEC) integer benchmark suit [32], one from memory pointer 

benchmark suit [70] and one from Mi- bench suit [30]. A summary of the benchmarks is 

shown in section 4.3.3. 

 For the purpose of studying the performance implications of data flattening I extend 

Simplescalar (version 3.0d) simulation tool set [13] modeling an out-of-order speculative 

processor. I rely on default parameters defined by Simplescalar as shown in table 8.1. 

The base cache system, which is the cache with which I compare my designs, uses an 8 

kilobytes Level one (L-1) instruction cache, an 8 kilobytes L-1 data cache, a 32 kilobytes 

Level two (L-2) instruction cache and a 32 kilobytes L-2 data cache. My performance 

evaluation for Data Flattening includes performance in execution cycles, cache access 

time and cache power consumption. I use CACTI [80] for computing cache access time 
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Table 8.1: Simulation Configurations of Simplescalar 

 Pipeline Parameters Memory Parameters 

Issue 

Width 
4 

L-1 Data Cache 

with DF 
8k 

Functional 

Units 

4 I-alu, 1 I-mul/div, 1 fp 

alu, 1 fp-mul/div 

L-1 Data Cache 

block size 
64k 

RUU 8 
L-1 Data Cache 

block size 

Direct 

maped 

LSQ 4 
Array/Scalar 

Cache with DF 
4k 

Integer 

ALU 
1 cycle 

Array/Scalar 

Cache block size 
32k 

Integer 

Multiply 
4 cycles 

Array/Scalar 

Cache block size 

Direct 

maped 

Integer 

Divide 
20 cycles L-1 Hit Time 

1 

cycle 

FP 

Multiply 
4 cycles L-1 Miss Penalty 

10 

cycles 

FP Divide 12 cycles 
Mem 

Latency/Delay 

40/20 

cycles 

 

 

 

 

 

 

 

 

 

and cache power consumption. Since I did not evaluate the area consumption, I set total 

cache area (Including array and scalar caches.) equal to that of base cache. Table 8.1 also 

lists the various architectural parameters for each cache configuration used in my studies. 

8.5 Empirical Results with Data Flattening 

In this chapter I present results of my experiments with “data flattening” and “cache 

splitting.” As the base cache I use conventional 8 kilobytes unified data cache. When 

collecting data, to really show the impact of array caches for data flattening, I  

do the comparison between the followings,  

1. Performance of original code 

2. After data flattening, performance using single data cache 

3. After data flattening performance using split data caches 
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So I want to show how much the performance improves because  

of better localities  (Compare 1 and 2.), and by how much split data caches improve  

performance (Compare 1 and 3 and 2 and 3.). 

My evaluation compares the cache designs for three metrics: the cache access time, the 

power consumption and the performance (execution cycles). I demonstrate that my 

proposed “split” cache with flattened data gains improvements for all three metrics when 

compared to other approaches. The results support my view that a complete separation of 

array and scalar data caches allow array cache to play a key role in boosting cache 

performance for flattened data for the pointer intensive applications. 
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Figure 8.3: Percentage Improvement in Cache Access Time 

 

The percentage improvements in terms of cache access time, power consumption and 

execution time achieved by my “data flattening” approach are plotted in Figure 8.3, 8.4 

and 8.5 respectively. In these figures I show the relative advantage of using separate array 

and scalar caches with data flattening method. In the first series I compare the results  
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Figure 8.4: Percentage Improvement in Cache Power Consumption 

 

obtained with original code (without data flattening) using unified data cache, with that 

of data flattened code using unified data cache. Whereas in the second series I compare 

the results obtained original code (without data flattening) using unified data cache, with 

that of data flattened code using split data caches. In each figure, I also include the 

average for all the selected benchmarks. From these figures I can see that the split data 

cache organization with flattened data has led to a significant reduction in access time, 

power consumption and overall performance. 

From these figures, we can make another observation. Although data flattening itself 

produce reduction in access time, power consumption and number of execution cycles; 

by sending these flattened data to my split data caches we an achieve additional 

significant improvement. For benchmarks co, ij, bh and vn, the reason behind not 

achieving significant improvement by using data flattening itself (Not using split data 

caches.) is total percentage of pointer load is very low. For bh and vn, the second reason 
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is the data allocation pattern itself. As, both of these benchmarks create their pointer-

based structures at program start up and do not subsequently modify them, there is not 
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Figure 8.5: Percentage Reduction of Execution Cycles 

 

enough opportunity left for my “data flattening” method. Although it improves 

performance (Figure 8.5) the gain is only 10-15% because pointer structure elements are 

created in dominant traversal order, which produces a natural cache-conscious layout 

(like array). For the benchmark tr and vo, although the percentage of pointer load is 

moderate, there is another reason for “data flattening” to hold back from its optimum 

effect. For both of these benchmarks, the sizes of pointer data nodes are very big. 

Benchmarks cf and qs with large number of small sized pointer data performed very good 

with data flattening alone. However my split data caches with flattened data provide 

excellent improvement for all of the benchmarks; on average 56%, 73% and 43% 
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reduction in access time, power consumption and performance respectively, when 

compared with original code (without data flattening) using unified data cache. 

8.6 Conclusions 

In this chapter, a cache-conscious data placement optimization, called “data 

flattening,” is introduced to improve data cache performance of pointer intensive 

applications. The idea behind “data flattening” is to allocate the nodes of a pointer data 

linked structure (like list or tree) to reside in compressed contiguous memory locations. 

In this chapter I showed that this compression brings a threefold impact. First of all, 

converting pointer data to array through data flattening will not only make pointer data a 

suitable candidate for my array cache, it will not create conflicts (As they are not 

scattered sparsely throughout the address space anymore.). Large, irregular foot-print of 

pointer data stream makes them not only very difficult to cache, but also difficult to 

prefetch. As compression will definitely bring a huge reduction in the footprint of pointer 

data stream and will make them more cachable.  Finally compression will also bring 

eased in the prefetching. Ordinarily, a prefetch address for a pointer data element cannot 

be generated until the addresses of all previous elements in the structure are known. 

Compression is attractive because it allows for generation of prefetch addresses for 

arbitrary pointer data elements without the need for a serial evaluation. 
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CHAPTER 9 

CONCLUSIONS 

In today’s microprocessors, cache has become a vital element in improving 

performance for a wide range of applications. The central theme of this dissertation is to 

address the deficiencies in existing cache memory systems. I have proposed a cache 

organization that can significantly reduce the power consumed as well as the cache size 

while providing even better performance (By reducing execution time.) when compared 

applications executing with conventional direct-mapped or set associative caches. I have 

demonstrated that even very small data caches, when split to serve data streams 

exhibiting temporal or spatial localities, and augmented with smarter techniques like 

prefetching, victim caching, data flattening and reconfigurability, can improve 

performance of wide-ranging applications, without consuming excessive silicon real 

estate or power.  

Existing cache organization suffers from the inability to distinguish different types of 

localities, and non-selectively cache all data rather than making any attempt to take 

special advantage of the locality type. This causes unnecessary movement of data among 

the levels of the memory hierarchy, cache pollution and unnecessary increases in miss 

ratio, memory access time and memory bandwidth. I have proposed a split cache 

architecture that groups memory accesses as scalar or array references according to their 

inherent locality and subsequently maps each group to a dedicated cache partition. In this 

system, because scalar references and streamed references no longer negatively affect 

each other, cache interference, thrashing and pollution problems have been diminished, 
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delivering better performance. Further improvements have been achieved by the 

introduction of victim cache, prefetching, data flattening and reconfigurability to tune the 

array and scalar caches for specific application.  

Unfortunately many traditional approaches (Like prefetching and victim caching.), 

which have been proved very efficient for desktop systems, do not work well for 

embedded systems. One of the achievements of my work is the transformation of 

prefetching and victim caching into promising techniques for embedded systems. I have 

demonstrated that a split data organization with very small scalar and array caches can 

solve the deficiencies of victim caches and prefetching in embedded systems, and benefit 

significantly.  

One of the most significant contribution of this work is the introduction of a novel 

cache architecture for embedded microprocessor platforms. My proposed cache 

architecture uses reconfigurability coupled with split data caches to reduce (silicon) area 

and dynamic power consumed by cache memories while retaining performance gains. 

When using my augmented split caches for embedded applications, my results show 

excellent reductions in both memory size and memory access times, translating into 

reduced power consumption. Studies have shown that on-chip caches are responsible for 

50% of an embedded processor’s total power dissipation and, thus, savings in cache 

memory power can be significant in overall power savings. Since there was a huge 

reduction in miss rates at Level one (L-1) (Which is the number of times one needs to 

access Level two (L-2) cache.) further power reduction is achieved by partially or 

completely shutting down L-2 data or L-2 instruction caches. I also showed that the 
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saving in cache sizes resulting from my designs can be used for other processor activities 

including instruction and data prefetching, branch prediction buffers and evaluated the 

potential benefits of such techniques for embedded applications. The energy savings from 

the unused L-1 cache partitions being shut down is also addressed in my research. 

I also have explored data flattening for pointer-intensive applications and augmented 

this method with my split cache design. Data flattening which is a profile based memory 

allocation technique to compress sparsely scattered pointer data into regular contiguous 

memory locations (Like array data.). I have explored the potential of Spit cache 

organization for data placement with data flattening method. 

The biggest advantage of my proposed cache system is its efficiency over a wide 

ranged of applications. Because this system is equipped with a special array cache, it is 

obviously beneficial for scientific applications and showed significant improvement with 

Standard Performance Evaluation Corporation (SPEC) floating point benchmarks. My 

data flattening work with pointer intensive Olden benchmarks and SPEC integer 

benchmarks have shown significant performance improvement. However, the most 

benefited applications are those in the embedded arena. Challenges to design of 

processing elements for embedded systems prove more stringent (Than those for desktop 

processors.), as they often must meet strict timing constraints and be designed to function 

within limited resources such as memory size, available power, and allowable weight. 

My proposed integrated method has met this challenge by permitting a systematic trade-

off between memory size, power and performance, which has up to now not been feasible 

for embedded systems. 
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As performance metrics to evaluate cache performance improvement I include all 

possible metrics: miss rate, cache access time, silicon real-estate area, and power 

consumption. In order to demonstrate overall, whole system performance improvement, I 

use execution cycles.  

Since my research displays a new path in increasing cache performance, which is 

expected to be an important limitation in future, I believe that my split cache architecture 

will find its way into the future microprocessors and the multiprocessor/multicomputer 

systems.  

In future work, I plan to explore my proposed cache organization for multithreaded 

environment. I also want to work with intelligent memory management. I will explore 

integrating my data flattening with memory management such that an intelligent 

management can dynamically profile applications and flatten pointer data types to 

improve localities and utilize reconfigurable caches effectively. To fully benefit from 

split and reconfigurable caches, architecture must be modified to differentiate between 

scalar and array caches, and compilers must generate appropriate instructions to access 

either the scalar or the array cache. Compilers must also generate needed cache 

configuration parameters. I will explore developing such compiler augmentations. 

 134



 135

REFERENCES 

[1] A. Agarwal, J. Hennessy and M. Horowitz, Cache performance of operating systems 

and multiprogramming, ACM Transactions on Computer Systems, Volume 6 Issue 4 

(Nov. 1988), 393-431. 

[2] A. Agarwal and S. D. Pudar, Column–associative caches: a technique for reducing the 

miss rate of direct–mapped caches, in Proceedings 20th Annual International 

Symposiumon Computer, Jun. 1993, pp. 179-190   

  

[3] A. Agarwal, H. Li, and K. Roy, DRG-Cache: A Data Retention Gated-Ground Cache 

for Low Power, Design Automation Conference, Jun. 2002, pp. 473-478. 

[4] G. Albera, R. I. Bahar, Power/Performance Advantages of a Victim Buffer in High-

Performance Processors, IEEE Volta International Workshop on Low Power Design, 

Mar. 1999, pp. 43-51. 

[5] H. Albonesi, Selective Cache Ways: On-Demand Cache Resource Allocation, Journal 

of Instruction Level Parallelism, Volume 2 (May 2000) 141-152. 

[6] ARM Microprocessor Brief Datasheet, April 2000.  

 

[7] J. Arul, K. M. Kavi and S. Hanief, Cache Performance of Scheduled Dataflow 

Architecture, Proc. of the 4th International Conference on Algorithms and Architectures 

for Parallel Processing (ICA3PP2000), Dec. 2000, pp. 834-846. 

 

[8] J. L. Baer and T. F. Chen, An effective on–chip preloading scheme to reduce data 

access penalty, in Proceedings of the Supercomputing, Dec. 1991, pp. 176-186. 

 

[9] R. I. Bahar, D. Grunwald, B. Calder, A Comparison of software code reordering and 

victim buffers, ACM SIGARCH Computer Architecture News, Volume 27 Issue 1 (Mar. 

1999) 51-54.  

[10] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu and S. Dwarkadas, Memory 

hierarchy reconfiguration for energy and performance in general-purpose processor 

architecture, 33
rd

 International Symposium on Microarchitecture, Dec. 2000, pp. 245-

257. 

[11] J. Banerjee, W. Kim, and J. F. Garza, Clustering a DAG for CAD databases, IEEE 

Transactions on Software Engineering, Volume 14 Issue 11(Nov 1988), 1684–1699. 

[12] V. Benzaken and C. Delobel, Enhancing performance in a persistent object store: 

Clustering strategies in O2, in Technical Report 50-90, 1990. 



[13] D. Burger and T. M. Austin, The Simplescalar Tool Set, Version 2.0, Tech. Rep. CS-

1342, University of Wisconsin-Madison, June 1997. 

[14] B. Calder, D. Grunwald and J. Emer, Predictive sequential associative cache, in 

Proceedings of the Second IEEE Symposium on High-Performance Computer 

Architecture, Feb. 1996, pp. 244-253. 
 

[15] B. Calder, C. Krintz, S. John, and T. Austin, Cache-conscious data placement, 

ASPLOS-VIII, Oct. 1998, pp. 139-149. 

 

[16] S. Carr, K. S. McKinley, and C.W. Tseng, Compiler optimizations for improving 

data locality, in Proceedings of the Sixth International Conference on Architectural 

Support for Programming Languages and Operating Systems (ASPLOS-VI), Oct. 1994, 

pp. 252–262. 

 

[17] J. H. Change, H. Chao, and K. So, Cache design of a sub-micron CMOS Systerd370, 

in Proceedings of the 14
th

 Annual International Symposium on Computer Architecture, 

Jun. 1987, pp. 208-213. 

[18] P. Chen, K. Kavi and R. Akl, Performance enhancement by eliminating redundant 

function execution, in Proceedings of the IEEE 39th Annual Simulation Conference, Apr. 

2006, pp 143-150. 

[19] C. J. Cheney, A nonrecursive list compacting algorithm, Communications of the 

ACM, Volume 13 Issue 11 (Nov. 1970), 677-678. 

[20] T. M. Chilimbi, and J. R. Larus, Using generational garbage collection to implement 

cache-conscious data placement, in Proceedings of the 1998 International Symposium on 

Memory Management, Oct. 1998, pp. 37-48. 

[21] T. M. Chilimbi, B. Davidson, and J. R. Larus, Cache-conscious structure definition, 

in Proceedings of the ACM SIGPLAN Conference on Programming Language Design 

and Implementation, May 1999, pp. 13-24. 

[22] T. M. Chilimbi, J. R. Larus, and M. D. Hill, Tools for cache-conscious data 

structures, PLDI, May 1999, pp. 51-68. 

[23] D. Comer, The ubiquitous B-tree, ACM Computing Surveys, Volume 11 Issue 2 

(Jun 1979),  121–137. 

[24] S. Cotterell and F. Vahid, Synthesis of customized loop caches for core-based 

embedded systems, International Conference on Computer Aided Design (ICCAD), Nov. 

2002, pp. 655-662. 

[25] R. Espasa and M. Valero, A Victim Cache for Vector Registers, ICS-11. ACM 

International Conference on Supercomputing, Jul. 1997, pp. 293-300. 

 136



[26] A. Eustance and A. Srivastava, ATOM: A flexible interface for building high 

performance program analysis tools, Western Research Laboratory, TN-44, 1994. 

 

[27] T. Givargis, J. Henkel and F. Vahid, Interface and cache power exploration for core-

based embedded system design, in International Conference on Computer-Aided Design 

(ICCAD), Nov. 1999, pp. 270-273. 

 

[28] C. Gonzalez, A. Aliagas and M. Valero, Data cache with multiple caching strategies 

tuned to different types of locality, in Proceedings of International Conference on 

Supercomputing, Jul. 1995, pp. 338-347. 

[29] A. Gordon-Ross, F. Vahid and N. Dutt, Automatic tuning of two-level caches to 

embedded applications, Design Automation and Test in Europe Conference (DATE), 

Feb. 2004, pp. 208-213. 

[30] M. Guthaus, J. Ringenberg, T. Austin, T. Mudge and R. Brown, MiBench: A free, 

commercially representative embedded benchmark suite, in Proceedings of the IEEE 4th 

Annual Workshop on Workload Characterization, Austin, TX, Dec. 2001. 

[31] J. L. Hennessy and D. A. Patterson, Computer architecture a quantitative approach, 

Morgan Kaufmann Publishers, Third Edition 2003, pp 423-430. 

 

[32] L. Henning, SPEC CPU2000: Measuring CPU performance in the new millennium, 

IEEE Computer, Volume 33 Issue 7 (Jul. 2000), 28-35. 

[33] D. Hormdee, J. D. Garside, S. B. Furber, An Asynchronous Victim Cache, in 

Proceedings of DSD, Sep. 2002, pp. 4-14. 

 

[34] Intel StrongARM SA-1110 Microprocessor Brief Datasheet, April 2000. 

 

[35] B, Jacob, Cache design for embedded real-time systems, Embedded Systems 

Conference, Danvers MA, June 30, 1999. 

[36] P. Jain, S. Devadas, D. W. Engels and L. Rudolph, Software-assisted cache 

replacement mechanisms for embedded systems, ICCAD, Nov. 2001, pp 119-126.  

 

[37] T. L. Johnson and W. W. Hwu, Run-time adaptive cache hierarchy management via 

reference analysis, in Proceedings the 24th International Symposium on Computer 

Architecture, Jun. 1997, pp 315-326. 

[38] T. L. Johnson, M. C. Merten, and W. W. Hwu, Run-time spatial locality detection 

and optimization, in Proceedings the 30th International Symposium on Microarchitecture, 

Dec. 1997, pp. 57-64. 

 

 137



[39] N. P. Jouppi, Improving direct-mapped cache performance by the Addition of a 

small fully associative cache and prefetch buffers, in Proceedings of the 17th ISCA, May 

1990, pp. 364-373. 

 

[40] P. Jung-Wook, K. Cheong-Ghil, L. Jung-Hoon and K. Shin-Dug, An energy efficient 

cache memory architecture for embedded systems, in Proceedings of the ACM 

symposium on Applied computing, Mar. 2004, pp. 884-890. 

 

[41] M. B. Kamble and K. Ghose, Energy-efficiency of VLSI caches: a comparative 

study, in Proceedings of Tenth International Conference on VLSI Design, Jan. 1997, 

pp.261-267. 

[42] M. B. Kamble and K. Ghosse, Analytical energy dissipation models for low power 

caches, in Proceedings of International Symposium on Low Power Electronics and 

Design, Aug. 1997, pp.143 -148. 

 

[43] K. M. Kavi, A. R. Hurson, P. Patadia, E. Abraham and P. Shanmugam, Design of 

cache memories for multi-threaded dataflow architecture, in Proceedings of the 22nd 

International. Symposium on Computer Architecture (ISCA-22), Jun 1995, pp. 253-264. 

 

[44] K. M. Kavi and A. R. Hurson, Performance of cache memories in dataflow 

architectures, Euro-micro Journal on Systems Architecture, Volume 44 Issue 9-10 (Jun.  

1998) 657-674. 

 

[45] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor and H. D. Man, Cache conscious 

data layout organization for conflict miss reduction in embedded multimedia 

applications, IEEE Transactions on computers, Volume 54 Issue 1 (Jan. 2005), 76-81. 

 

[46] G. Kurpanek, K. Chan, J. Zheng, E. DeLano and W. Bryg, PA7200: a PA-RISC 

processor with integrated high performance MP bus interface, COMPCON Digest of 

Papers, Volume 94 Issue 28 (Feb. 1994), 375-382. 

 

[47] M. S. Lam, P. R. Wilson, and T. G. Moher, Object type directed garbage collection 

to improve locality, in Proceedings of the International Workshop on Memory 

Management, Sep. 1992, pp. 16–18. 

[48] J. H. Lee, G. H. Park, K. W. Lee, T. D. Han, and S. D. Kim, A Power Efficient 

Cache Structure for Embedded Processors Based on the Dual Cache Structure, in 

Proceedings of the ACM LCTES, Jun. 2000. 

 

[49] J. H. Lee, J. S. Lee and S. D. Kim, A new cache architecture based on temporal and 

spatial locality, Journal of Systems Architecture, Volume 46 Issue 15 (Sep. 2000), 1451-

1467. 

 138



[50] J. H. Lee, S. D. Kim and C. Weems, Application adaptive intelligent cache memory 

system, ACM Transactions on Embedded Computing Systems, Volume 1 Issue 1 (Dec. 

2002), 56-78. 

 

[51] G. Lesartre and D. Hunt. PA-8500: The continuing evolution of the PA-8000 family, 

in Proceedings of Compcon, 1997. 

[52] C.K. Luk and T. Mowry, Compiler based prefetching for recursive data structures, in 

Proceedings of the 7th International Conference on Architectural Support for 

Programming Languages and Operating Systems, Oct. 1996, pp. 222-233. 

[53] C. Luk and T. C. Mowry, Memory forwarding: Enabling aggressive layout 

optimizations by guaranteeing the safety of data relocation, in Proceedings of the 26th 

Annual International Symposium on Computer Architecture (ISCA), Jun. 1999, pp. 88-

99. 

[54] S. A. McKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H. Salinas, J. H. Aylor, 

A. P. Barson, Smarter Memory: Improving Bandwidth for Streamed References, IEEE 

Computer (Jul. 1998) 54-63. 

 

[55] E. McLellan, The Alpha AXP architecture and 21064 processor, IEEE Micro, 

Volume 13 Issue 4 (Jun 1993), 36–47. 

[56] V. Milutinovic, M. Tomasevic, B. Markovic and M. Tremblay, The split 

temporal/spatial cache: initial performance analysis, SCIzzL-5, Mar. 1996. 

 

[57] V. Milutinovic, M. Prvulovic, D. Marinov and Z. Dimitrijevic, The splits 

spatial/non-spatial cache: a performance and complexity evaluation, IEEE Technical 

Committee on Computer Architecture Newsletter, (Jul. 1999), 11-18. 

[58] D. A. Moon, Garbage collection in a large LISP system, in Conference Record of the 

1984 Symposium on LISP and Functional Programming, Aug. 1984, pp. 235–246. 

[59] A. Naz, K.M. Kavi, P.H. Sweany and M. Rezaei, A study of separate array and 

scalar caches, in Proceedings of the 18th International Symposium on High Performance 

Computing Systems and Applications (HPCS 2004), Winnipeg, Manitoba, Canada, May, 

2004, pp 157-164.   

 

[60] A. Naz, M. Rezaei, K. Kavi and P. Sweany, Improving data cache performance with 

integrated use of split caches, victim cache and stream buffers, in Proceedings of the 

Workshop on Memory performance dealing with applications, systems and architecture 

(MEDEA-2004), also published in SIGARCH’s ACM Computer Architecture News 

(CAN), Volume 33 Issue 3 (Jun. 2005) 41-48. 

 

[61] A Naz, K. Kavi, M. Rezaei and W. Li, Making A Case For Split Data Caches For 

Embedded Applications, in Proceedings of the Workshop on Memory performance 

 139



dealing with applications, systems and architecture (MEDEA-2005), also published in 

SIGARCH’s ACM Computer Architecture News (CAN), Volume 34 Issue 1 (Mar. 2006) 

19-26. 

[62] A. Naz, K. Kavi, P. Sweany and W. Li, A Study of Reconfigurable Split Data 

Caches and Instruction Caches, in Proceedings of the ISCA 19th International 

Conference on Parallel and Distributed Computing (PDCS-2006), Sep. 2006, pp. 154-

160. 

[63] A. Naz, K.M. Kavi, P.H. Sweany and W. Li, Tiny split data caches make big 

performance impact for embedded applications, Special Issue on Embedded Single-Chip 

Multicore Architectures and related research - from System Design to Application 

Support of ACM Journal of Embedded Computing, Volume 2 Issue 2, (Nov 2006) 207-

219. 

[64] A. Naz, K. Kavi, P. Sweany and W. Li, Reconfigurable Partitioned Data cache: a 

Novel Approach for Embedded Systems, in Proceedings of SAC 2007 22nd ACM 

Symposium on Applied Computing SPECIAL TRACK on Embedded Systems: 

Applications, Solutions, and Techniques, Mar. 2007, pp. 707-712. 

 

[65] S. Palacharla and R. E Kessler, Evaluating Stream Buffers as a Secondary Cache 

Replacement, in Proceedings of the 21th International Symposium on Computer 

Architecture, Apr. 1994, pp. 24-33. 

 

[66] P. Petrov, A. Orailoglu, Towards Effective Embedded Processors in Codesigns: 

Customizable Partitioned Caches, in International Symposium on Hardware/Software 

Codesign (CODES), Apr. 2001, pp. 79-84. 

 

[67] P. Ranganathan, S. V. Adve and N. P. Jouppi, Reconfigurable caches and their 

application to media processing, in Proceedings of the 27th International symposium on 

Computer Architecture, Jun 2000, pp. 214-224. 

 

[68] E. Rashid, A CMOS RISC CPU with On-Chip Parallel Cache, ISSCC Digest of 

Papers, Feb. 1994, pp. 210-211. 

 

[69] J. A. Rivers and E. S. Davidson, Reducing conflicts in direct-mapped caches with a 

temporality based design, in Proceedings of the International Conference on Parallel 

Processing, Aug. 1996, pp. 154-163. 

 

[70] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, Supporting Dynamic Data 

Structures on Distributed Memory Machines, ACM Transactions on Programming 

Languages and Systems, Volume 17 Issue 2 (Mar. 1995), 233-263. 

 

 140



[71] F. J. Sanchez, A. Gonzalez, and M. Valero, Software management of selective and 

dual data caches, IEEE Technical Committee on Computer Architecture Newsletter, 

(Mar. 1997) 3-10. 

 

[72] Y. Sazeides and J. E. Smith, The predictability of Data values, in Proceedings of the 

30
th

 Annual International Conference on Microarchitecture, Dec. 1997, pp. 248-258. 

 

[73] M. L. Seidl, and B. G. Zorn, Segregating heap objects by reference behavior and 

lifetime, in Proceedings of the Eight International Conference on Architectural Support 

for Programming Languages and Operating Systems (ASPLOS VIII), Oct. 1998, pp. 12-

23.  

[74] A. J. Smith, Cache memories, ACM Computing Surveys, Volume14 Issue 3 (Sep. 

1982), 473-530.  

 

[75] K. So and R. N. Rechtschaffen, Cache operations by MRU change, IEEE 

Transactions on Computers, Volume 37 Issue 6, (Jun. 1988) 700-709. 

 

[76] A. Sodani and G. Sohi, Dynamic Instruction Reuse, in Proceedings of 24th Annual 

International Symposium on Computer Architecture, Jun. 1997, pp.194 - 205. 

 

[77] D. Stiliadis, Selective victim caching: A method to improve the performance of 

direct-mapped caches, IEEE Transactions on Computers, Volume 46 Issue 5 (May 1997) 

603-610. 

 

[78] M. Tomasko, S. Hadjiyiannis and W. A. Najjar, Experimental evaluation of array 

and scalar caches, IEEE Technical Committee on Computer Architecture Newsletter, 

(Mar. 1997) 11-17. 

 

[79] O. S. Unsal, I. Koren, C. M. Krishna and C. A. Moritz, The minimax cache: an 

energy-efficient framework for media processors, 8th International Symposium on High-

Performance Computer Architecture, HPCA8, Feb. 2002, pp. 131-140. 

 

[80] S. J. E.Wilton and N. P. Jouppi, CACTI: an enhanced cache access and cycle time 

model, IEEE Journal of Solid-State Circuits, Volume 31 Issue 5 (May 1996) 677 -688. 

[81] M. E. Wolf and M. S. Lam, A data locality optimizing algorithm, in PLDI, Jun 1991, 

pp 30–44. 

[82] C. Zhang, F. Vahid and W. Najjar, Energy benefits of a configurable line size cache 

for embedded systems, IEEE International Symposium on VLSI Design, Feb. 2003, pp. 

87-91.  

 

 141



 142

[83] C. Zhang, F.Vahid and W.Najjar, A highly configurable cache architecture for 

embedded systems, in Proceedings of 30th Annual International Symposium on 

Computer Architecture, Jun. 2003, pp.136 -146. 

[84] C. Zhang and F. Vahid, Using a victim buffer in an application-specific memory 

hierarchy, Design Automation and Test in Europe Conference (DATE), Feb. 2004, pp. 

220-225. 

 


