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We investigate the transfer properties of energy and helicity fluctuations in fully
developed homogeneous and isotropic turbulence by changing the nature of the
nonlinear Navier–Stokes terms. We perform a surgery of all possible interactions,
by keeping only those triads that have sign-definite helicity content. In order to
do this, we apply an exact decomposition of the velocity field in a helical Fourier
basis, as first proposed by Constantin & Majda (Commun. Math. Phys, vol. 115,
1988, p. 435) and exploited in great detail by Waleffe (Phys. Fluids A, vol. 4, 1992,
p. 350), and we evolve the Navier–Stokes dynamics keeping only those velocity
components carrying a well-defined (positive or negative) helicity. The resulting
dynamics preserves translational and rotational symmetries but not mirror invariance.
We give clear evidence that this three-dimensional homogeneous and isotropic chiral
turbulence is characterized by a stationary inverse energy cascade with a spectrum
Eback(k) ∼ k−5/3 and by a direct helicity cascade with a spectrum Eforw(k) ∼ k−7/3. Our
results are important to highlight the dynamics and statistics of those subsets of all
possible Navier–Stokes interactions responsible for reversal events in the energy-flux
properties, and demonstrate that the presence of an inverse energy cascade is not
necessarily connected to a two-dimensionalization of the flow. We further comment on
the possible relevance of such findings to flows of geophysical interest under rotations
and in thin layers. Finally we propose other innovative numerical experiments that can
be achieved by using a similar decimation of degrees of freedom.
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1. Introduction

Inviscid invariants of the NS equations are crucial to determining the direction of
the turbulent energy transfer (Frisch 1995). In two-dimensional turbulence the presence
of two positive definite quadratic quantities, energy and enstrophy, leads to a split
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cascade: energy flows toward large scales and enstrophy to small scales (Kraichnan
1967; Paret & Tabeling 1998; Vorobieff, Rivera & Ecke 1999; Clercx & van Heijst
2009; Boffetta & Musacchio 2010; Boffetta & Ecke 2012; Mininni & Pouquet 2013).
The forward enstrophy cascade leads to a smooth velocity field with highly non-trivial
statistical properties for the vorticity field. The backward energy cascade is close
to equilibrium, with quasi-Gaussian and non-intermittent (i.e. self-similar) statistical
properties. When the two-dimensional flow is forced at different scales, the two
mechanisms are superimposed, as recently showed by Cencini, Muratore-Ginanneschi
& Vulpiani (2011). The fluid equations also possess two inviscid invariants in three
dimensions: energy and helicity (i.e. the scalar product of velocity and vorticity).
The inviscid conservation of helicity was discovered relatively recently; the first
attempts to understand the phenomenology go back to the works of Moffat (1969),
Brissaud et al. (1973) and Kraichnan (1973). Unlike energy, helicity is not positive
definite, and therefore it is not a ‘coercive’ quantity. In principle, this allows a
simultaneous forward transfer of energy and helicity, as confirmed by the results
of two-point closures by Brissaud et al. (1973), Waleffe (1992) and André & Lesieur
(1997) and direct numerical simulations by Chen, Chen & Eyink (2003a), Chen
et al. (2003b) and Mininni & Pouquet (2010). On the other hand, it is known that
forcing mechanisms breaking the mirror symmetry may lead to inverse energy transfer
at low Reynolds numbers (Sulem et al. 1989). Nevertheless, a reversal of the flux
of energy has also been observed at high Reynolds numbers in geophysical flows
subject to Earth rotation, as shown by Smith, Chasnov & Waleffe (1996) and Mininni,
Alexakis & Pouquet (2009), as well as in shallow fluid layers (see e.g. Nastrom,
Gage & Jasperson 1984; Lautenschlager, Eppel & Thacker 1998; Smith & Waleffe
1999; Celani, Musacchio & Vincenzi 2010; Xia et al. 2011, 2008) and in turbulent
flow driven by Faraday waves (Francois et al. 2013). Recently, some hints of an
inverse energy transfer have been found by Dubief, Terrapon & Soria (2013) in a
direct numerical simulation of a three-dimensional channel flow seeded with polymers.
Further, quantum fluids in three dimensions may lead to an inverse transfer due
to vortex reconnection (Baggaley, Barenghi & Sergeev 2012). In rotating turbulence,
energy flux is reversed only if the forcing is chiral, injecting a non-vanishing helicity
in the system, while a perfect two-dimensional flow has vanishing pointwise helicity,
since vorticity is always orthogonal to velocity. In both cases, energy reversal is
accompanied by strong anisotropic effects and by a substantial two-dimensionalization
of the flow, induced either by the rotation or by the effects of confinement. For
rotating turbulence in the inverse energy cascade regime, helicity is observed to flow
toward small scales: a split-cascade scenario as for the energy–enstrophy case of
two-dimensional turbulence also develops in three dimensions. Similarly, the first
observation of split local and non-local cascades was found in the experimental
investigations of von Kármán flow at different Reynolds numbers (Herbert et al. 2012).
In this work, the authors show that the energy spectrum in the direct helicity cascade
changes from a slope −2 to a slope −7/3 at different Reynolds numbers. This is
explained as the differing influence of local and non-local triads in the multiscale
dynamics. Later in the paper we will show that for our helical Navier–Stokes
equations, the spectrum is the one characterized by local interactions. The role played
by helicity in the energy transfer mechanism of ideal three-dimensional isotropic flows
has attracted broad scientific interest; see e.g. Chen et al. (2003a,b) and references
therein. Shell models have been developed to study energy and helicity transfer at
high Reynolds numbers in detail (Benzi et al. 1996; Ditlevsen 1997; Biferale 2003).
Furthermore, there has been speculation concerning the existence of intermittent bursts
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in the energy cascade induced by a ‘local’ helicity blocking mechanism (Biferale
2003). Helicity is known to play a key role in many applied and fundamental
turbulent flows with boundaries as shown by Pelz et al. (1985) and Pelz, Shtilman &
Tsinober (1986), and in conducting flows (Brandenburg 2008). Despite these important
contributions, the phenomenology of helicity remains ‘mysterious’, as summarized in
the conclusion of a state-of-the-art numerical study by Chen et al. (2003a).

In this paper we propose using an exact decomposition of the Navier–Stokes (NS)
equations on a helical Fourier basis proposed originally by Constantin & Majda
(1988) (see also Waleffe 1992), in order to highlight some basic properties of helicity
common to all turbulent flows. Following Waleffe (1992) we will show that the set of
all triadic interactions in NS equations can be divided into four independent classes,
as a function of the helical contents of each of the three interacting modes (see below
for details). Our idea is to study the dynamics of NS equations by preserving only
some of these classes, in order to disentangle the energy transfer as a function of the
helicity properties of the interacting modes. Such experiments can be made only on
computer, using numerics in its most potentially peculiar way, asking questions about
the physics of NS by dividing the problem into subproblems, which cannot be done
in the laboratory because degrees of freedom are always all entangled. Nevertheless,
as stated in § 1, there exist experimental realizations where the flow is strongly helical
and where a split energy–helicity cascade scenario develops. It would be extremely
interesting to perform a systematic analysis of the triadic interactions for such cases, in
order to establish the relative importance of different classes of triads.

In Biferale, Musacchio & Toschi (2012) a striking outcome has been obtained
following one of the possible decimation strategies. By preserving only the class where
all modes bring helicity with the same sign, the energy transfer mechanism of the
resulting NS evolution is inverted with an inverse energy cascade spectrum that scales
as Eback(k) ∼ ǫ2/3k−5/3, even in fully homogeneous and isotropic systems. This result
showed that all flows in nature possess nonlinear degrees of freedom ready to transfer
energy backwards, without the need to be close to a two-dimensional geometry or to
be strongly anisotropic, as previously believed. Simultaneously, helicity is transferred
forwards, so we are in the presence of a split-cascade scenario, as observed for
flows under rotations with non-vanishing helical forcing (Mininni et al. 2009). In the
presence of a direct helicity cascade, the predicted spectrum at high wavenumbers
scales as Eforw(k) ∼ h2/3k−7/3, where h is the helicity flux (see Brissaud et al. 1973),
leading to velocity fluctuations in real space with increments δrv ∼ h1/3r2/3, unlike the
typical increment δrv ∼ ǫ1/3r1/3 expected for the energy cascade scenario. For such a
case, energy dissipation should not display any anomaly, reaching a vanishing value
in the limit of infinite Reynolds numbers (Eyink & Sreenivasan 2006). As a result,
one can prove existence and uniqueness of weak solutions for these decimated NS
dynamics (Biferale & Titi 2013). The latter is the first case where this notoriously
difficult problem has been solved for fully homogeneous and isotropic configurations
in three dimensions.

In this paper we extend the study presented in Biferale et al. (2012) by investigating
the statistical properties of the forward helicity cascade regime, i.e. the dynamics of
the decimated NS (dNS) equations when forcing is restricted to low wavenumbers.
Our dNS equations allow, for the first time, isolation of a forward helicity transfer
without any contamination from the energy flux. Moreover, we also demonstrate the
existence of two exact results generalizing the 4/5 law for the energy flux (Frisch
1995) and the 2/15 law for the helicity flux (Chkhetiani 1996), valid for the original
NS case. Finally, the possible presence of intermittent corrections in the forward
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helicity cascade regime will be discussed. Let us emphasize that our numerical strategy
is much more flexible and can in principle be applied to the study of different
subsets of NS triads, dissecting the nonlinear terms following the dynamics in different
submanifolds.

The paper is organized as follows. In § 2 we briefly summarize the exact helical
Fourier decomposition of the Navier–Stokes dynamics proposed by Constantin &
Majda (1988) and Waleffe (1992), and we discuss the four possible classes of triads
which contribute to reconstruction of the whole nonlinear term. In § 3 we summarize
some of the results obtained by Biferale et al. (2012) by a direct numerical simulation
of dNS equations preserving only one class of interactions, namely that one with
a well-defined sign of helicity, leading to the split energy–helicity cascades. In this
section we present results from numerical investigations where the forcing is at small
scales, to focus on the inverse energy cascade regime. In § 4 we present the main
result of this paper, with novel numerical results obtained on the same subsystem
but with forcing at large scales, to focus on the direct helicity cascade regime. In
§ 5 we summarize all results, and we discuss further possible applications of our
numerical methodology. In the Appendix, we present the analytical calculation needed
to establish the new form of the 4/5 and 2/15 laws for the decimated NS system.

2. Helical decomposition of Navier–Stokes dynamics

The starting point of our analysis is the well-known helical Fourier decomposition
of the velocity field v(x), expanded in Fourier components, u(k), proposed by
Constantin & Majda (1988) and Waleffe (1992). Being divergence-free, k · u(k) = 0,
each velocity component in Fourier space has only two degrees of freedom. The
idea is to define the two independent degrees of freedom by a projection onto two
orthonormal helical waves with a definite sign of helicity. To do that, we define

u(k) = u+(k)h+(k) + u−(k)h−(k), (2.1)

where h± are the eigenvectors of the curl operator ik × h± = ±kh±. In particular, one

can always choose h± = ν̂ × k̂ ± iν̂, where ν̂ is an arbitrary unit vector orthogonal
to k which satisfies the relation ν̂(k) = −ν̂(−k), necessary to ensure the reality of
the velocity field (Waleffe 1992). Such a requirement is satisfied, for example, by
the choice ν̂ = z × k/‖z × k‖, with z an arbitrary vector. In terms of this exact
decomposition of each Fourier mode, the energy and the helicity,

E =

∫

d3x|v(x)|2, H =

∫

d3x v ·w, (2.2)

where w is the vorticity, are given by the following expression:

E =
∑

k

|u+(k)|2 + |u−(k)|2,

H =
∑

k

k(|u+(k)|2 − |u−(k)|2).











(2.3)

Note that the Craya decomposition is made of two independent eigenvectors with zero
helicity and it is connected to the helical decomposition via a linear transformation
(Waleffe 1992). Similarly, the nonlinear term of the NS equations can be exactly
decomposed into four independent classes of triadic interactions, determined by the
helical content of the complex amplitudes, usk(k) with sk = ±: see Waleffe (1992) and
figure 1. Among three generic interacting modes usk(k), usp(p), usq(q), we can identify
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I III

IVII

FIGURE 1. (Colour online) Helical decomposition. The triadic interaction of the NS
equations are decomposed into four classes, depending on the relative helicity signs. In
Waleffe (1992) a simple dynamical argument is given supporting the fact that triads of
classes III and IV mainly transfer energy toward small scales (high wavenumbers), i.e. they
have the usual direct cascade, whereas triads of class I enjoy an inverse energy cascade and
class II is mixed. In the figure this is summarized by dashed arrows (red online) denoting a
backward energy transfer and by solid arrows (blue online, arrow thickness is proportional
to the energy transfer intensity) for forward energy transfer. In Biferale et al. (2012) a
direct numerical integration at high resolution of the NS equations, decimated so as to keep
only triads of class I, showed that a stationary turbulent inverse energy cascade is indeed
established.

eight different helical combinations (sk = ±, sp = ±, sq = ±). Of these, only four are
independent because of the symmetry that allows us to change all signs of helicity
simultaneously. The Navier–Stokes equations in the helical Fourier basis are

(∂t + νk2)usk(k) = −
1

4

∑

k+p+q=0

∑

sp,sq

(spp − sqq)[hsp × hsq ·hsk ]usp(p)usq(q), (2.4)

where · stands for complex conjugate.
The core of the NS dynamics is of course in the nonlinear quadratic terms, coupling

all triads. From the above expression one may extract the nonlinear dynamical
evolution of each single interacting triad at three generic wavenumbers, k, p, q:

usk(k) = g(spp − sqq)usp(p)usq(q),

usp(p) = g(sqq − skk)u
sq(q)usk(k),

usq(q) = g(skk − spp)usk(k)usp(p),











(2.5)

where g = −1/4[hsp ×hsq ·hsk ] is the prefactor. It is important to note that the nonlinear
dynamics preserves both energy and helicity triad by triad, i.e.

∂t(|u
sp |2 + |usq |2 + |usk |2) = ∂t(spp|usp |2 + sqq|usq |2 + skk|u

sk |2) = 0. (2.6)

From a generic study of the unstable manifolds of the above nonlinear system, Waleffe
(1992) showed that among the four independent helical Fourier classes of interactions
there is one class that tends to transfer energy backwards (class I in figure 1), there
are two classes that have mainly forward transfer (classes III and IV), and a fourth
class with mixed properties (class II). Class I will be the main object of this study.
It is characterized by having the same sign of helicity for all three wavenumbers in
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each triad, i.e. helicity becomes sign-definite. This is the subclass of all possible NS
interactions suspected for those events of energy reversal present in all flows in nature.
In order to highlight the physical, statistical and topological properties of such a class
of degrees of freedom we need to propose a way to study a decimated version of the
Navier–Stokes equations, projecting the dynamics onto a generic subset of all possible
triads.

In order to do this, let us now consider the dynamics of an incompressible flow
∇ · v = 0, which is determined by a Navier–Stokes equation in which all interactions
between modes have been switched off except for those with a well-defined sign of
helicity, e.g. positive (sk = +, sp = +, sq = +). We define the (Galerkin) projector on
positive/negative helicity states as

P
±
ij (k) ≡

h±
i (k)h±

j (k)

h±(k) ·h±(k)
. (2.7)

The action of this projector on a field in real space must be interpreted via its Fourier
decomposition. To project any field into its positive helicity component, say, we define

v+
j (x) ≡ P+

jmvm(x) ≡
∑

k

ei k·x
P

+
jm(k)um(k). (2.8)

We can then define the decimated NS equations with triads only of class I as

∂tv
+
i = −P+

im∂j(v
+
j v+

m ) + ν1v+
i + f +

i , (2.9)

where ν is the viscosity and f + is the external forcing projected onto its positive-chiral
component. Let us note that pressure disappears, since each of the two components
of (2.1) is already incompressible, as is also evident from (2.4). Let us note also that
the projection of the nonlinear NS terms onto a definite sign of helicity introduces
non-local interaction in real space. It is easy to realize that if the initial velocity
configuration is chosen with only positive helicity components, v−(·, t = 0) = 0, the
dynamical evolution of (2.9) preserves this property for all times.

For such dynamics, since u−(k) = 0 for all k, we have that helicity also becomes
positive definite, as one can easily verify from (2.3). As a result, the two inviscid
invariants cannot be transferred onto the same direction and we must observe a split
energy–helicity transfer. In any case, let us stress that helicity becomes sign (positive)
definite only when averaged on the whole system: in other words the local helicity
field may still have some small regions where velocity and vorticity are not positively
correlated (see also figure 3). This fact is also shown in figure 4, where we plot the
probability density function of the pointwise helicity in the direct helicity cascade
regime. Since helicity is more peaked at high wavenumbers, it is natural to suppose,
following the equilibrium ansatz of Kraichnan (1967), that the energy flux changes
sign, and the energy flows toward large scales while helicity is transferred toward
small scales.

3. Inverse energy cascade

In Biferale et al. (2012) we have explored the dynamics of (2.9) by forcing at
small scales, focusing on the inverse cascade regime. In so doing we have been able
to find a clean 5/3 inverse energy spectrum (see figure 5), for both unstationary and
stationary statistics. In the latter case, a suitable sink of energy at small wavenumbers
was introduced in order to prevent an accumulation of fluctuations in the infrared
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range (see the caption of figure 5 for more details on the DNS). Regarding the scaling
properties in real space, we show in the Appendix that it is possible to generalize
the exact relation known as the 4/5 law (Frisch 1995) for the third-order correlation
function of the original NS case also for the dNS equation (2.9). In the dNS case, the
third-order correlation function that satisfies an exact scaling relation in the limit of
infinite extension of the (inverse) energy cascade is given by

Cj(r) = −[〈v+
i (0)Fij(r)〉 − 〈v+

i (r)Fij(0)〉], (3.1)

where Fij = P+
im(v+

j v+
m ). Indeed, in the presence of a large-scale mechanism that

removes the energy accumulation, one gets a stationary regime where the following
exact relation holds (see (A 17) in the Appendix):

Cj(r) = 1

3
ǫrj, (3.2)

where ǫ is the mean flux of energy injected by the external small-scale forcing. In
figure 6(a) we show a confirmation of the previous relation, as it is verified in our
direct numerical simulation. Notice that the small oscillations seen in the inertial range
are due to the change of sign observed around the scale where the external forcing is
acting, r ∼ 10η, and they are typical of all inverse cascade regimes. Let us also notice
that the relation (3.1) recovers the well-known 4/5 law if one restores the complete
NS dynamics, i.e. removing the helicity projector, P+

im = δim. The inverse cascade
which arises from (2.9) is not intermittent. The probability distribution functions
(p.d.f.s) of the longitudinal velocity increments δrv

+ = [v+(x+r)−v+(x)]·r̂ at distance
r within the inertial range are self-similar and almost Gaussian (see figure 6b). The
scaling of the second- and the fourth-order moments of velocity increments,

S2(r) = 〈(δrv+)2〉, S4(r) = 〈(δrv
+)

4
〉, (3.3)

follow the dimensional scaling Sp(r) ∼ rp/3: see Biferale et al. (2012). This is a
peculiarity of all inverse cascades observed so far (see e.g. Boffetta & Ecke 2012
for the case of two-dimensional NS), i.e. whenever the cascade proceeds from faster
to slower degrees of freedom, as already observed in dynamical models by Benzi,
Biferale & Sbragaglia (2005).

4. Direct helicity cascade

The simultaneous conservation of energy and helicity, which is responsible for the
reversal of the energy cascade, must lead to the development of a direct helicity
cascade at scales smaller than the correlation scale of the forcing.

In order to study the range of scales where the physics is dominated by the
direct helicity cascade, it is necessary to make a different set of simulations in
which the flow is forced at small wavenumbers. The new set of simulations has
been performed with a fully dealiased, pseudospectral code at resolution 5123 on a
triply periodic cubic domain of size L = 2π. The flow is sustained by a random
Gaussian forcing, with 〈fi(k, t)fj(q, t′)〉 = F(k)δ(k − q)δ(t − t′)Qij(k), where Qij(k) is a
projector ensuring incompressibility and F(k) has support only in the low-wavenumber
range |k| ∈ [1 : 3]. In the absence of a large-scale dissipative mechanism, the inverse
cascade would accumulate the kinetic energy in the lowest available mode, leading
to the formation of a condensed state (Xia et al. 2011). In order to reduce this
phenomenon we added hypo-viscosity at large scales ∝ 1−1v. In such a case, the total
kinetic energy becomes stationary, as shown in figure 7, and it is equally distributed
among the three velocity components, showing that the flow is statistically isotropic.
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FIGURE 2. (Colour online) Two-dimensional snapshot of the local helicity field v(x) · w(x)
for three different simulations: (a) decimated Navier–Stokes with small-scale forcing (inverse
energy cascade regime); (b) decimated Navier–Stokes with large-scale forcing (direct helicity
cascade regime); (c) original undecimated Navier–Stokes with homogeneous, isotropic and
parity-invariant forcing. Note that to better highlight the asymmetry between positive and
negative helicity values we plot only positive values of helicity (white spots correspond to
negative values).
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FIGURE 3. (Colour online) The same as figure 2 but for the total vorticity amplitude
w(x) ·w(x).

This allows us to study scaling properties without having to deal with anisotropic

secondary contributions, in contrast to what happens for rotating turbulence (Biferale

& Procaccia 2005; Mininni et al. 2009). Let us first make a general phenomenological

comment. As one can see in figures 2–3, the spatial fluctuations of helicity and

vorticity are very different depending on whether one performs numerical experiments

with small-scale or large-scale forcing, and they are also very different from the

typical realizations observed in a fully homogeneous, isotropic and parity-invariant

undecimated Navier–Stokes system. For instance, figure 2 clearly shows the formation

of coherent large-scale helical structures for the case of large-scale forcing in positive

definite Navier–Stokes (figure 2b), which are almost absent in the inverse energy

cascade regimes and completely absent in the classical NS parity-invariant case,

where spatial correlations are weak and perfect symmetry between positive and

negative helicity values is observed. A different scenario develops when comparing

the amplitude of the vorticity field (figure 3). Now we observe that the formation

of coherent structures is present only in figure 3(a), corresponding to the usual
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FIGURE 4. Probability density function of the pointwise helicity, w(x) ·v(x), in the real space
for the decimated Navier–Stokes case with helicity positive definite in Fourier space. Note the
existence of localized events in real space with negative values.
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FIGURE 5. Results from a DNS of the dNS equation (2.9) at 5123 collocation points using a
fully dealiased pseudospectral method. (a) Spectrum obtained from a non-stationary evolution
(no sink of energy at large scales), starting with energy at t = 0 only at high wavenumbers
(dashed line). Forcing is random and delta-correlated in time acting on kf ∈ [28 : 35]. (b) Two
spectra obtained with forcing acting in two different windows, kf ∈ [28 : 35] and kf ∈ [42 : 50],
with large-scale removal of energy to obtain stationary statistics at two effective Reynolds
numbers. The energy removal at large scales is obtained adding an inverse Laplacian,
∝ k−βu+(k), in the evolution of the k Fourier velocity component.

homogeneous and isotropic parity-invariant flows, whereas when helicity dominates,
the dynamic structures are less coherent and eventually present only on a much larger
scale (figure 3b), as it must be in the helical decimated NS because of the absence
of a strong vortex-stretching mechanism. In figure 8 we show the energy spectrum
obtained from (2.9) by initializing the flow with energy only at low wavenumbers.
The development of a direct cascade with a spectrum E(k) ∼ k−7/3 is unambiguous.
Evidence of direct helicity cascades has already been reported in fluid under rotation
and with a helical input at the forcing scale (Mininni 2011). In that case, the presence
of strong anisotropy and the limitations in the scale resolution did not allow to go
beyond a qualitative statement. Similarly, a direct helicity cascade with a spectrum
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scale η. The straight line corresponds to the prediction (3.2). (b) Probability density function
for velocity increments normalized with their standard deviation, σr, for three different r/η
values inside the inertial range. The solid line is the Gaussian p.d.f.
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FIGURE 7. The evolution of the three urms components show that in the steady state the flow
is isotropic. The inset shows the time evolution of the total helicity (solid line) and the helicity
dissipation (dashed line). Note the small delay between the peaks of the two quantities typical
of all forward cascade regimes.

slope changing between −2 and −7/3, depending on the Reynolds number, has been
observed in an experimental von Kármán flow by Herbert et al. (2012), the two limits
being connected to the cases of non-local or local cascades.

In figure 8(b) we show the stationary spectrum obtained in our simulation
compensated with the slopes −7/3 and −2. The first is in perfect agreement with our
data, indicating that the main helicity transfer occurs via local interactions in Fourier
space. In contrast, the latter is not consistent with our results. To our knowledge this is
the first time that a clear −7/3 spectrum due to a helicity cascade has been observed
in turbulence.
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In figure 9 we show the stationary helicity flux in Fourier space, defined as
ΠH(k) ≡ (d/dt)

∫ ∞

k
H(p) dp, where the time derivative is computed by taking into

account only the nonlinear terms of (2.9). The plateau at a positive value for
wavenumbers in the inertial range is a clear indication of the helicity transfer toward
small scales.

The presence of a constant non-zero flux of helicity allows us to derive a second
exact relation for homogeneous, isotropic, non-parity-invariant turbulence. In particular,
assuming stationarity, it is possible to show that the tensor

Hjl(r) = ǫijk[〈F
′
klvi〉 − 〈v′

kFil〉] (4.1)

has the following expression (see the Appendix):

Hjl(r) = (a + br2)δjl + cr2r̂jr̂l, (4.2)
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with the constraint 6b + 12c = h, where h is the helicity input. In figure 10 we show
H11 and H22 for the case r̂ = (1, 0, 0), in which the tensor Hjl(r) is diagonal. Let
us notice that, given the isotropy of the flow, the direction of r̂ is immaterial and
H22 = H33. In each case, the r2 behaviour in the scaling range is observed. An estimate
of the coefficients a, b from H22 allows us to obtain a prediction for H11 without free
parameters, which is in close agreement with the data.

4.1. Small-scale statistics

Unlike inverse cascades, direct turbulent cascades are often observed to break self-
similarity and are characterized by anomalous scaling laws accompanied by strong
intermittent small-scale fluctuations. Here, the quantity which is transferred toward
small scales is the helicity, and not energy. The resulting velocity field is much
smoother than in the usual case of a direct energy cascade. Indeed, the energy
spectrum E(k) ∼ k−7/3 observed in our numerics is consistent with the dimensional
scaling in real space for velocity increments in the inertial range, i.e.

δrv ∼ h1/3r2/3, (4.3)

where h denotes the intensity of the helicity flux. In order to study whether the
forward helicity cascade breaks the self-similar scaling (4.3) we need to measure
different moments of velocity increments (structure functions), as already done in the
inverse energy cascade regime. Unfortunately, a roughness exponent ∼2/3 is very
close to the differentiable value ∼1, which is also the limit where non-local effects
start to play a key role between Fourier modes. In such a situation, we expect that
the scaling in real space can be strongly contaminated by the accumulation of energy
at small wavenumbers, due to the inverse energy cascade. In spite of the use of a
large-scale dissipation to reduce this phenomenon, such accumulation is clearly visible
in the spectrum obtained in our simulation. Indeed the structure functions of order
p = 2, 4, 6 display a strong contamination at all scales due to the infrared part of the
spectrum, and do not match the dimensional scaling (see figure 11). Let us note that
by performing an ad hoc filtering of fluctuations in the low-wavenumber regimes one
may strongly reduce the importance of the large-scale energy accumulation, obtaining
a scaling closer to the 2/3 exponent for second-order structure functions (not shown).
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In figure 11 we also show the p.d.f.s of longitudinal velocity increments rescaled to
have unit variance for different separations in the inertial and viscous range. It is
evident that there is not a perfect rescaling. At large separations the p.d.f.s are close to
Gaussian, but their tails become wider and wider by decreasing the separation r. This
is a clear qualitative indication that the forward helicity cascade is intermittent. In the
inset of the same figure we also show the behaviour of the kurtosis,

K(r) =
S4(r)

(S2(r))
2
, (4.4)

which provides a quantitative indicator of deviations from Gaussianity (for a Gaussian
distribution we have K(r) = 3). Again, the growth of K(r) by decreasing the scale r

is a quantitative measure of intermittency. More numerical simulations are needed, in
any case, to make a firm assessment of the universality of such anomalous fluctuations,
due to the presence of the huge energy accumulations at low wavenumbers shown
by the spectrum. Such a bump may well be so intense as to contaminate the inertial
range, leading to spurious (i.e. Reynolds-dependent) intermittent corrections. Other
analysing tools which have proved to be optimal to reduce non-local effects, such as
the Hilbert–Huang transform (Huang & Shen 2005), may also help to better clarify
this point. If intermittency in the helical cascade is confirmed, it will be important
to study it in a more quantitative way in order to understand similarities to and
differences from the corresponding phenomenon observed for the whole NS dynamics
with all triads included and in the presence of rotation (Mininni et al. 2009). This may
shed some light on the nature of anomalous scaling in turbulence and its dependence
on the physical properties of the nonlinear degrees of freedom.

5. Conclusions

We have investigated the transfer properties of the energy and helicity fluctuations
in fully developed homogeneous and isotropic turbulence where the nature of the
nonlinear terms of the Navier–Stokes equations have been modified ad hoc. This
careful surgery of the nonlinear terms allows us to retain, among all possible triadic
interactions, only those that preserve the sign of the helicity. The theoretical procedure
is demonstrated on a set of decimated NS equations, that are numerically solved
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by means of a projection on the helical Fourier basis, first proposed by Waleffe

(1992), and by a pseudospectral solver. We demonstrate that the resulting dynamics

preserves homogeneity and isotropy, and we give clear evidence of the development

of a stationary inverse energy cascade and of a direct helicity cascade. Our findings

clearly indicate that among all possible interactions, in three-dimensional turbulence

there is always a subset of the triadic coupling that naturally produces an inverse

energy cascade. Our findings might also help to rationalize the emergence and

transition between two- and three-dimensional turbulence phenomenology in flows

where rotation and/or geometrical confinement enforces constraints on the helicity. In

particular, it is worth noting that Xia et al. (2011) have shown that the presence of a

mean rotating flow can enhance the inverse energy cascade in fluid layers. This result

seems to suggest that mean flows can play a selective role in triadic interactions. Many

other possible studies can be performed following this route. For example, one natural

interesting development consists in performing the opposite surgery, removing only

those triads with the same helicity components. In the latter case, a direct energy

cascade is thought to develop, but with unknown statistical properties. Whatever

the result, i.e. whether the small-scale fluctuations are the same as or different to

the original undecimated NS case, it might be of key importance to unravel the

universal properties of three-dimensional Navier–Stokes turbulent flows. The result of

novel numerical simulation pertaining to this last case will be reported elsewhere.

Let us also note that very similar decompositions in (magnetic) helical waves can

be performed for conducting flows in the Coulomb gauge, i.e. with a divergence-

free magnetic potential (Lessiness, Plunian & Carati 2009). In such a case too, one

may hope to learn about the entangled dynamics of the three inviscid invariants,

total energy, magnetic helicity and velocity–magnetic cross-correlation, by performing

suitable surgeries in subspaces.

Finally, we would like to stress that other decimation strategies might offer

alternative potential insight into the phenomenology of turbulence. For example, for

approaches based on Galerkin projections, we cite the idea of keeping modes in

Fourier space corresponding to wavenumbers logarithmically equispaced (Grossmann

et al. 1996), or on a Fractal set (Frisch et al. 2012). Similarly, Laval, Dubrulle &

Nazarenko (2001) proposed multiscale triad pruning, in order to distinguish the role

played by local and non-local Fourier interactions in the growth of intermittency.
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Appendix

A.1. Von Kármán–Howarth equation for decimated NS equations in the inverse energy
cascade regime

Let us start with the dNS equations written as in (2.9):

∂tv
+
i = Pim∂j(v

+
m v+

j ) + ν1v+
i + f +

i , (A 1)

where the pressure disappears because the projector projects onto a zero-divergence

field, P
+
jm(k)km = 0 for all km.
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Notice that projection and the derivative commute. Indeed,

∂jv
+
m (x)v+

j (x) =
∑

q

iqj

[

∑

p+k=q

u+
m(p)u+

j (k)

]

exp(i q · x) (A 2)

and

P+
im[∂jv

+
m (x)v+

j (x)] =
∑

q

iqjP
+
mj(q)

[

∑

p+k=q

u+
m(p)u+

j (k)

]

exp(i q · x). (A 3)

Similarly we have

∂jP
+
im(∂jv

+
m (x)v+

j (x)) = ∂j

∑

q

P
+
mj(q)

[

∑

p+k=q

u+
m(p)u+

j (k)

]

exp(i q · x) (A 4)

=
∑

q

iqjP
+
mj(q)

[

∑

p+k=q

u+
m(p)u+

j (k)

]

exp(i q · x). (A 5)

So, introducing Fij = P+
im(v+

m v+
j ), we can write

∂tv
+
i = −∂jP

+
im(v+

m v+
j ) = −∂jFij. (A 6)

Let us continue and look at the nonlinear terms first, following the notation of Frisch
(1995). We want to control the evolution of the two-point correlation functions 〈v′

ivi〉,
where we use v to denote the fields in x and v′ in x′. Moreover, we write r = x′ − x.
Of course, we have for homogeneity ∂ri

= ∂ ′
i = −∂i.

For simplicity of notation, let us write v+
i = vi, so that

∂t〈viv
′
l〉 = −〈vi∂

′
j F

′
lj〉 − 〈v′

l∂jFij〉. (A 7)

Using homogeneity, (A 7) can be written as

∂t〈viv
′
l〉 = −∂rj

[〈viF
′
lj〉 − 〈v′

lFij〉]. (A 8)

The third-order tensors 〈viF
′
lj〉 and 〈v′

lFij〉 are no longer symmetric for the indexes lj or
ij. If we write

bijm(r) = 〈viF
′
jm〉, (A 9)

then the general expression (assuming homogeneity and isotropy but not parity
invariance) is

bijm(r) = A(r)δijr̂m + B(r)δimr̂j + C(r)δjmr̂i + D(r)r̂ir̂jr̂m (A 10)

+ E(r)ǫikmr̂kr̂j + F(r)ǫikmjr̂kr̂m + G(r)ǫjkmr̂kr̂i + M(r)ǫijm. (A 11)

The above expression has eight unknowns and incompressibility will add only three
constraints. So the general third-order correlation function without symmetries on the
indexes is not closed in terms of only one function (in contrast to what happens when
it has two indexes that are symmetric, i.e. for the usual NS equations). Nevertheless,
we can derive a sort of 4/5 law when we look at the trace of the two-point correlation
function (i.e. the equation for the energy); see also Falkovich, Fouxon & Oz (2010).
Let us also put back forcing and viscosity:

∂t〈viv
′
i〉 = −∂rj

[〈viF
′
ij〉 − 〈v′

iFij〉] + 〈fiv
′
i〉 + 〈f ′

i vi〉 + 2ν∂rj,rj
〈viv

′
i〉. (A 12)
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To derive the equivalent for the 4/5 law as for non-decimated NS in two or three
dimensions we need to add some input: we assume either a direct energy cascade or
an inverse one. We will work in the latter case, looking at scales larger than the typical
scale of the forcing. Suppose we have an external forcing with a typical correlation on
the scale lf , and we consider the behaviour of (A 12) for r = |x′ − x| ≫ lf . Then

〈fiv
′
i〉 + 〈f ′

i vi〉 ∼ f0 exp(−|x′ − x|/lf ) ∼ 0, r ≫ lf . (A 13)

Further, conservation of energy implies

∂t(vi)
2 = 2〈vifi〉 = ǫ, (A 14)

where the viscous term is negligible in the inverse energy cascade regime. Going back
to (A 12), we see that for |x − x′| ≫ lf , again neglecting the viscous contribution, we
obtain

∂rj
Cj(r) = ǫ, (A 15)

where Cj(r) = −[〈viF
′
ij〉 − 〈v′

iFij〉]. Here we have taken the leading term ∂t〈v
′v〉 ∼

∂t〈v
2〉 = ǫ, which is correct once the velocity field develops an inverse energy cascade

with a power law slope ∼r1/3.
If it is not parity-invariant, the mean value of a vector can only be written as

Cj(r) = A(r)r̂j. (A 16)

The only solution to (A 15) is again

Cj(r) = 1

3
ǫrj, (A 17)

i.e. we have the equivalent of the 4/5 law for the third-order quantity:

[〈viF
′
ij〉 − 〈v′

iFij〉] = 1

3
ǫrj. (A 18)

A similar result would have been obtained adding a large-scale friction term in (A 12)
in order to get a stationary inverse cascade, exactly like the inverse cascade in two
dimensions.

A.2. Von Kármán–Howarth equation for decimated NS equations in the direct helicity
cascade regime

For the scaling of third-order quantities connected to the presence of a net helicity
flux, we need to look at the time evolution of second-order correlation functions also
involving the vorticity (Chkhetiani 1996; Biferale, Pierotti & Toschi 1998). Starting
from the dNS (A 6), where we write for simplicity only the inertial terms,

∂tvi = −∂jPim(vmvj) = −∂jFij, (A 19)

we have for vorticity

∂twi = −ǫijk∂j∂lFkl. (A 20)

So for the two-point correlation

∂t〈viw
′
i〉 = −∂rj

∂rl
ǫijk[〈F

′
klvi〉 − 〈v′

kFil〉] + h, (A 21)

where h is the input of helicity from the forcing. Now, the tensor

cilk(r) = 〈F′
klvi〉 − 〈v′

kFil〉 (A 22)
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also has the most general expression as in (A 11). To obtain a close exact scaling
relation, it is sufficient to make a contraction with the fully anti-symmetric tensor, to
obtain

Hjl(r) = ǫijk[〈F
′
klvi〉 − 〈v′

kFil〉], (A 23)

and to notice that the von Kármán–Howarth equation (A 21), assuming stationarity, is

∂rj
∂rl

Hjl = h. (A 24)

Moreover, because H is contracted with a symmetric tensor ∂l∂j, the only part that
contributes is

Hjl(r) = h1(r)δjl + h2(r)r̂jr̂l, (A 25)

and it is easy to see that (A 24) admits a solution of the form

h1(r) = a + br2, h2(r) = cr2, (A 26)

where a, b and c are proportional to the helicity input h and satisfy the constraint
2db + d(1 + d)c = h, where d is the spatial dimension.

In conclusion we have

Hij(r) − Hij(0) = r2(bδij + cr̂jr̂i). (A 27)
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