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Abstract—The problem of automated discovery of process
models from event logs has been intensively researched in the
past two decades. Despite a rich field of proposals, state-of-
the-art automated process discovery methods suffer from two
recurrent deficiencies when applied to real-life logs: (i) they
produce large and spaghetti-like models; and (ii) they produce
models that either poorly fit the event log (low fitness) or highly
generalize it (low precision). Striking a tradeoff between these
quality dimensions in a robust and scalable manner has proved
elusive. This paper presents an automated process discovery
method that produces simple process models with low branching
complexity and consistently high and balanced fitness, precision
and generalization, while achieving execution times 2-6 times
faster than state-of-the-art methods on a set of 12 real-life logs.
Further, our approach guarantees deadlock-freedom for cyclic
process models and soundness for acyclic. Our proposal combines
a novel approach to filter the directly-follows graph induced by
an event log, with an approach to identify combinations of split
gateways that accurately capture the concurrency, conflict and
causal relations between neighbors in the directly-follows graph.

Index Terms—Automated Process Discovery; Process Mining;
Directly-follows Graph; Event Log; BPMN;

I. INTRODUCTION

Modern information systems maintain detailed trails of the
business processes they support, including records of business
process execution events, such as the creation of a case or
the execution of a task within an ongoing case. Process
mining techniques allow analysts to extract insights about the
performance of a business process from collections of such
event records, also known as event logs [1]. In this context, an
event log consists of a set of traces, each trace itself consisting
of the sequence of event records pertaining to a case.

Among other things, process mining techniques allow us to
automatically discover a process model (e.g. in the standard
Business Process Model and Notation — BPMN)from an event
log. For it to be useful, an automatically discovered process
model must accurately reflect the behavior recorded in or
implied by the log. Specifically, the process model should:
(i) parse the traces in the log; (ii) parse traces that are not in
the log but are likely to belong to the process that produced the
log; and (iii) not parse other traces. The first property is called
fitness, the second generalization and the third precision.
Moreover, the model should be as simple as possible, a
property usually quantified via complexity measures.

Despite intensive research [1], striking a tradeoff between
the above four quality dimensions (fitness, precision, general-

ization and complexity) has proved elusive. When applied to
real-life logs, the vast majority of automated process discovery
methods (e.g. the Heuristics Miner [2] and its derivatives)
produce large, spaghetti-like and oftentimes behaviorally in-
correct (e.g. deadlocking) process models. Another state-of-
the-art method, namely the Inductive Miner [3], often produces
structured and behaviorally correct process models with high
fitness but poor precision — i.e. the resulting models over-
generalize the behavior observed in the log.

This paper addresses this gap by proposing an automated
process discovery method designed to produce simple and
sound (or deadlock-free in the presence of cycles) process
models, while balancing fitness, precision and generalization.
The proposal combines a novel approach to filter the directly-
follows graph induced by an event log, with an approach
to identify combinations of split gateways that capture the
concurrency, conflict and causal relations between neighbors
in the directly-follows graph. Given this focus on discovering
split gateways, the proposed method is named Split Miner.

We empirically compared Split Miner against four state-
of-the-art baselines on a set of twelve real-life event logs,
and using nine performance measures covering the above four
quality dimensions as well as execution time.

The next section gives an overview of automated process
discovery methods. Section III presents the proposed method,
while Section IV discusses its evaluation. Finally, Section V
draws conclusions and sketches future work directions.

II. BACKGROUND AND RELATED WORK

A. Quality Dimensions in Automated Process Discovery

The quality of automatically discovered process models
is generally assessed along four dimensions: recall (a.k.a.
fitness), precision, generalization and complexity [1].

Fitness is the ability of a model to reproduce the behavior
contained in the log. A fitness of 1 means that the model can
reproduce every trace in the log. In this paper, we use the
fitness measure proposed in [4], which measures the degree
to which every trace in the log can be aligned with a trace
produced by the model. Precision is the ability of a model
to generate only the behavior found in the log. A score of 1
indicates that any trace produced by the model is contained in
the log. We use the precision measure defined in [S], which
is based on similar principles as the above fitness measure.
Recall and precision can be combined together into a single



measure of accuracy, known as F-score, which is the harmonic
mean of the two measurements (2 flmess-Frecision )

Generalization refers to the ability of a discovery method
to capture behavior of the observed process that is not present
in the log. To measure generalization we use k-fold cross
validation. We divide the log into k parts, we discover the
model from k — 1 parts (i.e. we hold out one part), and measure
the fitness of the discovered model against the holdout part,
and the precision of the discovered model against the complete
log.! This operation is repeated for every possible holdout part,
and the measures are averaged, leading to a k-fold fitness and a
k-fold precision measure. A k-fold fitness of 1 means that the
discovered model produces traces that are part of the observed
process, even if those traces are not in the log from which
the model was discovered. Similarly, a k-fold precision of 1
means that the discovered model does not over-generalize the
process. The F-Score computed from k-fold fitness and k-fold
precision provides a single generalization measure.

Complexity quantifies how difficult it is to understand a
model. Several complexity metrics have been shown to be
(inversely) related to understandability [6], including Size
(number of nodes); Control-Flow Complexity (CFC) (the
amount of branching caused by split gateways in the model)
and Structuredness (the percentage of nodes located directly
inside a well-structured single-entry single-exit fragment).

In addition to these quality dimensions, it is natural to
expect that a discovered process model is syntactically and
semantically correct. A well-accepted semantic correctness
property is soundness [7]. A BPMN model with one start and
one end event is sound if: (i) any arbitrary task can be reached
from the start event executing a specific sequence of tasks (no
deadlocks); (ii) from any arbitrary task it is always possible
reach the end event executing a specific sequence of tasks
(option to complete); (iii) whenever the end event is triggered,
no other tasks are still executing behind (proper completion).

B. Automated Process Discovery Methods

The a-algorithm [8] is a simple automated process discov-
ery method based on the concept of Directly-Follows (depen-
dency) Graph (DFG). In the a-algorithm, a directly-follows
dependency (a > b) holds if an event with label a directly
precedes an event with label b in at least one trace. Using this
basic relation, three relations are defined: (i) causality (a — b)
if a>b and b ¥ a; (ii) conflict (a#b) if a # b and b ¥ a; and
(iii) concurrency (a|| b) if a > b and b > a. These relations are
used to discover a process model. While appealing due to its
simplicity, the a-algorithm is not applicable to real-life event
logs since it assumes the log to be complete (every possible
trace is present) and it is too sensitive to infrequent behavior.

The Heuristics Miner [2] addresses these limitations and
consistently performs better in terms of accuracy on incom-
plete and noisy logs [9]. To handle noise, the Heuristics Miner
relies on a relative frequency metric between pairs of event

labels, defined as a = b = (%). Whenever this

metric falls under a given threshold for a given pair of event

'In the empirical evaluation, we use k = 3 because existing measures of
fitness and precision are slow to compute, making high k values impractical.

labels (a,b), the directly-follows dependency a > b is removed
from the DFG. The filtered DFG is then used to discover splits
and joins, according to heuristics defined over the frequencies
of the outgoing and incoming arcs of each node. While
Heuristics Miner has been shown to achieve relatively good
fitness and precision in the presence of noise [9], it still outputs
spaghetti-like and unsound process models when applied to
large real-life event logs. Fodina [10] is a variant of Heuristics
Miner that avoids certain types of deadlocks produced by
Heuristics Miner. However, when applied to real-life event
logs, Fodina produces large and often unsound models as we
show later in the empirical evaluation.

Structured process models are generally more understand-
able than unstructured ones [11]. Moreover, structured models
are sound, provided that the gateways at the entry and exit of
each block match. Given these advantages, several algorithms
have been designed to discover structured process models,
represented for example as process trees [3], [12]. A process
tree is a tree where each leaf is labeled with an activity and
each internal node is labeled with a control-flow operator: se-
quence, exclusive choice, non-exclusive choice, parallelism or
iteration. The Inductive miner [13] uses a divide-and-conquer
approach to discover process trees. It first creates a DFG, filters
infrequent directly-follows dependencies, and identifies cuts in
the filtered DFG. A cut is a control-flow dependency along
which the log can be bisected. The identification of cuts is
repeated recursively, starting from the most representative one
until no more cuts are found. Once all cuts are identified,
the log is split into portions (one per pair of consecutive
cuts) and a process tree is generated from each portion. The
Evolutionary Tree Miner (ETM) [12] is a genetic algorithm
that starts by generating a population of random process trees.
At each iteration, it computes an overall fitness value for
each tree in the population and applies mutations to a subset
thereof. The algorithm iterates until a stop criterion is fulfilled,
and returns the tree with highest overall fitness. Molka et
al. [14] proposed another genetic discovery algorithm that
produces structured models. This latter algorithm is similar
in its principles to ETM, differing mainly in the set of change
operations used to produce mutations. While the Inductive
Miner and ETM achieve high fitness, they over-generalize
the behavior observed in the log whenever the process model
to be discovered is unstructured. In particular, when the
Inductive Miner is unable to capture the behavioral relations
in a given fragment of the DFG, it introduces a so-called
“flower” structure. A flower structure involving tasks {a, b,
...} is a control-flow structure that allows tasks {a, b, ...} to
be executed any number of times and in any order, hence
leading to over-generalization.

The Structured Miner [15] addresses this limitation by
relaxing the requirement of always producing a structured
process model, in favor of achieving higher accuracy. Instead
of directly discovering a structured model, Structured Miner
first applies the Heuristics Miner to obtain an accurate but po-
tentially unstructured or even unsound model. Next, it applies
a technique to maximally structure the discovered model in
combination with heuristics to simplify the model and remove
unsoundness. However, the block-structuring approach of the



Structured Miner often fails to produce a sound process model
when applied to real-life event logs as reported later.

III. APPROACH

Starting from a log, Split Miner produces a BPMN model
in five steps (cf. Fig. 1). Like the Heuristics Miner and Fodina,
the first step is to construct the DFG, but unlike these latter,
Split Miner does not immediately filter the DFG. Instead, it
analyzes it to detect self-loops and short-loops (which are
known to cause problems in DFG-based methods) and to
discover concurrency relations between pairs of tasks. In a
DFG, a concurrency relation between tasks a and b shows up
as two arcs: one from a to b and another from b to a, meaning
that causality and concurrency are mixed up. To address this
issue, whenever a likely concurrency relation between a and b
is discovered, the arcs between these two tasks are pruned from
the DFG. The result is called: pruned DFG (PDFG). In the
third step, a filtering algorithm is applied on the PDFG to strike
balanced fitness and precision maintaining low control-flow
complexity. In the fourth step, split gateways are discovered
for each task in the filtered PDFG with more than one outgoing
arc. This is followed by the discovery of join gateways.

A. Directly-Follows Graph and Short-Loops Discovery

Split Miner takes as input an event log defined as follows.

Definition 1 (Event Log): Given a set of events &, an event
log £ is a set of traces as .7, where a trace t € Jis a
sequence of events 7 = (e, ez,...,e,), with ¢; € &,1 <i<n.
Additionally, each event has a label 1 € L and it refers to a task
executed within a process, we retrieve the label of an event
with the function A : & — L, using the notation A(e) = ¢'.

Given the set of labels L = {a,b,c,d,e, f,g,h}, a possible
log is: .Z = {{a,b,c,g,e,h)'%(a,b,c, f,g,h)'%(a,b,d,g,e,h)"°
<a,b,d,e,g,h>10<a,b,e,c,g,h>10<a,b,e,d,g,h)10<a,c,b,e,g,h>10
<aaCvbvfagvh>10<aadabaeag7h>10<aad’bafvgah>10}; this IOg
contains 10 distinct traces, each of them recorded 10 times.

Starting from a log, we construct a DFG in which each arc is
annotated with a frequency, based on the following definitions.

Definition 2 (Directly-Follows Frequency): Given an event
log ., and two events labels 11,1, € L, the directly-follows
frequency between 1; and 1, (|l; — L) is | {(ei,ej) € & x & |
ef =1 /\es- =LAt e L[Tex tlex=eiN exr1 =¢]]} .

Definition 3 (Directly-Follows Graph): Given an event log
Z, its Directly-Follows Graph (DFG) is a directed graph ¢ =
(T,E), where T is the non-empty set of tasks, for which exists
a bijective function /: T — L, where f! retrieve the label of ¢,
and E is the set of edges E = {(a,b) € T x T | |d' — b'| > 0}.
Moreover, given a task t € T we use the operator ot = {(a,b) €
E|b=t} and te ={(a,b) € E |a=t} to retrieve (respectively)
the set of incoming and outgoing edges.

Given the DFG, we then detect self-loops and short-loops
(i.e. loops involving only one and two nodes resp.) since these
are known to cause problems when detecting concurrency [8].
A self-loop exists if a task has an arc towards itself in the
DFG: |a — al|. Short-loops and their frequencies are detected
in the log as follows.

Definition 4 (Short-Loop Frequency): Given an event log
%, and two events labels 1;,1, € L, we define the number

of times a short-loop pattern occurs |a <+ b| = |{(e;, ej,ex) €
@@xé"xé"|ef:11/\e§-:lz/\ef{:h/\ﬂte.,?[ﬂexet[ex:
eiNexy1 = ejNexn = e¢}|, with abuse of notation we use
la — b instead of |a' — b!| and |a «> b| instead of |a' > b!|.

Given two tasks a and b, a short-loop (a © b) exists iff the
following conditions hold:

la—al=0 A |b—b|=0 (1)

la<>b|+|b<ral#0 2)

Condition 1 guarantees that neither a nor b are in a self-
loop, otherwise the short-loop evaluation may not be reliable.
Indeed, if we consider a model containing a concurrency
between a self-loop a and a normal task b, traces recorded
during the execution of the process may contain the sub-trace
(a,b,a) (which also characterize a O b). Discarding this latter
case fulfilling Condition 1, we use Condition 2 to ensure a O b.
Self-loop and short-loops are trivially removed from the
DFG and restored in the output BPMN model at the end.
Fig. 2a shows the DFG built from the example event log .Z. In
this log, there are no self-loops nor short-loops to be removed.

B. Concurrency Discovery

Given a DFG, we postulate that two tasks a and b are
concurrent (al||b) iff three conditions hold:

la—b>0 A |b—al>0 3)
la<b|+|b<al=0 C))
b|—1|b

w«; (e €10,1]) 5)

|a — b|+|b— dl

Condition 3 captures the basic requirement for a||b. Indeed,
the existence of edges e; = (a,b) and e; = (b,a) entails
that a and b can occur in any order. However, this is not
sufficient to postulate concurrency since this relation may hold
in three cases: (i) a and b form a short-loop; (ii) a and b are
concurrent; or (iii) e; or ep occur highly infrequently and can
thus be ignored. Case (i) is avoided by Condition 4. Indeed,
being this latter the opposite of Condition 2, it guarantees
—a O b. This leaves us with cases (ii) and (iii). We use
Condition 5 to disambiguate between the two cases: if the
condition is true we assume a||b, otherwise we fall into case
(>iii). The intuition behind Condition 5 is that two tasks are
concurrent the values of |a — b| and |b — a| should be as
close as possible, i.e. both interleavings are observed with
similar frequency. Therefore, the smaller is the value of € the
more balanced have to be the concurrency relations in order
to be captured. Reciprocally, setting € to 1 would catch all the
possible concurrency relations.

Whenever we find a||b, we remove e; and e, from E, since
there is no causality but instead there is concurrency. On the
other hand, if we find that either e or e, represents infrequent
behavior we remove the least frequent of the two edges. The
output of this step is a pruned DFG.

Definition 5 (Pruned DFG): Given a DFG ¥ = (T,E), a
Pruned DFG (PDFG) is a connected graph ¥, = (T,E,),
where E, is the set of edges E, = E\ {(a,b) € E | a||bV
(mal|lbA(b,a) € EN|a— bl < |b—al)}.

In the example in Fig. 2a, we can identify four possible
cases of concurrency: (b,c), (b,d), (d,e), (e,g). Setting € =
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Fig. 1: Overview of the proposed approach.
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Fig. 2: Evolution of a directly-follows graph.

0.2, we capture the following concurrency relations: b||c, b||d,
d|e, e||g. The resulting PDFG is shown in Fig. 2b.

C. Filtering

In order to derive a sound, simple, and accurate BPMN
process model from a PDFG, the latter must fulfill three
properties. First, each node of the PDFG must be on a path
from a single start (source) to a single end (sink) node.
This property is used to ensure a sound process model (no
deadlocks and option to complete). Second, the number of
edges of the PDFG must be minimal. This property minimizes
CFC and maximizes precision, since the branching factor (used
to calculate the CFC) is proportional to the number of edges, as
well as the amount of allowed behavior. Third, every path from
the start to the end node to have the highest possible sum of
frequencies. This last property is intended to maximize fitness
since the frequency of an edge is directly linked to the number
of traces recording that behaviour, which then influences the
number of traces we can successfully replay on the PDFG.

Unfortunately, the simultaneous fulfillment of these three
properties cannot be guaranteed. For this reason, we designed a
filtering algorithm for the PDFG that aims at striking a tradeoff
between them. Given as input a PDFG ¥, = (T,E,) and a
percentile 7, we filter ¢, using Algorithm 1. First, we retrieve
the set F, containing the most frequent incoming edge and the
most frequent outgoing edge of each task r € T (see line 1).
Second, we set a frequency threshold f;, as the n percentile
of the frequencies of the edges in F,, and we add to F, all the
edges with frequency greater than f;;, (line 2 and 3). The
percentile is not taken on the frequencies of the edges in E,
because otherwise the filtering algorithm would simply retain
N percentage of all the edges. Whilst our approach aims to
collect in F, only the most frequent edges of the PDFG. Next,
we restore some of the most frequent edges as follows. We
select the most frequent edge (e,,) in F, (see line 6), and restore
it iff its frequency is above f;; or its source post-set is empty
or its target pre-set is empty (line 7). Finally, we remove the
edge from the set of frequent edges (see line 8). This operation
is repeated until all the most frequent edges are analyzed.

This filtering strikes a tradeoff between the second and third
property, by retaining the minimum number of edges such that
all most frequent edges (with frequency over f;;) are kept
and each task is connected to its must frequent successor and
predecessor. However, this algorithm does not guarantee that
a filtered PDFG fulfills the first property. This is guaranteed a
posteriori by removing all the tasks that after the filtering are
unreachable via a forward (or backward) exploration starting
from the start (or end) task. Intuitively, the removed tasks
fall on infrequent traces of the event log. Also, this filtering
approach relies on a simple threshold, allowing the user to
balance fitness and precision. Indeed, the lower is the value of
1 the more edges are retained by the filter, leading to higher
fitness, lower precision, and higher control-flow complexity.

Algorithm 1. Generate Filtered PDFG
input: ¥, = (T,E,)
input: percentile n
1 Set F, :={e € E, | 3t € T[e = getMostFrequentEdge(te)\V e =
getMostFrequentEdge(et)]};
2 fin = getPercentileFrequency(F,,n);
3 F.:=F,U{e€cE,|getFrequency(e) > fu}
4 Ef =,
5
6
7

while |F,| >0 do
Edge e,, := getMostFrequentEdge(F,);
if getFrequency(e,) > fu V| (e,)e| =0V |eI(e,)| =0 then 2
Ep:=E;U{en};
8 F, = F\{en};

9 return ¥y = (T.Ey);

Fig. 2c shows the filtered PDFG obtained as output of the
previous step (Fig. 2b). In this example we removed two edges:
(e,¢), (c,f), both of frequency 10. Regardless the value of 1
we will not retain any of these latter.

D. Splits Discovery

In this step, we add split gateways into the DFG in order to
capture choice and concurrency. This is the first step towards
converting a DFG into a BPMN process model.

A BPMN process model is a connected graph # =
(i,0,T,G",G*,G° Ey,), where T is a non-empty set of tasks,

21 is the projection operator over tuples.



Algorithm 2. Discover Splits

Algorithm 3. Discover XOR-splits

input: Filtered PDFG %; = (T,Ef), Task a

Set K := getSuccessorTasks(a);
Function C:= {(t,@) e Nx 2" |t € K};
Function F := {(t,2) e Nx 2V |t € K};
for s; € K do

Set Gy, 1= {s1};

Set Fy =2

for s, € K do

L if (52 #5 ASzHS]) then F"l = F"l U{Sz};

9 C:=Ca{(s1,Cy)}
10 F:=F&{(s1,F)}

11 E, :=Ef\ase;

12 BPMN /% := (i,0,T,9,2,9,Ey);
13 while |K|>1 do

14 discoverXORsplits(.#,K,C, F);
15 discoverANDsplit(.# ,K,C,F);

16 # :=(i,0,T,G",G*,G°,E,U{(t,k) ENXN|t=aAkeK});

AU AW -

i is the start event, o is the end event, G is the set of AND-
gateways, G* is the set of XOR-gateways, G° is the set of OR-
gateways, and E,, C (N \ {o}) x (N\ {i}) is the set of edges,
where N = {i} U{o} UTUGT UG* UG" is the set of nodes.
Each g € (GTUG*UG") can be a split or a join gateway.
A split is a gateway with one incoming edge and multiple
outgoing edges. A join is a gateway with multiple incoming
edges and one outgoing edge.

To generate the split gateways, we rely on the concurrency
relations identified during the second step of our approach
(section ITI-B). With the help of the example in Figure 2c we
will explain how Algorithm 2 generates a hierarchy of splits.

Starting from the filtered PDFG and a task with multiple
outgoing edges, e.g. a, our algorithm retrieves all nodes
following a, a.k.a. its successors (line 1). For each successor,
e.g. b, we detect its concurrent future (hereafter future). The
future of a successor are all the other successors for which
hold a concurrency relation. In our example, we can detect
d and c as future of b, since we identified b||c and b||d (in
section III-B). Further, we define the concept of cover of a
successor. If a successor is a task, its cover is the task itself,
instead, if a successor is a gateway its cover is the set of
the tasks that can be traversed only after the traversal of the
gateway. In our example, at the beginning, all the successors
of a are nodes, so that each of them is the cover of itself,
e.g. b is the cover of b. The idea behind the algorithm is
that mutually exclusive successors of a given task must share
the same concurrency relations (future). On the other hand,
successors sharing the union of their covers and futures are
meant to be executed concurrently.

After computing cover and future of each successor (Algo-
rithm 2, line 4 to 10), we use them to discover XOR-splits
and AND-splits in two phases (resp. lines 14 and 15). In the
first phase — Algorithm 3 — we look for all the successors
sharing the same future (line 9). Whenever we find two or
more (line 12), we introduce an XOR-split which proceed
these successors, taking their place as successor of the input
task (i.e. a). This gateway has as future the shared future of
the selected successors, and as cover the union of their covers.

We repeat this operation until no further XOR-splits are

3@ is the override operator form the Z notation [16]

input: BPMN .#, Set K, Function C, Function F

1 do
2 Set X .= a;
3 for k; € K do
4 Set C, :=C(ky);
5 Set Fy :=F(ky);
6 Set Fy, =F(k);
7 for k, € K do
8 Set Fi, := F(ky);
9 if Fkl :sz Aky # ky then
10 X :=XU{k};
11 L C,:=C,UC(kp);
12 if X # & then
13 X:=XU{k}:
14 L break;
15 if X # o then
16 Gateway xor := newXOR();
17 G* :=G* U{xor};
18 E,:=E,U{(g,x) eENXN|g=xorAxeX};
19 C:=Co®{(x,29)eNx2"|xeX};
20 F:=F@®{(x,0)eNx2V|xeX}
21 C:=C@®{(x,c) eNx2" |x=xorAc€e€C,};
22 F:=F@®{(x,f) e Nx2" |x=xorANf€F};
23 K := (KU{xor})\ X;
24 while X #92 ;
Initialization
Key Cover Future
b b c,d
c c b
d d b
after 17 iteration of Algorithm 2
5 | b ] od
xor [ ¢, d | b
after 2" iteration of Algorithm 2
and [ b,c,d |

TABLE I: Splits discovery example.

identified (line 24). Once all possible XOR-splits are discov-
ered, we move toward the second phase, i.e. the discovery
of an AND-split — Algorithm 4. Unlike the XOR-split, we
introduce an AND-split when we identify a set of successors
sharing the union of their cover and future (see lines 8 and 12).
The newly introduced AND-split has as future the intersection
of the futures of the set of the selected successors and as
cover the union of their covers. The AND-split becomes a new
successor for the input task. We repeat these two steps until
input task a has only one successor (Algorithm 2, line 13).

Table I shows how set K and functions C and F evolve
when applying Algorithm 2 on the example in Figure 2c (given
as input task a). Starting from the status depicted in the top
part of the table (see initialization), after the first iteration
we discover the xor preceding tasks ¢ and d, since these two
tasks share the same concurrency relation with b, i.e. c||b,
d||b. Successively, after the second iteration we detect the and
preceding task b and the xor, which leaves task a with just
one successor, fulfilling the stop criterion of the algorithm.
Figure 3a shows the output of this step for our example, after
we ran Algorithm 2 also on task b.

E. Joins Discovery

Once all the split gateways have been placed, we can
discover the join gateways. We introduce a join every time
a task ¢ has more than one incoming edge. This gateway will
be the target of all incoming edges of ¢ and it will precede
t, whilst its type (XOR, AND, OR) is set according to the



Algorithm 4. Discover AND-split

input: BPMN .Z, Set K, Function C, Function F

1 for k € K do

2 Set A:= o,

3 Set C, :=C(k1);

4 Set F; :=F(ki);

5 Set CFy, :=C(k1)UF (k1);

6 for k, € K do

7 Set CFk2 = C(kz)UF(kz);
8 ifCFk]:CFk2Ak19ék2 then
9 A:=AUTk}:

10 C,:=C,UC(ka);

11 L F,:=FNF(k);

12 if A then

13 A:=AU{k};

14 L break;

15 if A# @ then

16 Gateway and := newAND();

17 E,:=E,U{(g,a) e NxN|g=and Na €A},
18 C:=C®{(a,2) eNx2V|aecA};

19 F:=F®{(a,2)eNx2V|aecA};

20 C:=C®{(a,c) eNx2V|a=andNc€C,};
21 F:=F®{(a,f) eNx2" |a=and \f EF};
22 K := (KU{and})\A;

(b) Discovered joins.

Fig. 3: Example of splits and joins discovery.

following two rules. If ¢ is within an acyclic homogeneous
Single-Entry-Single-Exit region (SESE)*, we match the type
of the entry gateway of the SESE region, otherwise the type is
set to OR. These rules guarantee soundness for acyclic models
and deadlock-freedom for cyclic models as discussed below.

Figure 4 shows how our approach works in case of an
unstructured homogeneous SESE (Fig. 4a), in case of a
structured homogeneous SESE (Fig. 4b), and in all remaining
cases, i.e. (unstructured) heterogeneous SESEs (Fig. 4c).

Coming back to our working example in Fig. 3a, we detect
three joins. The first one is the XOR-join at the exit of the
structured SESE region including tasks ¢, d and g, for which
the entry of the region is an XOR-split. So we match that split.
The remaining two joins are within a larger heterogeneous
SESE region and hence we use two OR-joins. The resulting
model is shown in Fig. 3b.

Existing approaches for automated process discovery (in-
cluding all those discussed in Section II) produce BPMN

4A SESE region is said to be homogeneous if all its gateways are of the
same type, e.g. only AND gateways. Otherwise it is heterogeneous.

(b) Struct. homogeneous SESE

(c) Heterogeneous SESE

Fig. 4: Examples of joins discovery.

models with XOR and AND gateways only (no OR gateways).
Also, existing quality measures for assessing the accuracy of
automatically discovered process models are not designed to
handle OR-joins. Accordingly, for the purposes of comparing
the Split Miner with existing methods, we need to replace OR-
join gateways with combinations of AND and XOR gateways.
This can be achieved by the transformation proposed by Favre
and Volzer [17].

F. Soundness and Deadlock-freedom

We sketch the proof of soundness and deadlock-freedom
of the BPMN process models discovered by Split Miner. As
described in section II a BPMN process model is sound if
three properties are guaranteed: (i) no deadlocks, (ii) option
to complete, (iii) proper completion. Property (i) is guaranteed
by the rules adopted to set the types of the join gateways.
Specifically, deadlocks generate from the lack of synchro-
nization on an AND-join gateway, i.e. one or more of its
incoming branches will never be active. By construction this
latter case never happens because we placed AND-joins only
within acyclic AND-homogenous SESE, meaning the presence
of an AND-join implies the presence of one (or more) AND-
split which eventually activates all the incoming branches
of the AND-join. XOR-joins and OR-joins cannot generate
deadlocks as discussed in [18] and [19] respectively. Property
(ii) is guaranteed by our filtering algorithm. Indeed, having
each task on a path from start to end, and having no deadlocks,
it is trivial find the sequence of tasks that will lead to the
end from any arbitrary task. Finally, property (iii) can be
guaranteed only in case of acyclic process models. For acyclic
process models, active branches can be left behind only if an
XOR-join gateway has more than one of its incoming branches
active. In such case, it fires once for each of its active incoming
branches, duplicating the instance of the process execution
(such that, once one instance ends, the other is still executing:
no proper completion). AND-joins and OR-joins cannot leave



branches active behind because the former waits always for
all its incoming branches to be active, the latter waits for
only (and all) its incoming branches which eventually will
be active [18], [19]. For cyclic process models, cycles may
activate again branches which already had triggered joins,
generating multi-instances of the process execution and thus
leading to improper completion.

G. Complexity

Let n be the number of events in the log and m be the
number of tasks (distinct event labels). The DFG construction
is in O(n), since we sequentially read each event and generate
the respective node in the graph and concurrently increase
the directly-follows and short-loop frequencies. The self-loops
discovery is linear on the number of nodes in the DFG, hence
in O(m). The short-loops discovery is done on pair of tasks, so
this step is also performed in O(m?). The filtering is in O(m?),
since for each task we need to find the maximum frequency
over the outgoing and incoming edges. The split discovery is
in O(m*), since we may run Algorithm 2 for each task, which
executes m times Algorithm 3 and 4 (having two nested loops
on m). The join discovery is in O(m®), since we may place a
join for each two edges and defining its type is linear. Hence,
the complexity of the Split Miner is in O(n+m*).

IV. EVALUATION

We implemented Split Miner (hereafter SM) as a standalone
Java application.’ The tool takes as input an event log in
MXML or XES format and the values for the thresholds &
and 1, and it outputs a BPMN process model. Using this
implementation, we empirically compared SM against five
existing methods using a set of publicly available logs.

A. Datasets

We used the collection of real-life event logs available in
the 4TU Centre for Research Data.® These logs include all BPI
Challenge (BPIC) logs, plus other logs such as the Road Traffic
Fines Management Process (RTFMP) and the SEPSIS Cases
log. They record executions of business processes in a range
of domains including healthcare, finance and government. We
included all real-life logs of 4TU Centre except those that do
not explicitly capture business processes (BPIC 2011 and 2016
logs) and the Environmental permit application process log,
which is subsumed by BPIC 2015. In seven logs (BPIC14, the
BPIC15 subset and BPIC17), we applied the filtering method
in [20] to remove infrequent behavior prior to applying each
of the discovery methods. Without this filtering step, all the
method generated models with an F-score of close to zero due
to the complexity of these logs. Table II reports the statistics
of the event logs (after the initial filtering where applicable).

B. Experimental setup

We chose five state-of-the-art discover methods as baselines:
Inductive Miner Infrequent (IM), Evolutionary Tree Miner
(ETM), Heuristics Miner as implemented in the ProM 6

5 Available at http://apromore.org/platform/tools
Shttps://data.4tu.nl/repository/collection:event_logs_real

Log Total Distinct Total Distinct Trace Length
Name Traces Traces Events Events min avg max
BPIC12 13087 4366 262200 36 3 20 175
BPIC13,, 1487 183 6660 7 1 4 35
BPIC13j, 7554 1511 65533 13 1 9 123
BPIC14¢ 41353 14948 369485 9 3 9 167
BPIC15¢ 902 295 21656 70 5 24 50
BPIC155¢ 681 420 24678 82 4 36 63
BPIC155¢ 1369 826 43786 62 4 32 54
BPIC154¢ 860 451 29403 65 5 34 54
BPIC155¢ 975 446 30030 74 4 31 61
BPIC17; 21861 8767 714198 41 11 33 113
RTFMP 150370 231 561470 11 2 4 20
SEPSIS 1050 846 15214 16 3 14 185

TABLE II: Statistics of the event logs employed.

toolset (HMg), Structured Miner over Heuristics Miner as
implemented in ProM 6 (S-HMg), and Fodina Miner (FO).

Since SM takes as input two thresholds: € and 1, we ran an
exhaustive hyperparameter-optimization to identify the values
leading to the highest F-score across all logs, which turned out
to be € =0.1, n = 0.4. We then performed two evaluations.
First, we compared all the discovery methods using their
default parameters against SM with the above hyperparameter-
optimized settings. Second, we hyperparameter-optimized all
the baselines methods as follows.” IM takes as input only one
threshold for noise filtering. SM, HMg (as well S-HMg) and
FO take as input two thresholds for filtering and balancing
fitness and precision. We used steps of 0.05 (range of 0.0
to 1.0) for IM, and steps of 0.10 for the thresholds of SM,
HMg, S-HMg and FO. For the default parameters evaluation,
we measured the quality of the produced models using all the
quality dimensions discussed in Section II-A, namely fitness,
precision and F-Score as proxies for accuracy, 3-fold F-score
as proxy for generalization, size, CFC and structuredness
(struct.) as proxies for complexity, and soundness (as defined
in section II). Further, we report about the execution times.
For the hyperparameter-optimized evaluation, we measured
only fitness and precision, because interested to find the best
balance between the two metrics. Each metric was computed
on BPMN models, except for fitness, precision and soundness,
which were measured on Petri nets since the measuring tools
work only on Petri nets. The conversions between BPMN and
Petri nets were done using ProM’s BPMN Miner package [21].

All the tests were performed on a 6-core Xeon E5-1650
3.5Ghz with 128GB of RAM running JVM 8 with 48GB of
heap space. We timed out each discovery operation from a
log at 1 hour for the default parameters evaluation, and at 24
hours for the hyperparameter-optimization.®

C. Results

Table III shows the experimental results when using the
default parameters for each method. The best score for each
measure on a given log is highlighted in bold. A*“-” indicates
that a given accuracy or complexity measure could not be
reliably computed due to syntactic or semantic issues in the
discovered model (e.g. disconnected or unsound model).

"We excluded ETM from this hyperparameter-optimization exercises due
to the prohitively high execution times of this method.

8Results and tools for reproducibility of the experiments available at https:
//doi.org/10.6084/m9.figshare.5379190.v1
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Fig. 5: Results of the hyperparameter-optimization for IM(red), SM(green), HMg(black), S-HMg(yellow), FO(blue). Horizontal

and vertical axes report fitness and precision (respectively).

Figure 5 displays the experimental results of the exper-
iments with hyperparameter-optimization. Each scatter plot
corresponds to a log, and each dot in the scatter plot captures
the fitness and precision of the model produced by a given
configuration (i.e. combination of hyper-paramters) of a given
method. The lack of dots corresponding to a given method on
some plots (e.g. FO in BPIC13; and HM in SEPSIS) means
that it was not possible to evaluate fitness or precision for the
models produced by this method on the log in question.

The results in Table III put into evidence the consistently
high accuracy, generalization and scalability of SM, and the
low complexity of the produced models. SM strikes the best F-
Score and generalization on all logs except for BPIC14¢ where
it scores the second-highest value. But while SM excels in F-
score, it generally does not achieve neither the highest fitness
nor the highest precision separately. Instead, IM achieves the
highest (or second-highest) fitness scores on all logs, while
ETM achieves the highest precision in about half of logs. The
plots of Fig. 5 show that the performance of the configurations
of SM (green dots) Pareto-dominates those of other techniques
in the middle ranges of fitness and precision for all logs except
BPIC13,, BPIC13;, and BPIC14;. Meanwhile, IM Pareto-
dominates other methods in the region with low precision and

low fitness, meaning that for some configurations, IM achieves
high precision at the expense of low fitness or vice-versa.

The complexity of the models discovered by SM is low,
both in terms of size and CFC. And even if SM does not aim
to discover structured models as opposed to IM and ETM,
structuredness is generally high (over 50% in 8 logs). In
those logs where SM’s output is not the least complex, it is
second, mostly behind ETM. Although ETM outperforms SM
in complexity, the former requires very long execution times
(1 hour). In contrast, SM discovers a process model in less
than one second for 10 logs, being always 2-6 times faster
than the second fastest method on every log.

As an example, Figs. 6 and 7 show the BPMN models
discovered by IM and SM from the SEPSIS log — a log
extracted from the enterprise resource planning system of a
hospital, recording patient pathways in a hospital unit. We
observe that the model produced by IM exhibits the “flower”
pattern — all but the first activity can be skipped or repeated
any number of times. This is why it achieves a fitness close
to 1, but at the expense of very low precision. The model
produced by SM is smaller (almost half the size), with less
skipping edges and with clearly delimited loops, and is more
accurate than the one produced by IM.



Log Discovery Accuracy Gen. Complexity Exec.
Name Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)
SM 0.75 0.76 0.76 0.76 53 32 0.72 yes 0.58
™M 0.98 0.50 0.66 0.66 59 37 1.00 yes 8.34
ETM 0.33 0.98 0.49 - 69 10 1.00 yes 3,600
BPIC12 HMs - - - - 89 197 0.28 no 2.34
S-HM, - - - - 86 46 0.20 no 370.52
FO - - - - 102 117 0.13 no 16.03
SM 0.94 0.97 0.96 0.96 12 7 1.00 yes 0.03
M 0.82 1.00 0.90 0.90 9 4 1.00 yes 0.09
ETM 0.99 0.76 0.86 - 11 17 1.00 yes 3,600.00
BPICI3, HMs - - - - 13 8 - no 0.11
S-HMs 0.94 0.93 0.94 0.95 13 4 1.00 yes 0.14
FO - - - - 25 23 0.60 no 0.09
SM 0.91 0.98 0.94 0.94 13 9 1.00 yes 0.23
M 0.92 0.50 0.65 0.68 13 7 1.00 yes 0.95
ETM 0.84 0.80 0.82 - 28 24 1.00 yes 3,600.00
BPIC13j,¢ HMs 0.91 0.96 0.93 0.93 13 9 1.00 yes 0.84
S-HMs 0.91 0.98 0.94 0.94 13 9 1.00 yes 1.06
FO - - - - 44 55 0.75 no 1.95
SM 0.76 0.67 0.71 0.75 27 16 0.74 yes 0.59
M 0.89 0.71 0.79 0.79 31 18 1.00 yes 3.45
ETM 0.68 0.94 0.79 - 22 15 1.00 yes 3,600.00
BPIC14¢ HMg - - - - 44 56 - no 4.67
S-HMg - - - - 120 51 0.27 no 16.64
FO - - - - 37 46 0.41 no 4.79
SM 0.90 0.88 0.89 0.89 110 43 0.50 yes 0.48
M 0.97 0.57 0.71 0.72 164 108 1.00 yes 1.08
ETM 0.57 0.89 0.69 - 73 21 1.00 yes 3,600.00
BPIC15¢ HMg - - - - 150 98 - no 1.03
S-HMg - - - - 228 122 0.57 no 139.21
FO 1.00 0.76 0.87 0.86 146 91 0.26 yes 1.92
SM 0.77 0.90 0.83 0.82 122 41 0.32 yes 0.25
M 0.93 0.56 0.70 0.70 193 123 1.00 yes 0.70
ETM 0.62 0.90 0.73 - 78 19 1.00 yes 3,600.00
BPIC155¢ HM, - - - - 194 158 0.11 no 0.58
S-HMg 0.98 0.60 0.75 0.76 265 163 0.34 yes 177.27
FO - - - - 195 159 0.09 no 2.50
SM 0.78 0.94 0.85 0.85 90 29 0.61 yes 0.36
M 0.95 0.55 0.70 0.69 159 108 1.00 yes 1.36
ETM 0.66 0.88 0.75 - 78 26 1.00 yes 3,600.00
BPIC155¢ HM, 0.95 0.67 0.79 0.79 157 151 0.07 yes 1.24
S-HMg 0.95 0.61 0.74 0.75 215 183 0.30 yes 147.97
FO - - - - 174 164 0.06 no 2.03
SM 0.73 0.91 0.81 0.80 96 31 0.31 yes 0.25
M 0.96 0.58 0.73 0.72 162 111 1.00 yes 1.05
ETM 0.66 0.95 0.78 - 74 17 1.00 yes 3,600.00
BPIC154¢ HM, - - - - 158 129 0.15 no 0.55
S-HM, 0.99 0.65 0.78 0.78 207 137 0.29 yes 142.11
FO - - - - 157 127 0.15 no 1.33
SM 0.79 0.94 0.86 0.85 102 30 0.33 yes 0.27
M 0.94 0.18 0.30 0.61 134 95 1.00 yes 0.70
ETM 0.58 0.89 0.70 - 82 26 1.00 yes 3,600.00
BPIC15s¢ HM, - - - - 166 124 0.15 no 0.58
S-HM, 1.00 0.68 0.81 0.81 239 151 0.43 yes 142.28
FO 1.00 0.71 0.83 0.83 166 125 0.15 yes 1.63
SM 0.95 0.85 0.90 0.90 32 17 0.75 yes 2.53
M 0.98 0.70 0.82 0.82 35 20 1.00 yes 13.91
ETM 0.72 1.00 0.84 - 31 5 1.00 yes 3,600.00
BPIC17¢ HM, - - - - 36 18 - no 11.81
S-HM, 0.95 0.52 0.67 0.74 42 13 1.00 yes 10.31
FO - - - - 98 82 0.25 no 70.58
SM 0.99 1.00 1.00 1.00 22 16 0.46 yes 1.25
M 0.99 0.63 0.77 0.80 34 20 1.00 yes 7.92
ETM 0.79 0.98 0.87 - 46 33 1.00 yes 3,600.00
RTFMP HM, - - - - 47 51 0.13 no 9.42
S-HM, 0.98 0.95 0.96 0.96 163 97 1.00 yes 274.44
FO 1.00 0.94 0.97 0.97 31 32 0.19 yes 6.25
SM 0.73 0.86 0.79 0.80 31 20 0.97 yes 0.05
M 0.99 0.48 0.65 0.61 50 32 1.00 yes 0.30
ETM 0.71 0.84 0.77 - 30 15 1.00 yes 3,600.00
SEPSIS HMs - - - - 82 137 0.17 no 0.16
S-HM, 0.92 0.42 0.58 0.58 225 131 1.00 yes 322.88
FO - - - - 60 63 0.28 no 0.27

TABLE III: Evaluation results.
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Fig. 7: Model discovered by Split Miner from the Sepsis Log

V. CONCLUSION AND FUTURE WORK

Split Miner is a step forward towards more scalable and
robust methods for automated process discovery. Split Miner
outperformed all baselines in terms of F-score and generaliza-
tion in 11 out of 12 real-life logs, it produced smaller models
than all baselines except Evolutionary Tree Miner, and its
execution times were 2-6 times faster than the closest baseline.

One of the keystones of Split Miner is a filtering method for
directly-follows graphs. The proposed method however only
filters directly-follows relations (not tasks) and thus an addi-
tional preprocessing filter was required to handle the BPIC14,
BPIC15 and BPIC17 logs (the same filter was required by all
baselines). A possible avenue for future work is to design a
filtering approach combining the strengths of the preprocessing
filter used in the experiments with Split Miner’s filter.

A second keystone of Split Miner is its ability to discover
combinations of split gateways that capture the behavioral
relations between a given task and its successors in the
directly-follows graph. On the other hand, discovering the
corresponding join gateways is a challenge that is only par-
tially addressed in this proposal. The approach employed to
identify situations where an OR-join can be directly replaced
by an AND-join or an XOR-join can be refined, as we do not
guarantee a minimal use of the OR-join. Finally, Split Miner
does not guarantee sound models in all cases, though it ensures
always deadlock-freedom. Addressing these limitations is a
direction for future work.

Reproducibility. Links to all tools and datasets required to
reproduce the experiments are given in Sections IV.B-IV.C.
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