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Many animals socialize in two or more major ecological contexts. In nature,

these contexts often involve one situation in which space is more constrained

(e.g. shared refuges, sleeping cliffs, nests, dens or burrows) and another situ-

ation in which animal movements are relatively free (e.g. in open spaces

lacking architectural constraints). Although it is widely recognized that an

individual’s characteristics may shape its social life, the extent to which

architecture constrains social decisions within and between habitats remains

poorly understood. Here we developed a novel, automated-monitoring

system to study the effects of personality, life-history stage and sex on the

social network structure of a facultatively social mammal, the California

ground squirrel (Otospermophilus beecheyi) in two distinct contexts: above-

ground where space is relatively open and belowground where it is

relatively constrained by burrow architecture. Aboveground networks

reflected affiliative social interactions whereas belowground networks

reflected burrow associations. Network structure in one context (below-

ground), along with preferential juvenile–adult associations, predicted

structure in a second context (aboveground). Network positions of individ-

uals were generally consistent across years (within contexts) and between

ecological contexts (within years), suggesting that individual personalities

and behavioural syndromes, respectively, contribute to the social network

structure of these free-living mammals. Direct ties (strength) tended to be

stronger in belowground networks whereas more indirect paths (between-

ness centrality) flowed through individuals in aboveground networks.

Belowground, females fostered significantly more indirect paths than did

males. Our findings have important potential implications for disease and

information transmission, offering new insights into the multiple factors

contributing to social structures across ecological contexts.

This article is part of the theme issue ‘Interdisciplinary approaches for

uncovering the impacts of architecture on collective behaviour’.

1. Introduction
Behavioural ecologists have long understood that social decisions have impor-

tant fitness consequences for individuals, shaping key processes including

foraging decisions, information flow, disease transmission and reproduction

[1]. It has become increasingly clear that who-meets-whom within animal

societies is rarely random [2] and that social structure is often produced by indi-

vidual variation in social preferences within groups [3,4]. Social network theory

offers useful tools for quantifying and understanding how this variation con-

tributes to social structure [5–7]. This framework formalizes the classical
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view that repeated pairwise interactions give rise to social

relationships that in turn contribute to emergent social struc-

tures [8]. Importantly, network analysis extends traditional

approaches by offering well-defined, standardized metrics

for characterizing the effect of an individual’s characteristics

on direct and indirect social connections [9–11]. Network

metrics are, therefore, offering new insights into the ways

that individual characteristics (e.g. life-history stage, sex),

preferential relationships (e.g. coalition partners) and the

presence of key individuals shape group stability and

structure [3,12–18].

A parallel, but largely distinct, literature has emerged

showing that many animals exhibit ‘personalities’ [19],

defined as consistent individual differences in behaviour;

e.g. in aggressiveness, boldness or sociability. Only a handful

of studies have explicitly linked personality traits to animal

social networks [20–24]. A closely related literature examines

behavioural syndromes, defined as consistent and/or corre-

lated behaviour across two or more situations [19,25,26]. In

nature, the two situations for animals often involve one situ-

ation where space is more constrained (e.g. shared use of

refuges, sleeping cliffs, nests, or burrows) and another situ-

ation in which movements are relatively free (e.g. in open

spaces lacking architectural constraints). The latter may,

therefore, permit a richer range of social behaviours and

interactions.

Interestingly, although most animals live in two or more

distinct habitats or major situations, most social network

studies are limited to a single context or rely upon combined

data without explicit considerations of ecological context [27].

Thus, despite definitive evidence that individuals in different

situations often differ in their patterns of space use [28,29]

and sociality [30], and this notion being discussed extensively

in review articles [7,10,31], very few empirical studies expli-

citly examine links between social networks derived from

different situations [27]. This is unfortunate because connec-

tivity may contribute to important processes such as

disease and information transfer [32–34]. For example,

understanding whether networks are more connected in

one habitat than the other may offer insights into contexts

as a ‘hot spot’ of transmission [35–37]. Moreover, partition-

ing the differences in social network metrics between

contexts for individuals of different life-history stages and

sexes will likely provide insights into how social roles (e.g.

for juveniles versus adults [3,38]) vary or remain consistent

across situations. Thus, although data collected using differ-

ent sampling methods are inherently challenging to

compare [39], efforts to assess the effects of life-history

stage and sex on context-specific social metrics for individuals

should provide an enhanced understanding of mechanisms

contributing to social structure [2].

Within a social network framework, three major, non-

mutually-exclusive mechanisms may generate social structure:

‘movement rules’, ‘social interaction rules’ and ‘individual

characteristics’ [3,6,40]. First, movement rules refer to the ways

that daily patterns of travel to and from limited resources,

such as a shared refuge or a clumped food source, can produce

repeated spatial associations even in the absence of social prefer-

ence [41]. For individuals that travel away fromrefuges eachday

to search for food, movement rules predict that animals sharing

similar refuges will be most likely to socialize due to increased

encounter rates. Second, social interaction rules describe the

extent to which social partner choice drives social structure [6].

These rules emphasize factors such as homophily [42], the ten-

dency for similar individuals (e.g. same life-history stage,

same sex) to preferentially interact. For example, homophily

occurs among juveniles during play [43,44] or among adult

females with enduring social bonds [45]. Finally, individual

characteristics, such as personality, life-history stage or sex of

an individual may predict social network metrics within a

context [3,31,38]. An individual’s network position may also

remain consistent across contexts, indicating a behavioural

syndrome, or vary between contexts if individuals engage in

context-specific social roles.

Here we studied a semi-fossorial mammal, the California

ground squirrel, Otospermophilus beecheyi, to gain insights into

the factors contributing to social network structures of free-

living mammals who split their lives between two major

contexts: above- and belowground. This is important because

very few studies simultaneously seek to explain the ecologi-

cal aspects of above- and belowground behaviours in

semi-fossorial mammals; for notable exceptions, see [46,47].

California ground squirrels are facultatively social rodents

that offer an interesting mammalian system for elucidating

the extent to which movement rules, social interaction rules,

and/or individual characteristics (e.g. personality, behaviou-

ral syndromes, life stage, sex) predict social structure.

Individuals reside at distinct geographical sites, called colo-

nies, at which group members regularly socialize, forage

and collectively mob predators aboveground, but also

seek refuge belowground in communal burrow systems for

protection from predation and harsh weather [48–50].

Our current study capitalized upon the natural history of

these animals to examine the mechanisms promoting social

structure in two distinct contexts: above- and belowground.

First, movement rules predict that because burrows are

refuges limited in their size capacity as well as in their spatial

distribution and abundance across the landscape, individuals

that share burrows may also socialize to the greatest extent

aboveground due to their increased tendency to interact as

they travel to and from the same location (burrow) each

day to forage aboveground. Specifically, if movements

away from refuges spatially constrain opportunities for

aboveground social exchanges, then social network structure

in one context (belowground) should predict that in a second

context (aboveground). Second, social interaction rules pre-

dict that if individuals exhibit social preferences based on

homophily, then they should associate most often with

others of the same stage and sex. Finally, we investigated

how individual characteristics shape direct and indirect

social connectivity within above- and belowground social

networks. If networks reflect animal personalities and/or

behavioural syndromes, then the relative network positions

of individuals should be consistent over time (between

years) and between contexts (aboveground versus below-

ground), respectively [31,51]. Beyond the effects of

individual identity, we also predicted that juveniles of both

sexes and adult females should be the most connected

within their social networks. Although surprisingly little is

known about kinship and dispersal patterns for the Califor-

nia ground squirrel [50], groups are likely matrilineal

(female-based kin structure) with male-biased dispersal, as

seen across the ground squirrel lineage [52]. If this is the

case, then adult females and their immature offspring

should promote connectivity, as seen in other matrilineal

mammals [3,53,54].
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2. Material and methods

(a) Field site and study subjects
We studied free-living California ground squirrels at Briones
Regional Park in Contra Costa County, California (37.9377014
N, 122.1388542 W). At this field site, at least some members of
the population remain active aboveground all year [55]. Breeding
largely occurs from mid-February to April, with females typi-
cally only producing a single litter per year [55]. Adult females
rear young in burrows until offspring emerge as fully weaned
young (age: 45–60 days), after which young of the year spend
the remainder of their first year as juveniles (61–364 days)
before maturing into reproductive adults (older than 364 days)
[55,56]. We focused on juveniles and adults in the current
study because these individuals are regularly observed socializ-
ing aboveground and, thus, have ample opportunities to visit
burrows belowground and to affiliate with colony members
aboveground.

The precise connectivity of California ground squirrel
burrow complexes is largely unknown [50]. Although most bur-
rows are presumed of to lack connections, excavations show that
some are comprised of interconnected tunnels with multiple
openings (e.g. 6–20 openings) at the surface [55]. Most tunnels
are 4.6 m long, but extreme cases report tunnels of up to 70 m
[55,57]. Regardless of the precise interconnectivity or length of
burrow systems, individuals that share any burrow opening on
a given day have opportunities to socialize, share space and
exchange parasites [58].

(b) Live trapping of free-living individuals
The current study was part of a long-term study at our main
colony site (Crow). Since 2013, we have live-trapped, marked
and released California ground squirrels using squirrel traps
(Tomahawk Live-Trap Company, Hazelhurst, Wisconsin, USA)
baited with black oil sunflower seeds and peanut butter at and

around burrow entrances. This is primarily done during the
summer months, from late May to early August (figure 1a).
Traps were covered with pieces of cardboard for shade and
checked at intervals of �30 min. While safely contained in a
cone-shaped, cloth handling bag [59], we noted the individual’s
weight, sex, anogenital distance and reproductive status and then
released each individual at its site of capture. We used this infor-
mation to assign the life-history stage and sex to each individual
for each year of the study.

Upon first capture, individuals were given three types of
identification (figure 1). First, a Monel metal ear tag (National
Band and Tag Co., Newport, Kentucky, USA) was attached to
one pinna for permanent identification. Second, a unique Nyan-
zol cattle dye mark (Greenville colorants: New Jersey) was
applied to the back for visual identification during social obser-
vations. Third, we inserted a unique passive integrated
transponder (PIT) tag (Biomark, Inc., Boise Idaho) beneath the
skin as a reliable ‘lifetime’ barcode [60]. In 2016 and 2017,
respectively, we live-trapped and monitored a total of 131 and
158 marked individuals across the entire colony site.

(c) Automated sensing of belowground activity
Automated tracking offers exciting opportunities for the study of
animal social networks [61]. Because the social lives of subterra-
nean animals are largely hidden from researchers due to the
small size of the openings to belowground refuges [62,63], we
developed a new method for monitoring belowground activity
of burrowing animals reliant upon radio-frequency identification
to detect small (less than 1 g) and inexpensive PIT tags. We
stored information from each burrow complex on an external
data logger powered by a single 6 V rechargeable battery
(Model DC224-6 AGM, Full River Battery, USA). A single battery
powered each system for two weeks. This approach offers advan-
tages over other reality-mining approaches because of its low
cost, extended battery life and low disturbance to subjects [61].

(b)

(c)

(a)

Figure 1. Novel automated-tracking system. (a) Live trapping and release of free-living California ground squirrels allow researchers to provide each individual with a

unique fur mark for visual identification during social observations, ear tag for identification during trapping and passive integrated transponder (PIT) tag beneath

the skin for detection by the monitoring system. (b) Movements are detected by scanning an individual’s PIT tag every time it passed through a secure antenna loop

inside of a burrow opening. (c) Data logger (Biomark, Inc., Boise Idaho) records information about the time of day, squirrels’ PIT tag ID and burrow location for each

movement event. (Online version in colour.)
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Starting April 2016, we deployed data loggers (Biomark, Inc.,
Boise Idaho, figure 1a–c) at two distinct data monitoring stations
within the colony site. The first station covered activity over an
area of 15.0. � 14.8 m2 (‘Logs’ area), whereas the second station
covered an area of 17.8 � 7.7 m2 (‘580’ area). The two areas
were separated by 86 m and squirrels were regularly observed
travelling aboveground between them. A total of 12 antennae
loops were attached to each data logger at each station. Each
loop was placed at an active burrow entrance and detected move-
ments by scanning the unique PIT tags of visitors (figure 1b). We
validated that each loop accurately detected PIT tags by scanning
tags in and out of loops and confirming that their time–date
stamps were accurately stored on the SD card at each station.
These 12 loops provided substantial coverage of active openings,
covering roughly 90% of active burrow entrances at each burrow
complex. We secured each antennae loop at a single burrow
entrance with 10 cm � 2.5 cm Fabric & Garden Staples (Easy
Gardener Products, Inc., Waco, TX). Staples were placed into
the dirt using a mallet without damaging the burrow architec-
ture, obstructing the ability for the antenna to effectively read
the PIT tag, or jeopardizing animal safety as squirrels passed
through the antenna (figure 1b).

The data logger recorded the specific time, date and unique
PIT tag number each time a tagged individual passed in or out
of an antenna’s loop (figure 1c). Each data logger and battery
were hidden under their own 2400 � 1200 � 1300 artificial rocks
(Orbit granite valve box cover, Model # 53016) to protect equip-
ment from weather and other disturbances. Squirrels adjusted
quickly to the equipment; we detected the first squirrel entering
a loop within 20 min. of deploying it. The automated-sensing
system remains on-site and currently records data year-round.
Loops are monitored weekly and reinforced with additional
staples or repaired with electrical tape as needed. On rare
occasions, we moved antennae from previously active burrows
to newly active ones to ensure continuous coverage of most bur-
rows; most changes occurred outside of our summer sampling
periods, such as after a winter rainstorm or juveniles emerged
at the start of the summer.

(d) Behavioural observations at field site
Social observations were conducted from 27 May to 27 July in
two separate years: 2016 and 2017. Whereas the field site experi-
enced a severe drought in 2016, rainfall returned to typical
regional levels in 2017 (http://cdec.water.ca.gov/index.html).
Most juveniles and adults of the year were marked during
these entire periods and, thus, were easily observed during
social observations and detected by the data loggers. We recog-
nized animals aboveground in daylight within open grasslands
by the unique fur marks we gave them. Animals were also
detected belowground by their unique PIT tags at the two focal
burrow complexes with consistently high antennae coverage.

The diurnal lifestyles of these animals make them particu-
larly straightforward to observe aboveground [48,50]. Trained
observers monitored the study colony primarily in the mornings
(0800 to 1200 h) and some afternoons (1200 to 1400 h); most
affiliative exchanges occurred between 0900 and 1100 h. Obser-
vers sat at a distance (�20 m) to avoid influencing behaviour.
Observers monitored multiple areas within the study colony
each observation day of this study; at least two groups of obser-
vers simultaneously collected social data from each of the two
areas being monitored belowground. Thus, these data provided
excellent knowledge of affiliative interactions for animals
observed at, between, or surrounding the two belowground
monitoring stations.

We recorded all occurrences [64] of affiliative behaviours
(socio-positive interactions) including greetings, proximity main-
tenance, social foraging and playing (for details, see ethogram

[48,50]) using 10 � 14 binoculars (Eagle Optics Ranger Extra-
Low Dispersion Middleton, WI). Briefly, greetings involved
two individuals meeting head-on and touching noses, one indi-
vidual rubbing its cheek on that of another squirrel, or one
individual approaching a second head-on and rubbing its nose
near the corner of the receiver’s mouth [48,50]. Proximity main-
tenance occurred when one individual approached a second
and sat in direct body contact or within less than 1 m of the
second individual [50]. Individuals foraged socially when they
consumed seeds, grass or other forage within less than 1 m
[50]. Each unique play bout started with one individual initiating
play slapping, boxing, chasing, mounting, pouncing or wrestling
with a second individual and ended when one of the two
individuals moved apart from the other [50].

(e) Above- and belowground social network parameters
Networks are comprised of individuals (nodes) connected to
each other (by ‘ties’ or ‘edges’). In this study, nodes represented
individual squirrels and ties represented weighted, symmetric
connections between them. We selected colony-year as the unit
of analysis to account for annual changes in colony composition
attributed to births, deaths and dispersal [65]. We therefore con-
structed a total of four separate networks—one belowground
network and one aboveground network for each year.

Ties within a network reflected the proportion of days each
pair, A and B, were detected at the same burrow reader (below-
ground) or exchanged affiliative behaviours (aboveground). We
elected to use the same sampling period (day) for both contexts
to minimize differences in network construction. Day was used
as the sampling period for two reasons. First, although recording
the precise amount of time pairs of semi-fossorial rodents are
simultaneously aboveground is challenging, measures of daily
rates of behaviour offer robust measures of affiliation [65].
Second, because the precise connectivity of burrow entrances
and exits is unknown, this measure captures daily overlap
within a burrow opening regardless of whether pairs shared
the burrow at the same time for a given day. We calculated
simple association indices to measure the daily rates of pair-
wise associations in each context [2,66]. This index was appropri-
ate for our study because all subjects in the current study were
equally likely to be detected in both contexts [2,66].

Belowground associations were calculated as: (the number of
days A and B were detected using the same burrow)/
(the number of days A and/or B were detected at one or more
burrows). Aboveground associations were also calculated as:
(the number of days A and B exchanged affiliative inter-
actions)/(the number of days A and/or B were observed
engaging in at least one affiliative interaction). Because even
weak associations are potentially important for the maintenance
of social structure, we analysed weighted, unfiltered networks
based on all associations [67]. However, an individual had to
be logged (via its PIT tag) at least once and observed engaging
in at least one affiliative interaction aboveground to be included
in the final aboveground and belowground networks for a given
year. This was done to avoid spurious correlations between
empty cells and to ensure that each pair had the opportunity
to associate in both contexts [68].

We constructed each of the four networks using the package
‘igraph’ [69]. For each network, we calculated two different node-
based metrics. First, we calculated the ‘strength’, the weighted
equivalent to degree in binary networks, as the sum of its associ-
ation indices with all colony-mates divided by the number of
other potential actors (minus the focal individual) [70]. This stan-
dardized metric corrects for the number of nodes in the network
to measure the extent to which each individual node directly

associates with all potential actors in the network. Second, we
calculated ‘betweenness centrality’, defined as a count of the
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number of shortest paths through a node. This indirect metric
reflects how important a node is for connecting disparate parts
of the network, offering insights into the roles that key individ-
uals may play in the spread of disease or information
transmission across networks [6,31,32]. Because investigating
the distributions of metrics (e.g. degree distribution for binary
networks) is the preferred method for comparing node-based
metrics between networks [2], we plotted cumulative distri-
butions for metrics derived from above- and belowground
networks to describe their relative properties.

( f ) Statistical analyses
All statistical tests were conducted in R v. 3.4.1 [71]. To account
for the non-independence in our data, we implemented permu-
tation tests when using relational data (dyads within social
networks) to test hypotheses [67,72] and included random effects
in generalized linear mixed effects models (GLMMs) to account
for repeated measures [3].

First, to test the predictions of movement and social inter-
action rules, we implemented multiple regression quadradic
assignment procedures (MRQAPs) to assess the extent to which
belowground network structure (predicted by movement con-
straints) and/or trait similarity (predicted by the social
interaction rule of homophily) predicted aboveground network
structure. This regression framework was superior to the univari-
ate quadratic assignment procedure (QAP) because it allowed us
to simultaneously test for the effects of multiple predictor matrices
on the aboveground affiliative association matrix. For each year,
we constructed a model in which we regressed three predictor
matrices: (i) belowground association matrix, (ii) stage similarity
( juvenile–juvenile ¼ 1, juvenile–adult ¼ 0, adult–adult ¼ 1),
(iii) sex similarity (male–male ¼ 1, female–male ¼ 0, female–
female ¼ 1) on the response matrix: aboveground affiliative
associations. Permutation tests used the ‘double-semi-partialing’
method [73] developed in the mrqap.dsp function from the R
package ‘asnipe’, each with 10 000 permutations [74]. We deemed
P-values of less than 0.05 to be statistically significant.

Second, we tested for the effects of individual characteristics.
To examine the potential for individual consistency in network
position across contexts and years, we implemented consistency
tests designed to compare the ranks of node-based metrics
derived from different networks [51]. We therefore compared
ranked values for a single metric (e.g. strength, betweenness)
for each test [51]. First, to examine the effects of individual
identity across contexts, we conducted a single test for individual
consistency of each node-based metric (strength or betweenness)
between ecological contexts (above- or belowground network)
within a year. Second, we evaluated individual consistency
across time by comparing each node-based metric (strength or
betweenness) within an ecological context (above- or below-
ground network) between the two years of study.

We also tested whether the fixed effects of an individual’s life-
history stage and sex were significantly associated with the
node-based metrics (strength or betweenness) within each
ecological context using randomized network permutations. To
account for the non-independence of relational data, we permuted
the nodes (individuals) of networks (while holding the edges con-
stant) to create a set of 10 000 randomized networks for each year
within each ecological context [72,75]. We then calculated
the node-based metrics based on each of the four sets of permu-
ted data. From the observed data, we constructed separate
models to explain the following predictor variables: (i) strength
belowground, (ii) strength aboveground, (iii) betweenness below-
ground and (iv) betweenness aboveground. That is, we calculated
the estimates (slopes) for the fixed effects of stage and sex on each
context-specific node-based metric using GLMMs in lme4 [76]
with a restricted maximum likelihood method, Gaussian

distributions and the random effects of identity and year for the
observed data. We also extracted 10 000 model estimates from
GLMMs run on the 10 000 permuted values of the fixed effects of
stage or sex on each metric within an ecological context. We
tested the statistical significance of the effects of stage and sex for
each model by comparing the parameter estimates from the
observed data to randomizations of each dependent variable. In
electronic supplementarymaterial, S1, we compared the estimates
from our observed dataset (blue lines) to the distribution of ran-
domly generated estimates and considered those effects falling
outside of the 95% confidence interval (within the areas with red
bars at the tails of each distribution) to be statistically significant.

3. Results
From 27 May to 27 July, we monitored a total of 101 (2016)

and 119 (2017) individuals aboveground during social obser-

vations and 98 (2016) and 89 (2017) individuals

belowground. Aboveground, we recorded a total of 10 975

affiliative social interactions over 297 observation hours

(2016: N ¼ 5662; 2017: N ¼ 5313 affiliative interactions). Of

these, both identities were known for 8754 affiliative inter-

actions (table 1). We also collected 17 726 recordings of

individuals moving in or out of burrows. On average, each

loop detected 2.0+ 0.3 (2016) and 2.3+0.1 (2017) unique

squirrel visitors per day (range: 0 to 16 squirrels per loop

per day). We detected belowground movements for juveniles

(2016: NF ¼ 28, NM ¼ 28; 2017: NF ¼ 22, NM ¼ 15) and adults

(2016: NF ¼ 29, NM ¼ 13; 2017: NF ¼ 35, NM ¼ 17). In 2016

and 2017, only 16% (N ¼ 16) and 18% (N ¼ 16) of these indi-

viduals, respectively, were detected at both monitoring

stations within the same summer; this suggests that a

small proportion of individuals bridged connections in

belowground networks.

Table 1. All occurrences of pair-wise affiliative behaviours aboveground.*

proximity maintenance (N ¼ 5555 events)

a) sitting ,1 m (N ¼ 3373)

b) collective foraging (N ¼ 1727)

c) sitting in body contact (N ¼ 326)

d) following (N ¼ 129)

greetings (N ¼ 1228 events)

a) nose to nose (N ¼ 720)

b) nose to cheek (N ¼ 508)

play (N ¼ 1967 events)

a) play wrestle (N ¼ 952)

b) play pounce (N ¼ 384)

c) play chase (N ¼ 234)

d) play slap (N ¼ 227)

e) play mount (N ¼ 85)

f ) play grab (N ¼ 45)

g) play push (N ¼ 28)

h) play bite (N ¼ 12)

allogrooming (N ¼ 4 events)

*Exchanges involved juveniles (2016: NF ¼ 36, NM ¼ 26; 2017:

NF ¼ 36, NM ¼ 27) and/or adults (2016: NF ¼ 28, NM ¼ 11;

2017: NF ¼ 35, NM ¼ 21).
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(a) Distributions of node-based metrics in two

ecological contexts
Overall, the direct metric of network connections (strength)

was generally higher for nodes within below- (figure 2a,b)

than aboveground networks (figure 2c,d), a pattern reflected

by comparing the cumulative distributions of strength for

each network (figure 3a). In 2016, strength belowground

was roughly twice as high (mean+ s.e.: 0.039+0.004,

range: 0.00 to 0.137) as aboveground (0.020+ 0.002, range:

0.00 to 0.060, N ¼ 60 individuals). In 2017, strength was

roughly four times higher below- (0.063+0.006, range:

Juvenile male

Juvenile female

Adult male

(b) belowground–2017 (d) aboveground–2017

(a) belowground–2016 (c) aboveground–2016

Adult female

Figure 2. Below- and aboveground social networks. (a,b) Belowground networks: blue ties reflect shared daily burrow associations. (c,d) Aboveground networks: red

ties reflect daily exchanges of affiliative behaviours. To enhance the visibility of network features, node positions within networks were placed using the Fruchter-

man–Reingold algorithm (igraph R package [69]). For all networks, tie thickness is proportional to the simple association index (AI). For visualization purposes only,

networks are shown as filtered networks (AIs . 0.08). Individual attributes are reflected by node shape (circle: juveniles; square: adult) and colour (turquoise: male;

green: female). The 2016 network contained 37 juveniles (number of females (NF) ¼ 20, number of males (NM) ¼ 17) and 23 adults (NF ¼ 19, NM ¼ 4) and the

2017 network contained 29 juveniles (NF ¼ 18, NM ¼ 11) and 32 adults: NF ¼ 22, NM ¼ 10). Letters represent abbreviations that correspond to fur marks for each

individual squirrel (capital letters: in networks for both years; lower-case letters: in networks for a single year). (Online version in colour.)
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0.000 to 0.187) than aboveground (0.016+ 0.001, range: 0.000

to 0.047, N ¼ 61 individuals). By contrast, the indirect metric

(betweenness), defined as the number of shortest paths that

pass through an individual, was consistently higher for

aboveground networks (2016: 67+11 paths, range: 0 to 378

paths; 2017: 79+ 15 paths, range: 0 to 517 paths,

figure 2c,d) than for belowground networks (2016: 35+8

paths, range: 0 to 284; 2017: 33+5 paths, range: 0–174

paths, figure 2a,b). The cumulative distributions reflect these

patterns (figure 3b).

(b) Belowground networks, but not homophily, predict

aboveground social networks
For both years, the full models including all three predictor

matrices (belowground associations, stage similarity and sex

similarity) captured a statistically significant amount of vari-

ation contributing to aboveground affiliative networks

(MRQAP: 2016: F3,1766 ¼ 58.37, p, 0.0001; 2017: F3,1825 ¼

55.78, p, 0.0001). Despite their statistical significance and,

thus, statistical support of our predictions, these models

only captured a small portion of the variability of the above-

ground networks (adjusted R2
¼ 0.089 in 2016 and 0.082 in

2017).

As predicted by movement rules, the structure of below-

ground networks (figure 2a,b) was positively correlated with

that of aboveground affiliative networks (MRQAP: R ¼ 0.228

in 2016; R ¼ 0.130 in 2017; p, 0.0001 for both years,

figure 2c,d). That is, pairs that occupied burrows at the

same location on the same days were significantly more

likely to exchange affiliative behaviours aboveground than

were pairs that rarely visited similar burrows. This finding

is consistent with the notion of movement rules because indi-

viduals seeking safety at similar burrow complexes (home

bases) were presumably also most likely to encounter each

other aboveground as they moved towards or away from

these refuges. Beyond these effects, stage similarity nega-

tively predicted aboveground networks such that juvenile–

adult dyads tended to socialize most often aboveground

(figure 2). These effects were statistically significant in 2016

(R ¼ 20.008, p ¼ 0.001) but not in 2017 (R ¼ 20.003, p ¼

0.184). Although consistent with the notion that social inter-

action rules matter, our finding that individuals tended to

associate most often with individuals belonging to a life-

history stage different from their own is in direct contrast

to the prediction of homophily. Sex similarity, however,

failed to predict aboveground networks (2016: R ¼ 20.001,

p¼ 0.807; 2017: R ¼ 20.001, p ¼ 0.836).

(c) Node-based metrics consistent for individuals

between contexts
Within a year, an individual’s strength in its social network

was consistent between above- and belowground ecological

contexts (consistency permutation tests: 2016: N ¼ 60, p ¼

0.001; 2017: N ¼ 61, p, 0.0001). This confirms that individ-

uals highly connected belowground are also the most

socially connected aboveground. Moreover, an individual’s

metric of betweenness within a year was generally consistent

between above- and belowground contexts; betweenness was

significantly consistent for individuals between contexts

during the summer with typical rainfall (2017: N ¼ 61, p ¼

0.031) but not in the summer during a drought year (2016:

N ¼ 60, p ¼ 0.311).

(d) Node-based metrics only consistent between years

belowground
To test for consistency between years, we applied consistency

tests to data for the subset of individuals (N ¼ 19) monitored

in both years. Belowground, an individual’s strength (p ¼

0.033) and betweenness (p ¼ 0.033) were consistent between

years. However, individuals were not statistically consistent

across years in their aboveground strength (p ¼ 0.073) or

betweenness (p ¼ 0.098).

(e) Females important in fostering indirect connectivity

belowground
After accounting for variation attributed to the random

effects of individual identity and year, life-history stage and

sex had limited effects on node-based metrics (see electronic

supplementary material, S1). Life-history stage failed to sig-

nificantly predict either the direct metric of strength or

indirect metric of betweenness above- or belowground (p.

0.05 for all comparisons with null models; for details, see
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electronic supplementary material, S1). We also did not

detect an effect of sex on strength in either context or on

betweenness aboveground (p. 0.05, S1). However, sex had

a statistically significant effect on betweenness belowground

(p, 0.01, S1). That is, on average, roughly five times as

many of the shortest paths between nodes passed through

females (betweenness: 44þ7 paths) as through males (9þ4

paths; figure 2).

4. Discussion

(a) Social selectivity in networks across ecological

contexts
Our study uncovers new linkages between belowground archi-

tecture and the patterns of aboveground sociality for

subterranean mammals, suggesting that social interactions

belowground indeed are correlated with (and likely constrain)

those occurring aboveground. Consistent with movement con-

straints, belowground associations predicted aboveground

affiliative networks, but social interaction rules were also impor-

tant because we found preferential juvenile–adult associations

(regardless of the sexes involved). These relationships persist

despite the inherent challenges of comparing data collected

using different methods. The unexplained variation between

our networks might be attributed to methodological and/or

ecological differences. Individual characteristics also contribu-

ted to social structure. Although the explanatory value of

life-history stage and sex on social structure was generally

low, females had the highest betweenness belowground, foster-

ing more indirect connections than males. Beyond this, social

metrics were generally consistent for individuals over time

(suggesting personalities) and between two major ecological

contexts (suggesting behavioural syndromes) [51,77]. Both of

these final findings contradict the common simplifying assump-

tion of random mixing within populations made by traditional

game theoretical models [31].

(b) Movement rules and social partner choice influence

network structure
Although aboveground networks are relatively open and free

compared to those occurring inside the confines of below-

ground tunnels, our finding of correlated network

structures is consistent with the notion that movements

away from burrows influence aboveground behaviours.

Access to limited refuges is likely a major factor shaping

movements, and thus, patterns of social behaviour, as

occurs in other species of mammals [14,78,79] as well as in

birds [17,80], reptiles [40] and insects [81,82]. Ground squirrel

burrows are limited refuges that offer protection from

weather, safety from predators, and a place for hoarding

food or rearing offspring [50,57,83]. Whereas social partners

may simply interact most often with those they encounter

near shared burrows, individuals may alternatively actively

seek associations with the same partners aboveground inde-

pendent of burrow preferences [84,85]. Distinguishing

between these factors is important because models of social

evolution, regardless of whether behaviours are favoured

by direct or indirect fitness benefits, often require viscosity,

defined as environmental restrictions on movements

[4,86,87]. Empirical data such as ours are important because

game-theoretic models often make opposing predictions, pre-

dicting that spatial constraints may either promote [88,89] or

inhibit [90] the emergence of socio-positive behaviours, both

of which may be shaped by the animal’s built environment

[62,91].

Social interaction rules explained network structure. We

documented preferential direct associations between juveniles

and adults as well as the importance of indirect connectivity

by females in belowground networks. These findings are con-

sistent with the presumed matrilineal structure for this

species [50] and what is known about other mammalian

species living in matrilineal societies [18,92,93]. First, prefer-

ential aboveground connections between juveniles and

adults suggest that parent–offspring bonds likely persist

after weaning; pedigree information is required to confirm

this and is not yet established for our subjects. Second,

juvenile–adult preferential connections are also largely

expected; juveniles often associate with adults to reduce pre-

dation risk [65] and sometimes initiate play with adults

[43,44]. Finally, females likely reside at their natal burrows,

fostering indirect links with other members of the social

group. Kinship explains social network structures in many

mammalian societies (e.g. [3,14,94–96]). Studying its effects

on California ground squirrel networks should prove fruitful

after a pedigree is established.

(c) Individual consistency in network position
Our finding that some individuals consistently occupied key

positions in social networks across time (personalities) and

major ecological contexts (behavioural syndromes) extends

previous studies documenting consistent personality traits

across time, seasons and/or behavioural categories [22,97].

These traits likely have fitness consequences for individuals

[51] and may predict patterns of group-level behaviour [31],

such as mobbing of predators [98] or policing of social con-

flicts [12]. Our results should inform our understanding of

how connectivity by key individuals shapes the transmission

of disease, information and genetic material within animal

populations [51].

Despite our general finding of individual consistency in

network metrics, betweenness was consistent between con-

texts in the summer with typical rainfall (2017), but not in

the summer during a drought year (2016). Several other

mammalian species [54,99,100] vary the strength of their

direct associations in response to rainfall. Future studies

spanning additional years should, therefore, conclusively elu-

cidate whether ecological perturbations associated with

drought disrupted otherwise consistent network positions

in the California ground squirrel.

(d) Implications for understanding flow across dynamic

networks
Our finding that individuals tend to occupy consistent net-

work positions from one ecological context to another has

important implications for understanding transmission net-

works. Within the context of disease, heterogeneity in

contact rates may determine whether a disease dies out or

becomes epidemic [36,101,102]. Parasites may be directly

transmitted from one individual to the next (e.g. via direct

social interactions) or transferred indirectly when potential

hosts visit locations used earlier by infected hosts (e.g. via
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space-use overlap [103]). This may produce time-lagged

interactions [104]. Modelling pathways for parasite (disease)

transmission in the ground squirrel system should prove par-

ticularly useful; these hosts may carry fleas and ticks that

transmit zoonotic diseases (e.g. plague, Lyme disease, tular-

aemia and relapsing fever [50,105]). Flea density varies

among burrows [58] and flea abundance on hosts varies

with microhabitat use by hosts [106]. Study of individual

differences in social personalities should thus offer additional

insights into parasite transmission.

Applications of automated technologies are also revealing

how social information spreads across animal groups [107].

For example, these technologies offer a rare glimpse into

how social innovations spread across foragers [108]. Network

structure also has implications for prey species, fostering the

detection of and cooperative protection against predators

[109]. Because California ground squirrels rely upon multiple

modes of communication to locate food and cope with

intense predation via the production of alarm calls [50],

studies of communication networks may similarly explain

the extent to which acoustic and/or olfactory information

about food sources and predation risk flows across the

social networks of ground squirrels.

(e) Conceptual framework for uncovering animal social

networks
Our research establishes a novel approach for future studies

aiming to understand how interactions in constrained

spaces (that may or may not involve direct contact) and

those occurring in relatively unconstrained spaces (e.g.

aboveground, in the air, or in open aquatic environments)

contribute to social structure. First, we offer a dependable,

inexpensive alternative to heavier and more expensive proxi-

mity collars [47,110,111] and extend previous network

studies that capture activity in other closed spaces, such as

at nests and roosts [85,108,112], by capturing belowground

activity. Second, we establish a conceptual framework for

combining the use of two straightforward methods—direct

social observations and passive data logging—to study net-

works in multiple contexts and across time. Automated

measures should, therefore, complement insights gained

from direct observations. Going forward, integration of

both approaches should offer new insights into social struc-

tures for animals that socialize in easily observable, open

spaces but that also visit relatively hidden architectural struc-

tures at fixed spatial locations for which direct observation is

prohibitive, such as occurs in fishes [113], birds [108,114], bats

[85,95] and other semi-fossorial mammals [63,110]. Compar-

ing networks should prove particularly useful for

understanding how heterogeneities in node connectivity

may affect disease [36,37,115] and information [116,117]

transmission (flow) dynamics across contexts. Further inves-

tigations into the processes producing social structures and

the role of key individuals across multiple habitats or major

situations should, therefore, elucidate the ecological rules

that generate and maintain social structures across animal

societies more broadly.
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VD. 2016 Otospermophilus beecheyi (Rodentia:

Sciuridae). Mamm. Species 48, 91–108. (doi:10.

1093/mspecies/sew010)

51. Wilson ADM, Krause S, Dingemanse NJ, Krause J.

2013 Network position: a key component in the

characterization of social personality types. Behav.

Ecol. Sociobiol. 67, 163–173. (doi:10.1007/s00265-

012-1428-y)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170249

10

http://dx.doi.org/10.1093/beheco/art047
http://dx.doi.org/10.1016/j.anbehav.2015.01.020
http://dx.doi.org/10.1016/j.anbehav.2015.01.020
http://dx.doi.org/10.1038/nature04326
http://dx.doi.org/10.1038/nature04326
http://dx.doi.org/10.1098/rsif.2011.0059
http://dx.doi.org/10.1093/beheco/arw098
http://dx.doi.org/10.1098/rstb.2014.0110
http://dx.doi.org/10.1093/beheco/arp181
http://dx.doi.org/10.1371/journal.pone.0099875
http://dx.doi.org/10.1371/journal.pone.0099875
http://dx.doi.org/10.1098/rspb.2008.0356
http://dx.doi.org/10.1098/rspb.2008.0356
http://dx.doi.org/10.1086/422893
http://dx.doi.org/10.1111/ele.12181
http://dx.doi.org/10.1098/rspb.2008.0744
http://dx.doi.org/10.1016/j.anbehav.2017.11.012
http://dx.doi.org/10.1016/j.anbehav.2017.11.012
http://dx.doi.org/10.1111/ele.12708
http://dx.doi.org/10.1007/s00265-009-0802-x
http://dx.doi.org/10.1007/s00265-009-0802-x
http://dx.doi.org/10.1016/j.tree.2004.04.009
http://dx.doi.org/10.1016/j.tree.2004.04.009
http://dx.doi.org/10.1111/j.1469-185X.2007.00010.x
http://dx.doi.org/10.1111/j.1469-185X.2007.00010.x
http://dx.doi.org/10.1111/brv.12042
http://dx.doi.org/10.1111/brv.12042
http://dx.doi.org/10.1007/s00265-013-1500-2
http://dx.doi.org/10.1007/s00265-013-1500-2
http://dx.doi.org/10.1016/j.anbehav.2007.01.009
http://dx.doi.org/10.1073/pnas.1400850111
http://dx.doi.org/10.1073/pnas.1400850111
http://dx.doi.org/10.1098/rstb.2010.0216
http://dx.doi.org/10.1111/2041-210X.12770
http://dx.doi.org/10.1111/2041-210X.12770
http://dx.doi.org/10.1098/rstb.2014.0107
http://dx.doi.org/10.1098/rstb.2014.0107
http://dx.doi.org/10.1111/brv.12236
http://dx.doi.org/10.1038/srep04472
http://dx.doi.org/10.1098/rsif.2012.0357
http://dx.doi.org/10.1890/110111
http://dx.doi.org/10.1890/110111
http://dx.doi.org/10.1007/s00265-017-2426-x
http://dx.doi.org/10.1016/j.anbehav.2014.07.023
http://dx.doi.org/10.1016/j.anbehav.2014.07.023
http://dx.doi.org/10.1111/2041-210X.12553
http://dx.doi.org/10.1007/s00265-006-0197-x
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1016/j.anbehav.2003.06.024
http://dx.doi.org/10.1098/rspb.2013.0485
http://dx.doi.org/10.1098/rspb.2013.0485
http://dx.doi.org/10.1007/s002650050390
http://dx.doi.org/10.1111/j.1439-0310.2006.01305.x
http://dx.doi.org/10.1111/j.1439-0310.2006.01305.x
http://dx.doi.org/10.1111/ele.12300
http://dx.doi.org/10.1016/0003-3472(77)90085-9
http://dx.doi.org/10.1016/0003-3472(77)90085-9
http://dx.doi.org/10.1111/j.1439-0310.1978.tb01438.x
http://dx.doi.org/10.1111/j.1439-0310.1978.tb01438.x
http://dx.doi.org/10.1093/mspecies/sew010
http://dx.doi.org/10.1093/mspecies/sew010
http://dx.doi.org/10.1007/s00265-012-1428-y
http://dx.doi.org/10.1007/s00265-012-1428-y


52. Hare JF, Murie JO. 2007 ecology, kinship, and

ground squirrel sociality: insights from comparative

analyses. In Rodent societies: an ecological and

evolutionary perspective (eds J Wolff, P Sherman),

pp. 345–355. Chicago, IL: University of Chicago

Press.

53. Silk JB, Alberts SC, Altmann J. 2003 Social bonds of

female baboons enhance infant survival. Science

302, 1231–1234. (doi:10.1126/science.1088580)

54. Holekamp KE, Smith JE, Strelioff CC, Van Horn RC,

Watts HE. 2012 Society, demography and genetic

structure in the spotted hyena. Mol. Ecol. 21, 613–

632. (doi:10.1111/j.1365-294X.2011.05240.x)

55. Grinnell J, Dixon JS. 1918 Natural history of the

ground squirrels of California. Sacramento, CA:

California State Printing Office.

56. Hanson MT, Coss RG. 2001 Age differences in the

response of California ground squirrels (Spermophilus

beecheyi) to conspecific alarm calls. Ethology 107,

259–275. (doi:10.1046/j.1439-0310.2001.00659.x)
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