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Maximum-likelihood estimation of nonlinear models with fixed effects is subject to the incidental-parameter
problem. This typically implies that point estimates suffer from large bias and confidence intervals have
poor coverage. This paper presents a jackknife method to reduce this bias and to obtain confidence intervals
that are correctly centered under rectangular-array asymptotics. The method is explicitly designed to handle
dynamics in the data and yields estimators that are straightforward to implement and that can be readily
applied to a range of models and estimands. We provide distribution theory for estimators of index coefficients
and average effects, present validity tests for the jackknife, and consider extensions to higher-order bias
correction and to two-step estimation problems. An empirical illustration on female labor-force participation
is also provided.
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INTRODUCTION

The analysis of panel data plays an important role in empirical economics. Starting with classic work on

investment (Kuh 1959) and production functions (Mundlak 1961; Hoch 1962), panel data have been used

to investigate a variety of questions, including the patents-R&D relationship (Hausman, Hall, and Griliches

1984), the dynamics of earnings (Lillard and Willis 1978) and health (Contoyannis, Jones, and Rice 2004),

female labor-force participation (Heckman and MaCurdy 1980; Hyslop 1999), consumption and transitory

income (Hall and Mishkin 1982), addiction and price effects (Becker, Grossman, and Murphy 1994), legalized

abortion and crime (Donohue and Levitt 2001), production frontiers (Schmidt and Sickles 1984), FDI and

productivity spillovers (Haddad and Harrison 1993; Javorcik 2004), spatial dynamics of FDI (Blonigen,

Davies, Waddell, and Naughton 2007), and cross-country growth convergence (Islam 1995). An important

aspect of empirical panel data models is that they typically feature unit-specific effects meant to capture

unobserved heterogeneity.

Random-effect approaches to modeling unobserved heterogeneity often specify the distribution of the

unit-specific effects and how these relate to the observed covariates, which may result in specification errors.

The problem is further complicated in dynamic models because of the initial-condition problem (see, e.g.,

Heckman 1981b and Wooldridge 2005 for discussions).

Fixed-effect approaches, where the unit-specific effects are treated as parameters to be estimated and

inference is performed conditional on the initial observations, are conceptually an attractive alternative.

However, in fixed-effect models the incidental-parameter problem arises (Neyman and Scott 1948). That is,

maximum-likelihood estimates of the parameters of interest are typically not consistent under asymptotics

where the number of units, N , grows large but the number of observations per unit, T , is held fixed. Attempts

to solve the incidental-parameter problem have been successful only in a few models, and the solutions
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generally do not give guidance to estimating average marginal effects, which are quantities of substantial

interest. Furthermore, they restrict the fixed effects to be univariate, often entering the model as location

parameters. Arellano and Honoré (2001) provide an overview of these methods. Browning and Carro (2007),

Browning, Ejrnæs, and Alvarez (2010), and Arellano and Bonhomme (2012) discuss several examples where

unit-specific location parameters cannot fully capture the unobserved heterogeneity in the data. Hospido

(2012) and Carro and Traferri (2012) present empirical applications using models with multivariate fixed

effects.

The incidental-parameter problem is most severe in short panels. Fortunately, in recent decades longer

data sets are becoming available. For example, the PSID has been collecting annual waves since 1968 and the

BHPS since 1991. They now feature a time-series dimension that can be considered statistically informative

about unit-specific parameters. The availability of more observations per unit does not necessarily solve the

inference problem, however, because confidence intervals centered at the maximum-likelihood estimate are

incorrect under rectangular-array asymptotics, i.e., as N,T → ∞ at the same rate (see, e.g., Li, Lindsay,

and Waterman 2003). It has, though, motivated a recent literature in search of bias corrections to maximum

likelihood that have desirable properties under rectangular-array asymptotics for a general class of fixed-

effect models. Hahn and Newey (2004) and Hahn and Kuersteiner (2011) provide such corrections for static

and dynamic models, respectively. Lancaster (2002), Woutersen (2002), Arellano and Hahn (2006), and

Arellano and Bonhomme (2009) propose estimators that maximize modified objective functions and enjoy

the same type of asymptotic properties. The primary aim of these methods is to remove the leading bias from

the maximum-likelihood estimator and, thereby, to recenter its asymptotic distribution. The main difference

between the various methods lies in how the bias is estimated. With the exception of the delete-one panel

jackknife proposed in Hahn and Newey (2004) for independent data, all existing methods require analytical

work that is both model and estimand specific, and may be computationally involved.

In this paper we propose jackknife estimators that correct for incidental-parameter bias in nonlinear

dynamic fixed-effect models. In its simplest form, the jackknife estimates (and subsequently removes) the

bias by comparing the maximum-likelihood estimate from the full panel with estimates computed from

subpanels. Here, subpanels are panels with fewer observations per unit. The subpanels are taken as blocks,

so that they preserve the dependency structure of the full panel. This jackknife estimator is very easy

to implement. It requires only a routine to compute maximum-likelihood estimates; no analytical work is

needed. A key feature of the jackknife is that, unlike analytical approaches to bias correction, the jackknife

does not need an explicit characterization of the incidental-parameter bias. Therefore, it can be readily

applied to estimate index coefficients, average marginal effects, models with multiple fixed effects per unit,

and multiple-equation models. It can also deal with feedback from lagged outcomes on covariates and with

generated regressors, which arise when accounting for endogeneity or sample selection, for example. Both

types of complications are known to affect the expression of the incidental-parameter bias—see Bun and

Kiviet (2006) and Fernández-Val and Vella (2011), respectively—but pose no additional difficulty for the

jackknife.

In Section 1 we start with a discussion of the incidental-parameter problem, and we present and motivate

our framework. In Section 2 we introduce split-panel jackknife estimators of model parameters and average

effects, and provide distribution theory. This section also gives an assessment of the regularity conditions,

presents tests of the validity of the jackknife, and compares the jackknife estimators with other bias-correction

methods by means of Monte Carlo simulations. Section 3 discusses extensions of the split-panel jackknife
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to higher-order bias correction and to two-step estimators. Section 4 presents an empirical illustration of

bias-corrected estimation in the context of female labor-force participation. We end the paper with some

suggestions for future research. Proofs, technical details, and additional results are available as supplementary

material.

1. FIXED-EFFECT ESTIMATION AND INCIDENTAL-PARAMETER BIAS

Suppose that we are given data zit for individual units i = 1, 2, . . . , N and time periods t = 1, 2, . . . , T . Let

zit have density f(zit; θ0, αi0), which is known up to the finite-dimensional parameters θ0 ∈ Θ and αi0 ∈ A.

The fixed-effect estimator of θ0 is θ̂ ≡ arg maxθ∈Θ l̂(θ), where l̂(θ) is the (normalized) profile log-likelihood

function, i.e.,

l̂(θ) ≡ 1

NT

N∑
i=1

T∑
t=1

log f(zit; θ, α̂i(θ)), α̂i(θ) ≡ arg max
αi∈A

1

T

T∑
t=1

log f(zit; θ, αi).

It is well known that θ̂ is often inconsistent for θ0 under asymptotics where N → ∞ and T remains fixed.

That is, θT ≡ plimN→∞θ̂ 6= θ0. This is the incidental-parameter problem (Neyman and Scott 1948). The

problem arises because of the estimation noise in α̂i(θ), which vanishes only as T → ∞. Indeed, under

regularity conditions,

θT = arg max
θ∈Θ

lT (θ), lT (θ) ≡ E[log f(zit; θ, α̂i(θ))],

where E[·] ≡ limN→∞N−1
∑N
i=1 E[·], whereas

θ0 = arg max
θ∈Θ

l0(θ), l0(θ) ≡ E[log f(zit; θ, αi(θ))],

with αi(θ) ≡ arg maxα∈A E[log f(zit; θ, αi)]. With fixed T , α̂i(θ) 6= αi(θ). Hence, the maximands lT (θ) and

l0(θ) are different and so, in general, are their maximizers. The inconsistency (or asymptotic bias) can be

large, even with moderately long panels.

Examples help to illustrate the incidental-parameter problem. In the classic example of Neyman and

Scott (1948), the zit are independent random variables that are distributed as zit ∼ N (αi0, θ0), and the

maximum-likelihood estimator of θ0 converges to θT = θ0 − θ0/T . The inconsistency, −θ0/T , arises because

maximum likelihood fails to make the degrees-of-freedom correction that accounts for replacing αi0 = E[zit]

by its estimate T−1
∑T
t=1 zit. If we let zit = (yit, xit) and θ0 = (γ′0, σ

2
0)′, a regression version of this example

is yit ∼ N (αi0 + x′itγ0, σ
2
0). Here, the maximum-likelihood estimator of γ0 is the within-group estimator.

When xit = yit−1 we obtain the Gaussian first-order autoregressive model, for which the incidental-parameter

problem has been extensively studied. In this case, when |γ0| < 1, γT = γ0−(1+γ0)/T+O(T−2) (Nickell 1981;

Hahn and Kuersteiner 2002). Although these examples are very simple, they illustrate that, in sufficiently

regular problems, θT − θ0 is typically O(T−1). Therefore, while θ̂ will be consistent and asymptotically

normal (under regularity conditions) as both N,T → ∞, its asymptotic distribution will be incorrectly

centered unless T grows faster than N (Li, Lindsay, and Waterman 2003; Hahn and Newey 2004). As a

result, confidence intervals centered at the maximum-likelihood estimate will tend to have poor coverage

rates in most microeconometric applications, where T is typically much smaller than N . The jackknife

corrections that we introduce below aim to reduce the asymptotic bias of the maximum-likelihood estimator

and to recenter its asymptotic distribution. Such an approach is in line with the recent work on nonlinear

models for panel data mentioned above.

The jackknife method, which originated as a tool for bias reduction in the seminal work of Quenouille
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Figure 1. Inconsistencies in the stationary Gaussian autoregression
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Model: yit = αi0+γ0yit−1+εit, εit ∼ N (0, σ2
0), stationary yi0. Plots: fixed-T inconsistencies of the within-group

estimator (γ̂, solid) and two jackknife estimators (γ̃1/2, dashed; γ̇1/2, dotted).

(1949, 1956), exploits variation in the sample size to obtain a nonparametric estimator of the bias. In our

context, the (large N , fixed T ) bias to be corrected for is θT − θ0 and the relevant sample size is T , the

length of the panel. We will discuss two types of jackknife estimators of θ0. The first type bias-corrects θ̂

directly. The second type solves a bias-corrected maximization problem, where the jackknife bias-corrects

the objective function l̂(θ) prior to maximization. These two types of estimators can be seen as automatic

counterparts to the analytical procedures introduced by Hahn and Kuersteiner (2011) and Arellano and Hahn

(2006), respectively. The former type is particularly easy to implement as it requires only the computation

of a few maximum-likelihood estimates. The latter, while computationally a little more involved, is still

generic in terms of applicability and has some advantages, such as equivariance with respect to one-to-one

reparameterizations.

The jackknife estimators proposed in this paper differ from the delete-one panel jackknife of Hahn and

Newey (2004) in that they allow for dependence between observations on a given unit. Such dependence

is natural in most applications and is inherent in dynamic models, such as the Gaussian autoregression or

a binary-choice version thereof. The key to handling dynamics is to use subpanels formed by consecutive

observations for each unit. Of course, some regularity has to be put on the time-series properties of the

data. A convenient assumption is to impose stationarity of the individual processes and a sufficient degree

of mixing. In applications, however, stationarity may be an unrealistic assumption. Therefore, we will also

examine the performance of the jackknife estimators in some specific non-stationary cases and develop tests

of the validity of the jackknife corrections.

The jackknife will be shown to remove the O(T−1) term of the bias. Hence, in the Neyman and Scott (1948)

example, it fully eliminates the bias. More generally, however, the jackknife will only reduce the bias from

O(T−1) down to o(T−1). Nevertheless, for typical sample sizes encountered in practice, this can already be

sufficient for a vast reduction in bias and much improved confidence intervals. To illustrate the reduction in

bias, Figure 1 plots the inconsistencies of the within-group estimator (γ̂, solid) and of the jackknife estimators

obtained from correcting γ̂ (denoted γ̃1/2, dashed) and from correcting the objective function (denoted γ̇1/2,

dotted), in the stationary Gaussian autoregressive model yit = αi0 +γ0yit−1 +εit. These jackknife estimators
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will be defined in (2.5) and (2.8) below. The plots show that the jackknife corrections alleviate the Nickell

(1981) bias to a large extent, even in short panels (T = 4, 6). To gain an idea of the finite-sample performance

of bias-corrected estimation, Table 1 shows the results of a small simulation experiment in this model for

γ0 = .5 and various panel sizes. The biases and the coverage rates of 95% confidence intervals centered at

the point estimates are given for γ̂, the bias-corrected plug-in estimator γ̃HK = γ̂+ (1 + γ̂)/T (see Hahn and

Kuersteiner 2002), and the jackknife bias-corrections γ̃1/2 and γ̇1/2. The inconsistency of the bias-corrected

estimators in this model is O(T−2). The table also provides results for the optimally-weighted Arellano and

Bond (1991) estimator, γ̂AB, which is fixed-T consistent. In line with Figure 1, the results show that bias

correction can lead to drastic reductions in small-sample bias. The jackknife corrections are competitive with

γ̂AB in terms of bias (for the sample sizes considered). Furthermore, bias correction leads to much improved

coverage rates of the confidence intervals compared with those based on maximum likelihood. The corrections

remove enough bias to yield reliable confidence intervals also when T is not small relative to N . Finally,

the last two columns of Table 1, t̃1/2 and ṫ1/2, present the acceptance rates of two 5%-level tests (which

will be defined later on) to check the validity of the jackknife corrections. The underlying null hypothesis of

the tests is that the jackknife effectively removes the leading bias from the maximum-likelihood estimator.

In this example, the acceptance rates are close to the nominal acceptance rate of 95%, confirming that the

jackknife is bias-reducing.

Table 1. Small-sample performance in the stationary Gaussian autoregression

bias confidence validity

N T γ̂ γ̃HK γ̃1/2 γ̇1/2 γ̂AB γ̂ γ̃HK γ̃1/2 γ̇1/2 γ̂AB t̃1/2 ṫ1/2

100 4 −.413 −.141 −.076 −.176 −.054 .000 .495 .682 .273 .923 .953 .735

100 6 −.278 −.074 −.019 −.097 −.047 .000 .702 .815 .509 .910 .966 .878
100 8 −.206 −.044 .001 −.058 −.039 .000 .815 .848 .702 .910 .964 .916
100 12 −.134 −.021 .008 −.027 −.031 .001 .897 .866 .853 .900 .957 .935
20 20 −.081 −.010 .005 −.012 −.089 .595 .947 .903 .935 .613 .956 .951
50 50 −.031 −.002 .001 −.002 −.033 .592 .950 .934 .939 .603 .947 .946

100 100 −.015 .000 .000 .000 −.016 .596 .948 .939 .941 .605 .950 .949

Model: yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0), stationary yi0. Data generated with γ0 = .5, σ2

0 = 1,
αi0 ∼ N (0, 1). 10, 000 Monte Carlo replications.

The linear autoregressive model is convenient for illustrative purposes because a benchmark is available

in the form of the Arellano and Bond (1991) estimator. From a fixed-T perspective there is no theoretical

ground to prefer bias-corrected estimators over this estimator. The situation is different under rectangular-

array asymptotics, where the bias-corrected estimators are asymptotically efficient and the Arellano and

Bond (1991) estimator is asymptotically biased; see Hahn and Kuersteiner (2002) and Alvarez and Arellano

(2003), respectively. Furthermore, in nonlinear models, fixed-T approaches are typically not available. For

example, in the dynamic binary-choice model where zit = (yit, yit−1) and Pr[yit = 1|yit−1 = x] = F (αi0+θ0x)

for x = 0, 1 and a given distribution function F , a fixed-T consistent estimator of θ0 is available when F

is logistic (Chamberlain 1985), but when F is Gaussian θ0 is not point identified for small T (Honoré and

Tamer 2006; see also Chamberlain 2010 on the lack of point identification). In such situations, bias-corrected

estimation can be an attractive option. To illustrate, Table 2 provides simulation results for the jackknife

corrections in the stationary dynamic probit model where θ0 = .5. Again, the reduction in bias is substantial,

and so is the improvement of the 95% confidence intervals.
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Table 2. Small-sample performance in the stationary autoregressive probit model

bias confidence validity

T θ̂ θ̃1/2 θ̇1/2 θ̂ θ̃1/2 θ̇1/2 t̃1/2 ṫ1/2

6 −.618 .248 −.272 .031 .833 .895 .959 .929

8 −.456 .078 −.162 .079 .917 .889 .956 .951
12 −.300 .021 −.074 .194 .934 .923 .962 .962
18 −.197 .008 −.031 .354 .943 .943 .954 .954

Model: yit = 1(αi0 + θ0yit−1 + εit > 0), εit ∼ N (0, 1), stationary yi0. Data generated with N = 100, θ0 = .5,
αi0 ∼ N (0, 1). 10, 000 Monte Carlo replications.

In the next section we will present jackknife estimators of θ0 and compare them with other approaches

available in the literature. We will also present jackknife bias corrections for average (marginal or other)

effects, where the averaging is over the fixed effects and, possibly, over covariates (Chamberlain 1984).

Averages like this are often parameters of substantial interest. In the Gaussian autoregression, one such

quantity would be the survival function at s, i.e.,∫ +∞

−∞
Pr[yit ≥ s|yit−1 = x, αi0 = α] dG(α) =

∫ +∞

−∞
Φ

(
α+ x′γ0 − s

σ0

)
dG(α),

where G denotes the marginal distribution of the αi0. The analog in the dynamic binary-choice model would

be the choice probability F (αi0 + xθ0) averaged against G. Plug-in estimators of such averages based on

maximum-likelihood estimates will typically be inconsistent. Again, in regular problems, the asymptotic

bias will generally be O(T−1). Using a bias-corrected estimate of θ0 instead of θ̂ leaves the order of the bias

unchanged. Moreover, even if the true θ0 were used, the bias would remain O(T−1) because the αi0 are not

estimated consistently for small T . However, the idea underlying the jackknife estimators of θ0 can readily

be applied to obtain bias-corrected average-effect estimators.

2. SPLIT-PANEL JACKKNIFE ESTIMATION

In this section we present our jackknife corrections and provide sufficient conditions for them to improve on

maximum likelihood. We will work under the following assumption.

Assumption 2.1. The processes zit are independent across i, and stationary and alpha mixing across t,

with mixing coefficients ai(m) that are uniformly exponentially decreasing, i.e., supi |ai(m)| < Cbm for some

finite C > 0 and b such that 0 < b < 1, where

ai(m) ≡ sup
t

sup
A∈Ait,B∈Bit+m

|Pr(A ∩B)− Pr(A) Pr(B)|,

and Ait ≡ σ(zit, zit−1, . . .) and Bit ≡ σ(zit, zit+1, . . .) are the sigma algebras generated by zit, zit−1, . . . and

zit, zit+1, . . ., respectively. The density of zit given zit−1, zit−2, . . .(relative to some dominating measure) is

f(zit; θ0, αi0) where (θ0, αi0) is the unique maximizer of E[log f(zit; θ, αi)] over the Euclidean parameter space

Θ×A and is interior to it.

This assumption accommodates dynamic models by letting zit = (yit, xit) and f(zit; θ, αi) = f(yit|xit; θ, αi),
where xit may contain past values of the outcome variable yit. The density is assumed to be dynamically

complete, but the assumption allows for feedback from past outcomes on covariates. We assume that the

data are independent across i. The time-series processes may be heterogeneous across i with a uniform
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upper bound on the temporal dependencies that decays exponentially. Hahn and Kuersteiner (2011) provide

a detailed discussion of the stationarity and mixing assumptions. Hahn and Kuersteiner (2010, 2011) and

de Jong and Woutersen (2011) show that they hold under mild conditions in several popular nonlinear

models, including dynamic binary-choice models and dynamic tobit models with exogenous covariates. The

last part of Assumption 2.1 essentially states that the parameters θ0 and αi0 are identifiable from within-

group variation in the data.

Assumption 2.1 is standard in the literature on fixed-effect estimation under rectangular-array asymptotics;

compare with Condition 3 in Hahn and Kuersteiner (2011) and Assumption 3 in Arellano and Hahn (2006).

As we mentioned, the stationarity assumption may not be realistic in certain applications. For example, it

rules out time trends and time dummies, which are often included in empirical models. Accounting for such

aggregate time effects is difficult in nonlinear fixed-effect models, even in settings where fixed-T inference

would otherwise be feasible (see Honoré and Kyriazidou 2000 and Honoré and Tamer 2006). In recent work,

Bai (2009, 2013) deals with time effects in linear panel models under asymptotics where both N,T →∞. In

dynamic models, stationarity further requires that the initial observations are drawn from their respective

stationary distributions or, equivalently, that the processes started in the distant past. We will discuss the

sensitivity of bias corrections to violations of this assumption below.

2.1. Correcting the estimator

Let sit(θ) ≡ ∇θ log f(zit; θ, αi(θ)) and Hit(θ) ≡ ∇θθ′ log f(zit; θ, αi(θ)) be the contributions to the infeasible

profile score and Hessian matrix, respectively. Let Σ ≡ −E[Hit(θ0)]. We will restrict attention to models

satisfying the following two conditions.

Assumption 2.2. θT and Σ exist, and

√
NT (θ̂ − θT ) =

1√
NT

N∑
i=1

T∑
t=1

Σ−1sit(θ0) + op(1)

as N,T →∞.

Assumption 2.3. As T →∞,

θT − θ0 =
B1

T
+ o

(
1

T

)
,

where B1 is a constant.

Assumption 2.2 is the usual influence-function representation of the maximum-likelihood estimator when

centered around its probability limit, and is a mild requirement. Because θ̂ is consistent as T →∞, it holds

that θT − θ0 → 0 as T → ∞. Assumption 2.3 is a high-level condition on how the bias shrinks. Hahn and

Newey (2004) and Hahn and Kuersteiner (2011) provide primitive conditions under which these assumptions

are satisfied in static and dynamic models, respectively.

Put together, these assumptions imply that, as N,T → ∞ such that N/T → ρ for some ρ ∈ (0,∞), we

have
√
NT (θ̂ − θ0)

d→ N (B1
√
ρ,Σ−1).

As a result, confidence intervals for θ0 centered at θ̂ would be expected to have poor coverage even in panels

where T is of the same order of magnitude as N .
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We now use the jackknife to obtain a non-parametric estimator of B1/T , the leading bias term of θ̂. This

bias term generally depends on the data generating process in a complicated way. Hahn and Kuersteiner

(2011) derive the exact form of B1 and present a plug-in estimator of it based on the maximum-likelihood

estimator of θ0 and the αi0. Here we estimate B1/T by means of a linear combination of θ̂ and estimators

based on subpanels. For our purposes a subpanel is defined as a proper subset S  {1, 2, . . . , T} such that

the elements of S are consecutive integers and |S| ≥ Tmin, where |S| denotes the cardinality of S and Tmin is

the smallest T for which θT exists. Now, the maximum-likelihood estimator corresponding to subpanel S is

θ̂S ≡ arg max
θ∈Θ

l̂S(θ) , l̂S(θ) ≡ 1

N |S|

N∑
i=1

∑
t∈S

log f(zit; θ, α̂iS(θ)),

where α̂iS(θ) ≡ arg maxαi∈A
1
|S|
∑
t∈S log f(zit; θ, αi). Since, by their very definition, subpanels preserve the

dependency structure of the full panel, our assumptions imply that plimN→∞θ̂S = θ|S| and, as |S| → ∞,

θ|S| can be expanded as in Assumption 2.3, with |S| replacing T . It thus follows that

|S|
T − |S|

(θS − θT ) =
B1

T
+ o

(
1

T

)
, (2.1)

and that |S|
T−|S| (θ̂S−θ̂) is a consistent estimator of B1/T . Each subpanel S has associated with it an estimator

θ̂S that can be combined with θ̂ to obtain an estimator of the leading bias. Different choices lead to jackknife

estimators with different properties, which leads to the question of the optimal choice of subpanels.

Let g ≥ 2 be an integer such that T ≥ gTmin. Suppose we split the panel into S = {S1, S2, . . . , Sg}, a

collection of subpanels partitioning {1, 2, . . . , T} in such a way that the sequence minS∈S |S|/T is bounded

away from zero as T grows. Then, with

θS ≡
∑
S∈S

|S|
T
θ̂S , (2.2)

1
g−1 (θS − θ̂) is a consistent estimator of B1/T based on the collection S. Now, any such collection S defines

an equivalence class {S1,S2, . . . ,Sm} of collections of subpanels partitioning {1, 2, . . . , T} that have the same

set of cardinalities as S. Note that m ≤ g! and that m = 1 when all subpanels in S have cardinality T/g.

Averaging 1
g−1 (θS − θ̂) over the equivalence class of S to estimate B1/T removes any arbitrariness arising

from a particular choice of partitioning for given cardinalities of the subpanels. Subtracting this estimate

from θ̂ yields the split-panel jackknife estimator

θ̃ ≡ g

g − 1
θ̂ − 1

g − 1
θ, θ ≡ 1

m

m∑
j=1

θSj . (2.3)

The following theorem gives the asymptotic behavior of this estimator.

Theorem 2.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then plimN→∞θ̃ = θ0 + o(T−1) and
√
NT (θ̃ − θ0)

d→ N (0,Σ−1)

as N,T →∞ with N/T → ρ.

This result states that, under the assumptions made, all members of the class θ̃ remove the leading bias from

θ̂ and have a normal limit distribution that is correctly centered under rectangular-array asymptotics. The

asymptotic variance is the same as that of the maximum-likelihood estimator. The fact that bias reduction

can be achieved without variance inflation is important. It arises here from the way in which the subpanels

are combined to estimate the bias term. To see this, note that any θ̂S in (2.2) has an asymptotic variance that
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is larger than that of θ̂ because |S| < T . However, because each collection partitions {1, 2, . . . , T}, averaging

the subpanel estimators as in (2.2) brings the variance back down to that of maximum likelihood.

Thus, the split-panel jackknife estimator removes the leading bias from θ̂ without affecting its asymptotic

variance. Like other bias-corrected estimators, it does, however, affect the magnitude of the higher-order

bias, i.e., the bias that is not removed. This is because B1/T is estimated with bias o(T−1); recall (2.1).

For the split-panel jackknife estimators, the transformation of the higher-order bias is very transparent. To

describe it, it is useful to assume for a moment that the inconsistency of θ̂ can be expanded to a higher

order, that is,

θT − θ0 =
B1

T
+
B2

T 2
+ · · ·+ Bk

T k
+ o

(
1

T k

)
(2.4)

for some integer k. While θ̃ eliminates B1, it transforms the remaining Bj into B′j , say. Theorem S.2.1 in the

supplementary material provides a characterization of this transformation. It shows that |B′j | > |Bj | for all

j ≥ 2 and that, for given g, any higher-order bias coefficient, B′j , is minimized (in absolute value) if and only

if the collections Sj are almost-equal partitions of {1, 2, . . . , T}, i.e., if bT/gc ≤ |S| ≤ dT/ge for all S ∈ Sj .
With almost-equal partitions, the second-order bias term is −gB2/T

2. Minimizing this term over g gives the

half-panel jackknife estimator

θ̃1/2 ≡ 2θ̂ − θ1/2, (2.5)

which also minimizes the magnitude of all higher-order bias terms. Here, θ1/2 is the average of θS1 and θS2

as defined in (2.2), with S1 ≡ {{1, . . . , dT/2e}; {dT/2e + 1, . . . , T}} and S2 ≡ {{1, . . . , bT/2c}; {bT/2c +

1, . . . , T}}. When T is odd, S1 and S2 are the two possible ways of splitting the panel into two near half-

panels; when T is even, S1 = S2 and the panel is split exactly into half-panels.

The half-panel jackknife estimator is simple to implement, requiring a few maximum-likelihood estimates.

To compute these, an efficient algorithm will exploit the sparsity of the Hessian matrix, as suggested by

Hall (1978) and Chamberlain (1980). This makes fixed-effect estimation and jackknife-based bias correction

straightforward, even when the cross-sectional sample size is large or when αi is a vector of individual

effects. Furthermore, once the full-panel maximum-likelihood estimates have been computed, they are good

starting values for computing the subpanel estimates. The asymptotic variance, finally, can be estimated

using the point estimates to form a plug-in estimator Σ̂−1. In our simulations, we estimated Σ using the

Hessian matrix of the profile log-likelihood (estimates based on the variance of the profile score or on the

sandwich formula yielded very similar results). For the linear dynamic model we applied a degree-of-freedom

correction to account for the estimation of the error variance and, for the half-panel jackknife estimates of

θ0, we estimated Σ as the average of its two-halfpanel estimates.

A drawback of the half-panel jackknife estimator in (2.5) is that it cannot be applied when T < 2Tmin. One

solution, provided that Tmin < T , is to resort to overlapping subpanels to construct jackknife estimators.

Let g be a rational number strictly between 1 and 2 such that T is divisible by g. Let S1 and S2 be two

overlapping subpanels such that S1 ∪ S2 = {1, 2, . . . , T} and |S1| = |S2| = T/g. The estimator

θ̃1/g ≡
g

g − 1
θ̂ − 1

g − 1
θ1/g, θ1/g ≡

1

2
(θ̂S1

+ θ̂S2
), (2.6)

is first-order unbiased. Furthermore, a calculation shows that, as N,T →∞ with N/T → ρ,√
NT

dg
(θ̃1/g − θ0)

d→ N (0,Σ−1)
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where dg ≡ 1
2g/(g − 1). A formal derivation is available as Theorem S.3.1 in the supplementary material.

The factor dg is a variance inflation factor. It increases from one to infinity as the fraction of subpanel

overlap increases from zero to one. The variance inflation can be interpreted as the price to be paid for bias

correction via the jackknife in very short panels.
1

The analytical corrections of, e.g., Hahn and Kuersteiner

(2011) and Arellano and Hahn (2006) do not have this drawback.

2.2. Correcting the objective function

As noted above, the incidental-parameter problem arises because the large N , fixed T profile log-likelihood,

lT (θ), approaches the infeasible objective function l0(θ) only as T →∞. Equivalently, as N →∞ with fixed

T , the profile score ŝ(θ) ≡ ∇θ l̂(θ) converges to sT (θ) ≡ ∇θlT (θ), which is generally non-zero at θ0. Because

θT solves sT (θ) = 0, the bias of the profile-score equation can be seen as the source for θT 6= θ0. This suggests

that, rather than correcting θ̂, one may equally well correct for incidental-parameter bias by maximizing a

bias-corrected profile log-likelihood. In the context of inference in the presence of nuisance parameters, such

approaches have been the subject of much study in the statistics literature; see Sartori (2003) for a recent

account and many references.

We now show that the split-panel jackknife can be applied to correct l̂(θ) in the same way as θ̂. Let

∆(θ) ≡ limN→∞N−1
∑∞
i=1

∑∞
j=−∞ cov(sit(θ), sit−j(θ)); note that ∆(θ0) = Σ, as sit(θ0) is a martingale

difference sequence and the information matrix equality holds. In analogy to Assumptions 2.2 and 2.3, we

will work under the following two conditions.

Assumption 2.4. There is a neighborhood N0 ⊆ Θ around θ0 where both sT (θ) and ∆(θ) exist, and where

√
NT (ŝ(θ)− sT (θ)) =

1√
NT

N∑
i=1

T∑
t=1

(sit(θ)− s0(θ)) + op(1)

as N,T →∞.

Assumption 2.5. As T →∞,

lT (θ)− l0(θ) =
C1(θ)

T
+ o

(
1

T

)
,

where C1(θ) is a continuous function that has a bounded first derivative C ′1(θ) on N0.

Assumption 2.4 is an asymptotic-linearity condition on the profile score. Assumption 2.5 states that the bias

of the profile log-likelihood has a leading term that is O(T−1). Primitive conditions are available in Arellano

and Hahn (2006).

These assumptions can be linked to Assumptions 2.2 and 2.3 as follows. A Taylor expansion of sT (θ)

around θ0 gives

sT (θT ) = sT (θ0)− Σ (θT − θ0) + o(‖θT − θ0‖).

Because sT (θ) = s0(θ) + C ′1(θ)/T + o(1/T ) on N0 and θT lies in N0 with probability approaching one as

1
On the other hand, overlapping subpanels yield smaller inflation of the higher-order bias. From (2.4) and (2.6) it follows that

plimN→∞θ̃1/g − θ0 = −gB2/T
2 − g(1 + g)B3/T

3 − . . .− g(1 + g + . . .+ gk−2)Bk/T
k + o(T−k).

Each bias term here is smaller (in magnitude) than the corresponding bias term of θ̃1/2.
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T →∞, we have

θT − θ0 =
Σ−1 C ′1(θ0)

T
+ o

(
1

T

)
, (2.7)

using sT (θT ) = 0 and s0(θ0) = 0. Thus, the leading bias of θ̂, B1/T , is the product of a Hessian term with

the leading bias of the profile score.

Let T ′min be the least T for which lT (θ) exists and is non-constant (we show below that T ′min may be

smaller than Tmin). In analogy to (2.3), consider the split-panel log-likelihood correction

l̇(θ) ≡ g

g − 1
l̂(θ)− 1

g − 1
l(θ), l(θ) ≡ 1

m

m∑
j=1

lSj (θ), lSj (θ) ≡
∑
S∈Sj

|S|
T
l̂S(θ),

where, as before, {S1,S2, . . . ,Sm} is the equivalence class of a chosen partition S of the panel into g non-

overlapping subpanels (now with |S| ≥ T ′min for all S ∈ S) such that minS∈S |S|/T is bounded away from

zero as T grows. It is easy to see that plimN→∞ l̇(θ) = l0(θ) + o(T−1), from which it readily follows that

θ̇ ≡ arg max
θ∈Θ

l̇(θ)

is a bias-corrected estimator of θ0.

Theorem 2.2. Let Assumptions 2.1, 2.4, and 2.5 hold. Then plimN→∞θ̇ = θ0 + o(T−1) and

√
NT (θ̇ − θ0)

d→ N (0,Σ−1)

as N,T →∞ with N/T → ρ.

Thus, θ̇ has the same limit distribution as θ̃ under rectangular-array asymptotics. Just as θ̃ is a jackknife

alternative to the analytical bias correction of Hahn and Kuersteiner (2011), θ̇ is a jackknife alternative to

the analytical likelihood correction proposed by Arellano and Hahn (2006). Again, the jackknife estimator

estimates the bias term, here C1(θ)/T , without the need to have an expression for it.

The half-panel likelihood-based jackknife estimator is

θ̇1/2 ≡ arg max
θ∈Θ

l̇1/2(θ), l̇1/2(θ) ≡ 2l̂(θ)− l1/2(θ), (2.8)

using obvious notation in analogy to θ̃1/2. The motivation for using half-panels is analogous to that in the

case of θ̃1/2; in the class l̇(θ), l̇1/2(θ) minimizes all higher-order bias terms that are not eliminated.

Estimation based on the bias-corrected profile likelihood is computationally somewhat more involved than

the simple additive correction θ̃1/2 in (2.5). Maximizing l̇1/2(θ) is equivalent to locating a saddlepoint that

involves maximization over θ and the fixed effects implicit in l̂(θ), and minimization over two or four separate

sets of fixed effects (when T is even or odd, respectively) implicit in l1/2(θ). In our simulations we computed

θ̇1/2 using a nested Newton-Raphson algorithm, optimizing over θ in an outer loop and over all sets of fixed

effects in an inner loop. We found this to work very reliably and reasonably fast, typically requiring not

more than two to three times as much computational time as θ̃1/2.

One attractive feature of profile-likelihood corrections is their invariance and equivariance properties. In

particular, θ̇1/2 and the associated confidence intervals are equivariant under one-to-one transformations of

θ, and the likelihood ratio test is invariant. Corrections of the estimator, such as θ̃1/2, do not have these

properties.

Another possible advantage of the profile-likelihood correction is that T ′min ≤ Tmin and, in some models,

T ′min < Tmin. Recall that θT maximizes lT (θ), so θT will not exist when lT (θ) does not exist and, therefore,
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T ′min ≤ Tmin. An example where T ′min < Tmin is the first-order autoregressive binary-choice model. Here, for

T = 2, lT (θ) exists for all θ but is maximized at −∞, so T ′min = 2 and Tmin = 3 (a more detailed derivation

is given in the supplementary material).

Finally, bias correction of the profile likelihood extends naturally to unbalanced data, under two conditions:

(i) for every unit i the observations form a time series without gaps; (ii) the unbalancedness (for example,

attrition) is due to exogenous reasons. Given (i), the unbalanced panel is formed as the union of J independent

balanced panels of dimensions Nj × Tj , j = 1, 2, . . . , J . Write l̂(θ; j) for the profile log-likelihood for the jth

such panel. The profile log-likelihood for the full panel then takes the form of the weighted average

l̂(θ) =

J∑
j=1

ωj l̂(θ; j), ωj ≡
NjTj∑J
j=1NjTj

.

Each of the l̂(θ; j) may be jackknifed in the usual fashion, giving l̇(θ; j), say. Now consider asymptotics where,

for all j, j′ = 1, 2, . . . , J , the ratios Nj/Nj′ and Tj/Tj′ remain fixed as
∑
j Nj and

∑
j Tj grow large. It is

then immediate that the maximizer of

l̇(θ) ≡
J∑
j=1

ωj l̇(θ; j), (2.9)

will be a bias-corrected estimator of θ0 that is asymptotically normal and correctly centered provided that∑
j Nj/

∑
j Tj → ρ.

2

In practical situations, it may occur that some Tj are too small for l̇(θ; j) to be defined,

in which case the corresponding terms have to be dropped from (2.9).

2.3. Discussion

Under our assumptions, all bias-correction estimators remove the leading bias term from θ̂ and have the

same asymptotic distribution as N,T → ∞ with N/T → ρ. Nevertheless, the finite-sample performance of

these estimators can be very different, due to the different ways the leading bias is estimated. For the same

reason the various methods may react differently to violations of the regularity conditions, in particular to

non-stationarity, which we discuss next.

2.3.1. Small-sample comparison Extending Hahn and Newey (2004), Hahn and Kuersteiner (2011) derived

the exact expression of B1/T and gave conditions for consistency of a plug-in estimator. The bias term

depends on moments and cross-moments of higher-order derivatives of the likelihood function, evaluated at

true parameter values. An estimator can be formed by replacing spectral expectations with sample averages

that are truncated via a bandwidth that increases appropriately with T , and replacing θ0 and the αi0 by their

maximum-likelihood estimates. Arellano and Hahn (2006) followed a similar strategy in deriving an estimator

of C1(θ)/T , the leading bias of the profile log-likelihood. Just like the jackknife, these ways of estimating the

bias introduce statistical noise and alter the remaining higher-order bias. Which of the various approaches

delivers the least bias will generally depend on the model at hand and the true parameter values. To gain

some insight, we report on the performance of the estimators in simulation experiments. Of course, a Monte

Carlo exercise can at best be suggestive. Higher-order expansions of the bias and variance would be needed to

2
One could also jackknife

∑
j ωj θ̂(j), where θ̂(j) is the maximum-likelihood estimator that corresponds to the jth panel.

This would yield
∑

j ωj θ̃1/2(j), say, which is not quite the same as directly jackknifing θ̂ because, in general, θ̂ 6=
∑

j ωj θ̂(j).

Justifying direct application of the jackknife to θ̂ would require a proof of a generalized form of the expansion of θT in Assumption
2.3.
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obtain formal results, as in Pfanzagl and Wefelmeyer (1978) for parametric cross-sectional models. Deriving

such expansions is expected to be a difficult task and is left for future research.

The experiment we report on here deals with a dynamic probit model, which we will also use in the

empirical illustration below. The design is as follows. The variables (yit, xit) were generated as

yit = 1{αi0 + γ0yit−1 + δ0xit ≥ εit}, xit = ηi0 + π0xit−1 + εit,

where εit and εit are independent standard normal. We drew αi0 ∼ N (0, 1), set ηi0 = −
√

2/3αi0 and π0 = .5,

and generated (yi0, xi0) from their steady-state distribution. We estimate θ0 = (γ0, δ0)′ and report results

for N = 500, T = 6, 8, 12, 18, γ0 = .5, 1, 1.5, and δ0 = .5, in which case the contribution to the variance of

yit is the same for αi0, xit, and εit.

Table 3 below reports the bias, the root mean squared error, the ratio of the estimated standard errors

to the standard deviation over the Monte Carlo replications, and the coverage rate of the 95% confidence

interval constructed from the Hessian-based estimate of the asymptotic variance. Besides the half-panel

jackknife estimators, we considered four analytical bias-correction estimators. The first two of these are the

Hahn and Kuersteiner (2011) correction (HK) and the determinant-based version of the Arellano and Hahn

(2006) estimator (AH), both implemented with the bandwidth set to one and the latter with a triangular

kernel.
3

The two other estimators have been developed especially for the binary-choice model. The first of

these, due to Fernández-Val (2009) (F), refines the estimator of the bias of Hahn and Kuersteiner (2011)

by using the model structure to replace sample averages by expected quantities. The second, due to Carro

(2007) (C), solves a bias-corrected profile-score equation as in Cox and Reid (1987, 1993) (see also Arellano

2003, and Woutersen 2002 for an alternative interpretation). This correction requires recursive calculation

of expected likelihood quantities. The use of expected quantities instead of sample averages in the latter

two estimators is intuitively attractive. Further, since they use most of the model structure, they may be

expected to perform best under correct specification. On the other hand, it is required that these expectations

be available in closed form. This is the case in this model, but may not be so in others (see, e.g., Hospido

2012 for such a model).

As is clear from the table, maximum likelihood performs poorly in this model, suffering from substantial

bias and confidence intervals with extremely poor coverage. The problem is most severe for the autoregressive

parameter, γ̂, although the bias is also substantial for δ̂. The magnitude of the bias is still considerable

for large values of T and, all else equal, also increases with the value of γ0. This is because more state

dependence leads to less informative data. All bias-correction approaches considered deliver point estimates

with lower bias. In most cases, the reduction in bias is quite substantial, and so is the reduction in root mean

squared error. Bias correction also leads to improvements in the coverage rates of the confidence intervals,

and so to improved inference. For most design points, θ̃1/2 and θ̇1/2 have smaller bias than θ̃HK and θ̃AH,

respectively, although the difference is less pronounced in the latter case. The confidence intervals based on

θ̃1/2 and θ̇1/2 are also better than those based on θ̃HK and θ̃AH, respectively. The chief reason for this is their

success at removing bias. The plug-in estimator of the asymptotic variance provides a reasonably accurate

estimate of the estimators’ true variability for most design points. The simulation results further show that

replacing sample averages by expectations in the analytical bias-correction methods yields a considerable

improvement, as is apparent on comparing θ̃F with θ̃HK, and θ̃C with θ̃AH. As the state dependence increases,

3
The bandwidth is required to grow with T to ensure asymptotic bias reduction. We repeated the experiment with several

other choices for the bandwidth. The current choice was found to perform best. Setting the bandwidth too large resulted in
estimates with bias of the same order as that of maximum likelihood.
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the performance of most estimators of γ0 worsens, with little bias reduction and hardly improved confidence

intervals when γ0 = 1.5. Only γ̃1/2 is less sensitive to the value of γ0, still achieving a substantial bias

reduction when the persistence is large.

From this and many other numerical experiments that we conducted, our tentative conclusion is that the

jackknife corrections are competitive with the available analytical corrections, and can be a very useful tool

for inference in micropanels.

2.3.2. Robustness to non-stationarity The available literature on bias correction in general nonlinear fixed-

effect models assumes stationary data. Dealing with potentially non-stationary regressors, trends, or other

time effects is complicated when the length of the panel is not treated as fixed. In nonlinear models, a major

difficulty is that the maximum-likelihood estimator itself may exhibit non-standard behavior, including a

non-standard convergence rate in T and a non-normal limit distribution. In such cases, it is doubtful that

the expansions in Assumptions 2.3 or 2.5 will hold. In addition, even in situations where these expansions

continue to hold, there may be a concern that the jackknife corrections are potentially more sensitive to

violations of the stationarity requirement than the analytical methods because of the necessity to split the

panel. For example, when the dynamics of the data are very different in the two half-panels, this could result

in half-panel estimates that are very different from each other and lead to a poor estimate of the leading

bias.

To infer whether the jackknife estimators yield asymptotically bias-reduced estimates, possibly in non-

stationary situations, one can devise validity tests based on comparing subpanel estimates. Let S = {S1, S2}
partition {1, 2, . . . , T} such that |S1| ≥ Tmin and |S2| ≥ Tmin. Then, using (2.1), we have

|S1|
|S2|

(θ̂S1
− θ̂) p→ B1

T
+ o

(
1

T

)
,

|S2|
|S1|

(θ̂S2
− θ̂) p→ B1

T
+ o

(
1

T

)
,

under the null that the split-panel jackknife estimator based on S is bias-reducing. It is intuitively clear that

a comparison of two subpanel estimates can be informative about the validity of the jackknife corrections.

Letting

r̂ ≡ |S1|
|S2|

(θ̂S1
− θ̂)− |S2|

|S1|
(θ̂S2

− θ̂),

we can form a Wald test statistic that is asymptotically χ2 distributed under our assumptions, i.e.,

t̃ ≡ NT

d
r̂′ Σ̂ r̂

d→ χ2
dimθ, d ≡ |S1|

|S2|
+
|S2|
|S1|

+ 2. (2.10)

The scale factor d accounts for the variance inflation due to the use of subpanels. For example, when T is

even, the Wald statistic associated with the half-panel jackknife has d = 4.

In the same way, now with |S1| ≥ T ′min and |S2| ≥ T ′min, if the expansion in Assumption 2.5 holds for some

function C1(θ), we have

|S1|
|S2|

(ŝS1
(θ)− ŝ(θ)) p→ C ′1(θ)

T
+ o

(
1

T

)
,

|S2|
|S1|

(ŝS2
(θ)− ŝ(θ)) p→ C ′1(θ)

T
+ o

(
1

T

)
,

for θ ∈ N0. From this we can form a score test to check the validity of the likelihood-based jackknife

correction. A natural value to evaluate the profile scores is the maximum-likelihood estimate of the full

panel. Letting

ṙ ≡ |S1|
|S2|

ŝS1
(θ̂)− |S2|

|S1|
ŝS2

(θ̂),
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Table 3. Simulation results for a stationary dynamic probit model

bias rmse
T γ0 γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C

6 .5 −.531 .315 −.194 −.065 −.218 −.230 −.129 .535 .330 .202 .084 .226 .237 .142

8 .5 −.380 .124 −.119 −.046 −.117 −.144 −.069 .384 .140 .128 .065 .127 .152 .085
12 .5 −.243 .046 −.063 −.032 −.045 −.077 −.028 .246 .065 .073 .048 .061 .086 .048
18 .5 −.158 .019 −.037 −.023 −.017 −.044 −.011 .161 .039 .047 .037 .037 .053 .033
6 1 −.600 .230 −.313 −.197 −.323 −.330 −.209 .605 .255 .319 .205 .331 .337 .219
8 1 −.442 .075 −.219 −.150 −.194 −.236 −.124 .445 .106 .225 .158 .203 .242 .136

12 1 −.288 .026 −.134 −.101 −.085 −.146 −.055 .291 .059 .140 .108 .097 .152 .071
18 1 −.188 .015 −.083 −.068 −.032 −.090 −.022 .191 .042 .089 .075 .049 .096 .042
6 1.5 −.731 .083 −.527 −.392 −.486 −.477 −.355 .737 .164 .532 .398 .494 .490 .364
8 1.5 −.560 −.031 −.400 −.314 −.330 −.381 −.238 .565 .101 .405 .320 .337 .387 .247

12 1.5 −.384 −.038 −.268 −.223 −.177 −.266 −.128 .388 .076 .272 .227 .185 .270 .138
18 1.5 −.260 −.018 −.177 −.153 −.085 −.180 −.063 .264 .052 .181 .158 .096 .184 .077

se/sd confidence
T γ0 γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C

6 .5 .987 .952 1.084 1.148 1.520 1.051 1.039 .000 .082 .103 .849 .290 .034 .446

8 .5 .995 .989 1.082 1.115 1.262 1.074 1.015 .000 .521 .334 .880 .578 .171 .726
12 .5 1.017 .984 1.084 1.098 1.110 1.082 1.018 .000 .822 .645 .894 .852 .497 .894
18 .5 1.006 .982 1.054 1.060 1.037 1.053 1.000 .001 .911 .798 .902 .929 .723 .934
6 1 1.010 .980 1.160 1.224 1.577 1.081 1.097 .000 .446 .002 .173 .058 .003 .156
8 1 1.015 1.002 1.143 1.180 1.324 1.115 1.056 .000 .837 .021 .228 .204 .013 .429

12 1 1.011 .981 1.108 1.124 1.136 1.099 1.017 .000 .917 .122 .370 .633 .078 .765
18 1 1.012 .985 1.082 1.087 1.058 1.078 1.004 .001 .932 .332 .520 .880 .259 .901
6 1.5 1.016 1.014 1.256 1.302 1.624 .870 1.171 .000 .919 .000 .002 .015 .011 .021
8 1.5 1.032 1.024 1.227 1.263 1.384 1.131 1.122 .000 .944 .000 .003 .034 .001 .095

12 1.5 1.040 1.025 1.190 1.206 1.218 1.153 1.072 .000 .915 .000 .009 .207 .001 .383
18 1.5 1.013 .998 1.121 1.128 1.095 1.104 1.017 .000 .935 .009 .045 .600 .009 .706

bias rmse

T γ0 δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C

6 .5 .153 −.076 .058 .015 .078 .105 .040 .159 .097 .069 .036 .087 .113 .052

8 .5 .109 −.035 .039 .010 .045 .061 .022 .114 .052 .048 .028 .054 .068 .034
12 .5 .069 −.014 .020 .006 .019 .029 .009 .073 .028 .029 .021 .029 .036 .022
18 .5 .045 −.006 .010 .003 .008 .014 .004 .048 .018 .019 .016 .018 .021 .016
6 1 .182 −.055 .037 .034 .111 .139 .062 .189 .089 .052 .050 .120 .147 .073
8 1 .133 −.023 .033 .025 .069 .087 .038 .138 .050 .045 .039 .078 .094 .048

12 1 .085 −.011 .023 .015 .033 .044 .017 .089 .030 .033 .027 .041 .050 .028
18 1 .056 −.006 .015 .009 .014 .023 .008 .059 .021 .023 .019 .023 .029 .019
6 1.5 .228 −.024 −.034 .061 .158 .195 .095 .236 .097 .049 .075 .169 .215 .106
8 1.5 .171 .000 −.005 .048 .107 .127 .064 .178 .060 .032 .061 .116 .135 .075

12 1.5 .116 .005 .014 .034 .060 .073 .036 .120 .037 .030 .043 .068 .079 .045
18 1.5 .077 .001 .017 .022 .031 .041 .019 .081 .025 .027 .030 .038 .047 .028

se/sd confidence

T γ0 δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C

6 .5 .843 .946 .954 1.052 1.420 .845 1.018 .019 .718 .608 .946 .803 .175 .797

8 .5 .877 1.018 .966 1.032 1.272 .921 1.018 .037 .852 .713 .944 .852 .402 .887
12 .5 .918 1.053 .985 1.022 1.167 .968 1.021 .098 .922 .842 .947 .925 .710 .936
18 .5 .946 1.055 1.001 1.017 1.105 .992 1.018 .215 .946 .912 .952 .950 .864 .952
6 1 .845 .929 1.064 1.087 1.424 .842 1.039 .013 .852 .866 .889 .653 .083 .671
8 1 .867 .999 1.022 1.047 1.282 .912 1.025 .023 .920 .823 .889 .714 .220 .787

12 1 .904 1.035 1.002 1.026 1.175 .952 1.023 .059 .940 .833 .912 .845 .525 .895
18 1 .935 1.038 1.001 1.017 1.109 .980 1.021 .133 .946 .871 .926 .920 .752 .935
6 1.5 .838 .904 1.324 1.117 1.427 .680 1.049 .012 .916 .948 .811 .558 .059 .545
8 1.5 .852 .968 1.180 1.057 1.279 .856 1.027 .016 .940 .977 .788 .559 .123 .643

12 1.5 .890 1.015 1.083 1.029 1.185 .934 1.028 .028 .953 .941 .798 .676 .285 .777
18 1.5 .914 1.034 1.023 1.010 1.126 .953 1.018 .066 .956 .889 .839 .819 .524 .874

Model: yit = 1{αi0 +γ0yit−1 + δ0xit ≥ εit}, εit ∼ N (0, 1), stationary (yi0, xi0). Data generated with N = 500,

αi0 ∼ N (0, 1), δ0 = .5, xit = −
√

2/3αi0 + .5xit−1 + εit, εit ∼ N (0, 1). 10, 000 Monte Carlo replications.
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it follows under our assumptions that

ṫ ≡ NT

d
ṙ Σ̂−1 ṙ

d→ χ2
dimθ, (2.11)

with the same d as above. When θ0 is multidimensional it may also be of interest to report component-by-

component test statistics.

Let t̃1/2 and ṫ1/2 denote the statistics t̃ and ṫ implemented with half-panels. The empirical acceptance

rates of the 5%-level validity tests based on t̃1/2 and ṫ1/2 were reported in Tables 1 and 2 for the linear

autoregressive model and the dynamic probit model. There, the individual time-series processes were indeed

stationary, and the empirical acceptance rates are close to the nominal acceptance probability of 95%. For

small T , there is some size distortion but it diminishes as T grows.

One realistic departure from Assumption 2.1 is a situation in which the initial observations are not drawn

from their respective steady-state distributions. The fixed-T inconsistency of θ̂ will, in general, depend on

the distribution of the initial values, but the processes will still be asymptotically stationary as T →∞. It is

conceivable that this distribution affects the O(T−1) bias term (assuming that the leading bias still takes this

form), in which case the half-panel jackknife will fail to remove it. This is a potential weakness of the jackknife

that the analytical plug-in methods need not share.
4

The test statistics t̃1/2 and ṫ1/2 may help to assess the

effect of non-stationary initial observations on the jackknife. However, in the event that the jackknife is

still bias-reducing, it is natural to expect that the tests will exhibit size distortions that increase with the

degree of non-stationarity, although the size distortions should vanish as T increases. Thus, some caution is

warranted when the tests are applied in very short panels. To gain some insight in the performance of these

tests, we now examine the Gaussian autoregression and the autoregressive probit model in the presence of

non-stationary initial observations.

Reconsider the Gaussian autoregression

yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0),

now with arbitrary initial observations yi0. It is well known that γT −γ0 depends on the joint distribution of

(αi0, yi0). However, the first-order bias does not (Hahn and Kuersteiner 2002). In the supplementary material

we show that

γT − γ0 = −1 + γ0

T
− γ0(1 + γ0) + (1− ψ2)

(1− γ0)T 2
+O

(
1

T 3

)
, ψ2 ≡ E

[(
yi0 −

αi0
1− γ0

)2/
σ2

0

1− γ2
0

]
.

The parameter ψ2 is a measure of the deviation of the yi0 from their stationary distributions, with stationarity

implying ψ2 = 1. Because ψ2 does not show up in the O(T−1) bias term, the jackknife will be bias-reducing

for arbitrary initial observations. The presence of ψ2 in the second-order bias term arises from a higher-order

expansion of the large N variance of γ̂ as T →∞. This variance appears as the denominator of the fixed-T

inconsistency of γ̂. With the effect of the initial observations fading out as T →∞, the asymptotic variance

of γ̂ under rectangular-array asymptotics is 1−γ2
0 , independently of ψ2. Similar results may be derived when

the model is extended to allow for (incidental) time trends or time-series heteroskedasticity (see Alvarez and

Arellano 2004 and Dhaene and Jochmans 2013). The robustness of the jackknife to non-stationary initial

observations also holds for the jackknifed profile log-likelihood. Non-stationary initial observations have no

effect on the O(T−1) bias term of l̂(γ), so the jackknife is bias-reducing (see the supplementary material for

4
Verifying whether the analytical corrections are immune to non-stationary initial observations would require a proof that the

plug-in estimator of the leading bias remains consistent. No general results on this are known to us.
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details). One may also work with the profile log-likelihood l̂(γ, σ2), whose O(T−1) bias term is, again, free

of ψ2. We found, however, that additionally profiling out σ2 before jackknifing performs better in terms of

bias reduction. The results for γ̇1/2 presented in Table 4 below and earlier in Figure 1 and Table 1 are based

on jackknifing l̂(γ).

Table 4 presents simulation results for the Gaussian autoregression with non-stationary initial observations,

where the jackknife is bias-reducing. We generated yi0 ∼ N (αi0/(1−γ0), ψ2σ2
0/(1−γ2

0)) with ψ set to 0 and

2. These values correspond, respectively, to inlying and outlying initial observations relative to the steady-

state distributions. The results show that the bias-corrected estimators continue to remove most of the

small-sample bias from γ̂. The jackknife estimator γ̃1/2 generally performs better than the plug-in estimator

γ̃HK = γ̂ + (1 + γ̂)/T . When γ0 = .5, the 5%-level validity tests both overreject the null when T is small,

but the overrejection rates decrease as T increases, as predicted by the theory. This is because in the early

periods the time-series are moving toward their steady state. This move is bigger as |ψ| is farther away from

1. The impact of ψ vanishes as γ0 → 1 (Dhaene and Jochmans 2013), which explains the much improved

acceptance rates for very small T when γ0 is increased to .95.

Table 4. Small-sample performance in a non-stationary Gaussian autoregression

bias confidence validity

T γ0 ψ γ̂ γ̃HK γ̃1/2 γ̇1/2 γ̂ γ̃HK γ̃1/2 γ̇1/2 t̃1/2 ṫ1/2

4 .5 0 −.537 −.296 −.191 −.239 .000 .022 .304 .090 .601 .458

6 .5 0 −.340 −.147 −.054 −.121 .000 .233 .726 .373 .639 .688
8 .5 0 −.243 −.086 −.012 −.070 .000 .507 .834 .626 .737 .818

12 .5 0 −.151 −.039 .007 −.031 .000 .778 .866 .832 .855 .904
4 .5 2 −.244 .070 .084 −.099 .001 .747 .681 .687 .376 .480
6 .5 2 −.178 .043 .064 −.059 .001 .798 .662 .769 .304 .593
8 .5 2 −.142 .028 .044 −.039 .002 .854 .711 .836 .373 .691

12 .5 2 −.102 .014 .023 −.020 .013 .907 .808 .895 .585 .809
4 .95 0 −.609 −.274 −.220 −.405 .000 .023 .220 .000 .950 .746
6 .95 0 −.441 −.189 −.128 −.290 .000 .016 .332 .000 .945 .870
8 .95 0 −.346 −.146 −.088 −.225 .000 .014 .419 .000 .934 .915

12 .95 0 −.243 −.101 −.051 −.154 .000 .014 .520 .000 .922 .940
4 .95 2 −.511 −.152 −.111 −.330 .000 .370 .620 .001 .947 .729
6 .95 2 −.347 −.079 −.025 −.219 .000 .513 .824 .001 .928 .865
8 .95 2 −.257 −.046 .008 −.159 .000 .660 .850 .002 .909 .896

12 .95 2 −.166 −.017 .028 −.098 .000 .809 .717 .008 .875 .927

Model: yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0). Data generated with N = 100, σ2

0 = 1, αi0 ∼ N (0, 1),

yi0 ∼ N (αi0/(1− γ0), ψ2σ2
0/(1− γ20)). 10, 000 Monte Carlo replications.

In the autoregressive probit model with non-stationary initial observations there are no theoretical results

available about the expansions. We approached the question by simulation. Table 5 reports the effect of

setting yi0 = 0 for all i (top panel) and setting yi0 = 1 for all i (bottom panel), respectively. These are two

extreme deviations from stationary initial observations. The bias reduction of the jackknife is manifest. In

line with this, the validity tests have acceptance rates close to the nominal rate, even for very short panels.

The improved acceptance rates for very small T , compared with those in the linear autoregressive model,

are likely to be due to the limited variation in the regressor. The results suggest that non-stationary initial

observations in the binary-choice model do not pose problems for bias correction.

We note that flexible modelling can be a way to accommodate certain trends in the data such as increases
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in cross-sectional variances. For example, when investigating the dynamics of individual earnings, Hospido

(2012) allows for worker-specific volatility clustering by specifying a GARCH model for the conditional

variance of wages (see also Meghir and Pistaferri 2004). Such a multiple-equation model readily fits into our

setup and can easily be estimated via the jackknife.

Table 5. Small-sample performance in a non-stationary autoregressive probit model

bias confidence validity

T θ̂ θ̃1/2 θ̇1/2 θ̂ θ̃1/2 θ̇1/2 t̃1/2 ṫ1/2
yi0 = 0

6 −.525 .305 −.213 .083 .740 .936 .910 .906
8 −.394 .119 −.126 .143 .886 .928 .921 .937

12 −.268 .038 −.061 .259 .930 .944 .936 .948
18 −.183 .013 −.029 .404 .943 .945 .945 .952

yi0 = 1
6 −.569 .273 −.242 .054 .791 .914 .945 .921
8 −.423 .099 −.142 .112 .904 .912 .953 .952

12 −.282 .030 −.066 .233 .936 .933 .952 .954
18 −.191 .008 −.032 .375 .940 .944 .951 .953

Model: yit = 1(αi0 + θ0yit−1 + εit > 0), εit ∼ N (0, 1). Data generated with N = 100, θ0 = .5, αi0 ∼ N (0, 1).
10, 000 Monte Carlo replications.

We end our discussion on non-stationarity by comparing the various bias-correction estimators in the

dynamic logit specification of Honoré and Kyriazidou (2000); see also Carro (2007) and Fernández-Val

(2009). The data are generated as

yit = 1{αi0 + γ0yit−1 + δ0xit ≥ εit}, xit ∼ N (0, π2/3),

with εit logistically distributed and δ0 = 1. The initial observations are drawn as xi0 ∼ N (0, π2/3) and

yi0 = 1{αi0 + δ0xi0 ≥ εi0}, and the fixed effects are set to αi0 = 1
4 (xi0 + xi1 + xi2 + xi3). This design is

non-stationary because the (xi0, yi0) are not drawn from the steady-state distributions and, also, because the

dependence between the covariate and the fixed effect changes abruptly in the fourth period: the correlation

between xit and αi0 equals 1/4 for t ≤ 3, while αi0 and xit are independent once t > 3. Table 6 provides

simulation results for N = 500 and various values of γ0.

The results are qualitatively similar to those for the probit model reported on above. Again, maximum

likelihood is heavily biased and all other estimators reduce this bias, in most cases quite substantially. The

non-stationarity has an adverse effect on the jackknife estimator applied directly to the maximum-likelihood

estimator for γ0 when T = 6, with only a moderate reduction in bias. Indeed, when T = 6, the half-panel

estimates would be expected to differ the most from each other, due to the different form of dependence

between αi0 and xit in the two half-panels. Beyond this, both jackknife corrections tend to perform well

compared with the analytical corrections of Hahn and Kuersteiner (2011) and Arellano and Hahn (2006).

The model-specific corrections of Fernández-Val (2009) and Carro (2007) again improve on the general

analytical corrections. The estimator of Carro (2007), in particular, yields confidence intervals with very

good coverage in this design.
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Table 6. Simulation results for the Honoré and Kyriazidou (2000) design

bias rmse
T γ0 γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C

6 .5 −.905 .747 −.191 −.079 −.327 −.325 −.140 .917 .784 .222 .138 .355 .352 .185

8 .5 −.634 .287 −.127 −.047 −.192 −.193 −.075 .645 .319 .160 .107 .220 .219 .125
12 .5 −.391 .100 −.057 −.022 −.076 −.090 −.027 .400 .134 .094 .077 .111 .118 .082
18 .5 −.249 .038 −.028 −.014 −.032 −.045 −.010 .257 .077 .066 .061 .071 .075 .063
6 1 −.850 .696 −.298 −.164 −.338 −.330 −.181 .863 .736 .318 .199 .365 .357 .218
8 1 −.602 .244 −.187 −.103 −.204 −.213 −.094 .613 .282 .211 .141 .232 .237 .139

12 1 −.377 .077 −.094 −.059 −.087 −.115 −.036 .387 .121 .122 .096 .121 .139 .088
18 1 −.241 .030 −.052 −.038 −.038 −.065 −.014 .250 .075 .080 .071 .075 .089 .064
6 2 −.761 .613 −.636 −.369 −.367 −.356 −.294 .782 .668 .649 .389 .402 .391 .324
8 2 −.563 .175 −.392 −.255 −.242 −.282 −.166 .579 .240 .407 .276 .274 .307 .202

12 2 −.369 .039 −.212 −.159 −.112 −.189 −.070 .382 .115 .229 .181 .150 .209 .115
18 2 −.241 .016 −.123 −.103 −.049 −.122 −.028 .253 .082 .142 .125 .093 .141 .079

se/sd confidence
T γ0 γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C γ̂ γ̃1/2 γ̃HK γ̃F γ̇1/2 γ̇AH γ̇C

6 .5 .920 .934 1.068 1.077 1.629 .958 1.030 .000 .083 .654 .918 .790 .308 .801

8 .5 .944 1.039 1.039 1.054 1.351 1.002 1.007 .000 .500 .771 .937 .811 .540 .890
12 .5 .983 1.076 1.047 1.058 1.187 1.038 1.011 .002 .835 .898 .954 .919 .802 .938
18 .5 .980 1.029 1.026 1.031 1.079 1.023 .995 .025 .921 .931 .950 .942 .893 .944
6 1 .944 .939 1.109 1.138 1.622 1.003 1.081 .000 .133 .315 .780 .770 .326 .727
8 1 .957 1.045 1.071 1.095 1.342 1.034 1.035 .000 .632 .571 .857 .779 .493 .864

12 1 .973 1.052 1.055 1.065 1.160 1.044 1.013 .008 .894 .806 .901 .889 .732 .928
18 1 1.000 1.044 1.057 1.063 1.096 1.053 1.021 .043 .939 .884 .923 .941 .842 .946
6 2 .919 .943 1.039 1.216 1.509 .985 1.124 .010 .313 .004 .277 .752 .403 .509
8 2 .946 1.032 1.079 1.153 1.298 1.040 1.078 .015 .835 .081 .441 .743 .385 .740

12 2 .970 1.047 1.075 1.099 1.137 1.057 1.040 .043 .948 .373 .616 .853 .493 .894
18 2 .974 1.027 1.051 1.059 1.041 1.044 1.014 .116 .955 .618 .721 .913 .628 .932

bias rmse

T γ0 δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C

6 .5 .317 −.142 −.091 −.026 .134 .199 .020 .326 .174 .110 .048 .149 .211 .051

8 .5 .217 −.114 −.001 −.001 .060 .105 .015 .223 .129 .042 .037 .076 .115 .041
12 .5 .131 −.055 .015 .003 .017 .044 .008 .135 .065 .035 .030 .037 .055 .031
18 .5 .080 −.023 .008 .002 .002 .018 .003 .085 .034 .026 .024 .024 .031 .024
6 1 .319 −.133 −.133 −.020 .144 .204 .022 .328 .169 .146 .046 .159 .216 .052
8 1 .219 −.106 −.019 .000 .068 .109 .016 .225 .122 .046 .038 .084 .119 .043

12 1 .133 −.051 .010 .004 .021 .046 .008 .138 .062 .033 .031 .040 .057 .032
18 1 .082 −.022 .008 .002 .004 .020 .004 .087 .034 .026 .025 .026 .032 .025
6 2 .325 −.111 −.241 −.018 .167 .215 .019 .335 .161 .250 .048 .184 .229 .054
8 2 .229 −.086 −.071 .002 .091 .120 .017 .237 .111 .083 .041 .106 .131 .046

12 2 .142 −.043 −.007 .005 .037 .053 .010 .148 .059 .034 .033 .054 .065 .035
18 2 .090 −.019 .004 .003 .014 .024 .005 .095 .034 .027 .026 .033 .036 .027

se/sd confidence

T γ0 δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C δ̂ δ̃1/2 δ̃HK δ̃F δ̇1/2 δ̇AH δ̇C

6 .5 .805 .914 .710 1.124 1.369 .780 1.009 .001 .649 .466 .930 .783 .061 .940

8 .5 .873 1.084 .911 1.030 1.339 .880 1.007 .003 .566 .929 .958 .923 .300 .943
12 .5 .919 1.179 .965 1.002 1.265 .946 .999 .024 .756 .920 .950 .972 .707 .947
18 .5 .948 1.139 .984 .999 1.179 .975 .998 .111 .900 .935 .951 .977 .882 .950
6 1 .818 .914 .703 1.147 1.388 .791 1.035 .001 .700 .231 .951 .757 .067 .944
8 1 .873 1.093 .928 1.041 1.332 .884 1.017 .003 .644 .895 .960 .904 .301 .944

12 1 .910 1.181 .966 1.002 1.231 .942 .997 .027 .802 .934 .949 .959 .700 .943
18 1 .943 1.137 .983 .998 1.160 .974 .998 .113 .904 .940 .951 .971 .882 .950
6 2 .810 .895 .642 1.166 1.364 .774 1.055 .002 .800 .011 .963 .722 .093 .954
8 2 .862 1.041 .955 1.058 1.310 .869 1.031 .006 .782 .570 .963 .843 .301 .946

12 2 .905 1.150 .993 1.016 1.185 .938 1.012 .033 .877 .940 .955 .928 .680 .947
18 2 .941 1.150 .996 1.010 1.085 .977 1.010 .102 .938 .948 .953 .954 .860 .950

Model: yit = 1{αi0 + γ0yit−1 + δ0xit ≥ εit}, εit logistically distributed. Data generated with N = 500, δ0 = 1,
xit ∼ N (0, π2/3) (t = 0, 1, . . . , T ), yi0 = 1{αi0 + δ0xi0 ≥ εi0}, αi0 = (xi0 + xi1 + xi2 + xi3)/4. 10, 000 Monte
Carlo replications.
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2.4. Correcting average effects

The split-panel jackknife can also be used to estimate average marginal or non-marginal effects. Such effects

are often parameters of interest, especially in nonlinear models, but have received less attention in the

literature. We will look at averages of the form

µ0 ≡ E[τit(θ0, αi0)], τit(θ, αi) ≡ τ(zit; θ, αi),

where τ is some known function. Examples of such averages were given above. For notational simplicity we

take αi to be a scalar throughout this subsection. The fixed-effect plug-in estimator of µ0 is

µ̂ ≡ µ̂(θ̂), µ̂(θ) ≡ 1

NT

N∑
i=1

T∑
t=1

τit(θ, α̂i(θ)). (2.12)

This estimator is subject to two sources of asymptotic bias, each of order O(T−1). The first stems from

using α̂i(θ) instead of αi(θ). The second arises from using θ̂ instead of θ0. Hence, plimN→∞µ̂−µ0 = O(T−1)

even if a fixed-T consistent or a bias-corrected estimator of θ0 were used instead of the maximum-likelihood

estimator.

To describe how the jackknife can be applied to average effects it is useful to inspect both sources of bias.

We will do so under the following two assumptions.

Assumption 2.6. For all i, as T →∞,

α̂i(θ0)− αi0 =
βi
T

+
1

T

T∑
t=1

ψit + op

(
1

T

)
,

1√
T

T∑
t=1

ψit
d→ N (0, σ2

i ),

where ψit is a martingale difference sequence, and the bias term βi and the variance σ2
i ≡ E[ψ2

it] are finite.

Assumption 2.7. The function τit(θ, αi) is three times continuously-differentiable with respect to (θ, αi). For

all i, τit(θ0, αi0) and its cross-derivatives up to the third order are covariance stationary random variables

that have autocovariances that are summable. There exist covariance stationary random variables Dα
it and Dθ

it

with vanishing autocovariances such that supα∈A|∇αiαiαi
τit(θ0, α)| ≤ Dα

it and supθ∈Θ‖∇θτit(θ, αi(θ))‖ ≤ Dθ
it

for all i.

Assumption 2.6 contains a conventional expansion of α̂i(θ) as T →∞. This expansion follows from standard

higher-order asymptotics (see, e.g., Bao and Ullah 2007) and, in fact, underlies the expansion of the bias of

θ̂ and l̂(θ) in Assumptions 2.3 or 2.5 (see Hahn and Newey 2004 and Arellano and Hahn 2006). However,

because the jackknife does not require knowledge of the form of this bias, we didn’t introduce it up to this

point. Assumption 2.7 imposes smoothness on the function τ and demands the existence of suitable moments

of τ and its derivatives to justify expansions around true parameter values, and imposes dominance conditions

to handle the remainder terms in these expansions.

Under these assumptions we can dissect the inconsistency of µ̂ into two parts. The first part originates

from the estimation noise in the fixed effects. It equals

plimN→∞µ̂(θ0)− µ0 =
D

T
+ o

(
1

T

)
,

where the leading bias term has

D ≡
+∞∑
j=−∞

E[∇αiτit(θ0, αi0)ψit−j ] + E[∇αiτit(θ0, αi0)βi] +
1

2
E[∇αiαiτit(θ0, αi0)σ2

i ].
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The additional bias introduced through θ̂ is the product of a Jacobian term with the first-order bias of θ̂.

Moreover,

plimN→∞µ̂− µ0 =
D + E

T
+ o

(
1

T

)
,

where E ≡ E[∇θ′τit(θ0, αi(θ0))]B1. A jackknife estimator that removes both sources of bias takes the form

µ̃ ≡ g

g − 1
µ̂− 1

g − 1
µ, µ ≡ 1

m

m∑
j=1

µSj , µSj ≡
∑
S∈Sj

|S|
T
µ̂S(θ̂S),

where µ̂S(θ) ≡ 1
N |S|

∑N
i=1

∑
t∈S τit(θ, α̂iS(θ)). Note that µ is constructed using the corresponding subpanel

estimates of θ0. This estimator complements the corrections for static models in Hahn and Newey (2004) and

the analytical correction for dynamic models in Fernández-Val (2009), which build on a plug-in estimator of

D + E to remove it.

In contrast to estimators of θ0, plug-in estimators of average effects of the form in (2.12) do not converge

at the rate (NT )−1/2 but at the much slower rate of N−1/2. To see why, consider the hypothetical situation

in which θ0 and the αi0 are known. An estimator of µ0 for this case would equal

µ∗ ≡
1

NT

N∑
i=1

T∑
t=1

τit(θ0, αi0),

which clearly is both unbiased and consistent. Now,

µ∗ =
1

N

n∑
i=1

E[τit(θ0, αi0)] +
1

N

n∑
i=1

(
1

T

T∑
t=1

τit(θ0, αi0)− E[τit(θ0, αi0)]

)
.

The first right-hand side term does not depend on T and convergences to µ0 at the rate N−1/2. The second

right-hand side term converges to zero at the rate (NT )−1/2 and so is asymptotically negligible under

rectangular-array asymptotics. Hence,
√
N(µ∗ − µ0) has a non-degenerate limit distribution. This implies

that any feasible average-effect estimator will converge no faster than at the rate N−1/2. Furthermore, under

our assumptions,
√
N (µ̂− µ0) =

√
N(µ∗ − µ0) +O

(
1√
T

)
+Op

(
1√
T

)
,

so that both the bias and the estimation noise introduced by replacing θ0 and the αi0 by their maximum-

likelihood estimates are negligible under rectangular-array asymptotics. This is a surprising result, and leads

to the following theorem.
5

Theorem 2.3. Let Assumptions 2.1, 2.2, 2.3, 2.6, and 2.7 hold. Then plimN→∞µ̂−µ0 = (D+E)/T+o(T−1)

and plimN→∞µ̃− µ0 = o(T−1), and

√
N(µ̃− µ̂) = op(1),

√
N(µ̂− µ0)

d→ N (0, var{E[τit(θ0, αi0)]}),

as N,T →∞ with N/T → ρ.

In the Gaussian autoregression, a parameter of interest would be the average effect on the survival function

of a marginal change in lagged outcomes, that is,∫ +∞

−∞

γ0

σ0
φ

(
α+ γ0x− s

σ0

)
dG(α)

5
We note that, recently, Fernández-Val and Weidner (2013) found slow convergence of average-effect estimates when there are

both fixed and time effects in the model. The result also holds when there are no time effects.
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for given x and s. In the standard non-dynamic regression model with i.i.d. data across t, the plug-in

estimator of this effect is consistent for fixed T (Hahn and Newey 2004). This is no longer the case in the

dynamic setting considered here. A summary statistic for the population can be obtained by averaging over

x. For example, averaging with respect to the distribution function of the data yields

µ0 = E
[
γ0

σ0
φ

(
αi0 + γ0yit−1 − s

σ0

)]
as the average effect of interest. Note that, under stationarity, the time-series processes are heterogeneous

only in their mean. Thus, the limit distribution of plug-in estimates of µ0 is degenerate unless the αi0 have

positive variance. To investigate the finite-sample accuracy of the large-sample results in Theorem 2.3, we

estimated µ0 for s = 0 from simulated data with γ0 = .5, σ0 = 1, and αi0 ∼ N (0, 1).

The upper block of Table 7 contains the bias and standard deviation of both the maximum-likelihood

estimator and the split-panel jackknife estimator of µ0, as well as the bias and standard deviation of the

infeasible estimators µ∗ and µ̂(θ0). It shows that, in addition to µ∗ being unbiased, µ̂(θ0) has negligible

bias, even for very small T , while µ̂ suffers from downward bias. The jackknife correction removes virtually

all of this bias in all cases considered. The second block of Table 7 provides the ratio of the (average of

the) estimated standard errors of the estimators to their standard deviation over the 10, 000 Monte Carlo

replications. Not surprisingly, when T is small compared to N , use of the asymptotic formula results in

considerable underestimation of the true variability of both µ̂ and µ̃1/2. Combined with the bias in µ̂,

this results in maximum-likelihood-based confidence intervals having poor coverage. The results also confirm

that, under rectangular-array asymptotics, Theorem 2.3 yields correct inference even without bias correction.

Nonetheless, although µ̃1/2 is somewhat more variable in small samples, the underestimation of its variability

is more than compensated by its reduced small-sample bias in terms of confidence. Even for the larger values

of T considered here, µ̃1/2 appears preferable over µ̂.

These results show that, in spite of the results in Theorem 2.3, in small samples one may still want to

perform some bias correction. Furthermore, even though the theorem provides an asymptotic justification

for inference based on a plug-in estimator of the cross-sectional variance of E[τit(θ0, αi0)], the within-group

variance and the estimation noise in the plug-in estimates of the fixed effects and common parameters may

be sizeable for small T and, indeed, may dominate in micropanels. Therefore, it may be useful to consider a

variance estimator that accounts for this noise. One possible estimator is a plug-in version of

var{E[τit(θ0, αi0)]}+
1

T

+∞∑
j=−∞

E[vitvit−j ],

where the second term adds an O(T−1) correction. A natural choice for vit is

(τit(θ0, αi0)− E[τit(θ0, αi0)])+E[∇αi
τit(θ0, αi0)]ψit+E[∇θ′τit(θ0, αi0)+∇αi

τit(θ0, αi0)∇θ′ α̂i(θ0)]Σ−1sit(θ0).

Here, the first term captures the within-group variance, and the remaining terms account for the variance in

the plug-in estimates of the fixed effects and common parameters, respectively. We experimented with this

alternative variance estimator in our Monte Carlo experiment. The results are reported in the last block of

Table 7. These adjusted standard errors were computed using a triangular kernel and a bandwidth set to

one. For the infeasible estimator µ∗, the correction term consists only of the within-group variance while, for

µ̂(θ0), the correction involves the first two components on vit only. The table shows that, here, the addition

of the small-T correction to the variance does fairly little to improve the ratio of standard error to standard

deviation for all estimators, and so leads to only a relatively small improvement of the confidence intervals.
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Table 7. Average derivative of the survival function at zero

bias sd
N T µ̂ µ̃1/2 µ∗ µ̂(θ0) µ̂ µ̃1/2 µ∗ µ̂(θ0)

100 4 −.071 −.012 .000 −.004 .009 .020 .007 .007

100 8 −.036 .000 .000 −.002 .007 .012 .006 .006
100 12 −.023 .001 .000 −.002 .007 .010 .006 .006
100 16 −.017 .001 .000 −.001 .007 .009 .006 .006
100 24 −.011 .001 .000 −.001 .007 .008 .006 .006
50 50 −.005 .000 .000 −.001 .009 .010 .009 .009

100 100 −.003 .000 .000 .000 .006 .006 .006 .006
250 250 −.001 .000 .000 .000 .004 .004 .004 .004

se/sd confidence
N T µ̂ µ̃1/2 µ∗ µ̂(θ0) µ̂ µ̃1/2 µ∗ µ̂(θ0)

100 4 .175 .305 .993 .992 .000 .386 .945 .903

100 8 .601 .535 1.020 1.025 .001 .706 .951 .936
100 12 .738 .649 .994 .995 .046 .791 .948 .935
100 16 .819 .734 1.006 1.005 .190 .848 .948 .942
100 24 .886 .822 1.003 1.004 .492 .890 .949 .947
50 50 .950 .922 1.004 1.004 .880 .925 .946 .945

100 100 .976 .962 1.001 1.000 .920 .938 .949 .949
250 250 .991 .985 1.000 1.001 .938 .945 .947 .948

se/sd with correction confidence with correction
N T µ̂ µ̃1/2 µ∗ µ̂(θ0) µ̂ µ̃1/2 µ∗ µ̂(θ0)

100 4 .214 .368 1.015 1.009 .000 .452 .950 .909

100 8 .669 .597 1.036 1.055 .002 .761 .955 .943
100 12 .797 .703 1.006 1.022 .057 .829 .950 .942
100 16 .869 .781 1.016 1.028 .215 .874 .951 .947
100 24 .924 .858 1.010 1.022 .522 .906 .950 .950
50 50 .971 .943 1.008 1.014 .886 .931 .947 .947

100 100 .987 .973 1.003 1.005 .922 .941 .949 .951
250 250 .996 .990 1.001 1.003 .939 .946 .947 .948

Model: yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0), stationary yi0, αi0 ∼ N (0, 1), γ0 = .5, and σ2

0 = 1. 10, 000
Monte Carlo replications.

3. EXTENSIONS

3.1. Higher-order bias correction

In the previous section we showed how to remove the leading bias from θ̂ and l̂(θ) by means of the jackknife

to obtain first-order bias-corrected estimators. It is natural to expect that, in sufficiently smooth models,

the inconsistency can be expanded to a higher order, say k, as in (2.4). This raises the question of how to

construct estimators that remove the first h ≤ k bias terms. Continuing the argument behind the half-panel

jackknife readily leads to such estimators. This is another instance of the simplicity of the jackknife that is

not shared by the analytical corrections, for which as yet no higher-order generalizations have been obtained.

For brevity, we restrict attention to bias corrections applied to the estimator, θ̂. The development of higher-

order corrections of the profile likelihood and average effects is analogous. It is beyond the scope of this

paper to derive primitive conditions for the required expansions to hold to the required order, but we discuss

two models that are tractable enough to derive θT or lT (θ) and to establish the existence of their expansions

to o(T−k) for any positive integer k. Technical details for this subsection are given in the supplementary

material.

3.1.1. Higher-order bias correction The h leading terms in (2.4) are simultaneously estimated and removed

by suitably combining weighted averages of subpanel estimators associated with collections of subpanels of
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different length. To illustrate, suppose for a moment that T is divisible by both 2 and 3. Then, using obvious

notation for the averages over subpanel estimators, (1 + a1/2 + a1/3)θ̂ − a1/2θ1/2 − a1/3θ1/3 has zero first-

and second-order bias if a1/2 and a1/3 satisfy(
1 + a1/2 + a1/3

T
−
a1/2

T/2
−
a1/3

T/3

)
B1 = 0, (3.1)(

1 + a1/2 + a1/3

T 2
−

a1/2

(T/2)2
−

a1/3

(T/3)2

)
B2 = 0, (3.2)

regardless of B1 and B2. This gives a1/2 = 3 and a1/3 = −1, leading to the estimator 3θ̂ − 3θ1/2 + θ1/3,

whose inconsistency of o(T−2).

Now let G ≡ {g1, g2, . . . , gh} be a non-empty set of integers with 2 ≤ g1 < g2 < · · · < gh. For T ≥ ghTmin

and each g ∈ G, let Sg be a collection of g non-overlapping subpanels forming an almost equal partition of

{1, 2, . . . , T}, with equivalence class {Sgj ; j = 1, 2, . . . ,mg}. Let A be the h× h matrix with elements

[A]r,s ≡
∑
S∈Sgs

(
T

|S|

)r−1

, r, s = 1, 2, . . . , h,

and let a1/gr be the rth element of (1− ι′A−1ι)−1A−1ι, where ι is the h× 1 summation vector. Define the

jackknife estimator

θ̃1/G ≡

1 +
∑
g∈G

a1/g

 θ̂ −
∑
g∈G

a1/gθ1/g, θ1/g ≡
1

mg

mg∑
j=1

θSgj , (3.3)

with θSgj defined by (2.2). The coefficients a1/g solve an h× h linear-equation system, of which (3.1)–(3.2)

is a special case, that ensures that θ̂1/G has zero bias up to and including order h. Provided (2.4) holds for

k ≥ h, it will follow from Assumptions 2.1, 2.2, and 2.3 that plimN→∞θ̃1/G = θ0 + o(T−h) and

√
NT (θ̃1/G − θ0)

d→ N (0,Σ−1)

as N,T →∞ with N/T → ρ. Thus, the higher-order jackknife does not inflate the asymptotic variance.

Like the first-order bias correction, the higher-order bias corrections come at the cost of increasing the

higher-order bias terms that are not eliminated. Theorem S.2.2 in the supplementary material characterizes

the higher-order bias. It follows from this characterization that, for bias correction of order h, the choice

G = {2, 3, . . . , h+ 1} is optimal in the class θ̃1/G in the sense of minimizing all higher-order terms that are

not eliminated. How to choose h optimally in practice is a difficult issue because the choice should also be

guided by variance considerations. As such, higher-order asymptotic approximations of both the bias and

the variance are needed to answer the question in a satisfactory manner.

3.1.2. Examples Our first example is the Gaussian autoregression, and our focus will be on a higher-order

expansion of the Nickell (1981) bias. The model is

yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0), yi0 ∼ N

(
αi0

1− γ0
,

σ2
0

1− γ2
0

)
.

For |γ0| < 1, the inconsistency of the within-group estimator γ̂ for fixed T is available in closed form (Nickell,

1981, Equation (18)). It can be expanded as γT − γ0 =
∑k
j=1Bj/T

j + O(T−k−1) for any k. The first few

terms of this expansion, in the case |γ0| < 1, are given by

γT − γ0 = −1 + γ0

T
− r (1 + γ0)

T 2
+
r (1 + γ0)

T 3
+

(
r + 4r2 + 2r3

)
(1 + γ0)

T 4
+O(T−5),
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with r ≡ γ0/(1 − γ0). Consequently, in this model, the jackknife of any order will be asymptotically bias-

reducing. Table 8 gives numerical values of the asymptotic biases when γ0 = .5, .9 for values of T up to 40

and up to the third-order jackknife. It is clearly seen from the table that the asymptotic bias converges to

zero at a faster rate in T as we move to higher-order versions of the jackknife. The table also includes the

unit-root case, γ0 = 1, where the inconsistency of the within-group estimator is the limit of the Nickell bias,

lim
γ0↑1

(
γT − γ0

)
= − 3

T + 1
= − 3

T
+

3

T 2
− 3

T 3
+ . . .

It follows from this expansion that, interestingly, the jackknife remains a valid tool for bias correction when

there is a unit root. Note that the leading bias term is not limγ0↑1[−(1 + γ0)/T ], so the plug-in estimator

from the stationary case no longer delivers bias-corrected point estimates (see also Hahn and Kuersteiner

2002, Theorems 4 and 5).

Table 8. Asymptotic bias in the Gaussian autoregression

T 4 5 6 8 10 12 16 20 30 40

γ0 = .5
γ̂ −.411 −.331 −.276 −.205 −.162 −.134 −.099 −.079 −.052 −.038
γ̂1/2 −.073 −.041 −.016 .002 .007 .008 .007 .005 .003 .002
γ̂1/{2,3} .030 .026 .020 .014 .007 .004 .001 .000
γ̂1/{2,3,4} .009 .003 .001 .000 .000

γ0 = .9
γ̂ −.560 −.463 −.394 −.302 −.243 −.203 −.151 −.120 −.077 −.056
γ̂1/2 −.171 −.123 −.081 −.043 −.023 −.012 −.001 .004 .007 .007
γ̂1/{2,3} −.012 .002 .009 .012 .014 .013 .010 .008
γ̂1/{2,3,4} .016 .015 .013 .009 .006

γ0 = 1
γ̂ −.600 −.500 −.429 −.333 −.273 −.231 −.176 −.143 −.097 −.073
γ̂1/2 −.200 −.150 −.107 −.067 −.045 −.033 −.020 −.013 −.006 −.004
γ̂1/{2,3} −.036 −.020 −.011 −.007 −.003 −.002 −.001 .000
γ̂1/{2,3,4} −.002 −.001 .000 .000 .000

Model: yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0), stationary yi0 when γ0 < 1.

The second example is the stationary autoregressive logit model

yit = 1{αi0 + θ0yit−1 ≥ εit},

where the εit are i.i.d. with distribution function F (ε) = eε/(1 + eε) and the yi0 are drawn from their

respective steady-state distributions. In this model the bias is much more complicated and depends on the

transition probabilities which, in turn, are a function of the αi0. It can be shown that a sufficient condition

for lT (θ) − l0(θ) =
∑k
j=1 Cj(θ)/T

j + O(T−k−1) to hold for all θ and any k is that the distribution of the

fixed effects has bounded support. As a numerical illustration of the convergence properties, we computed

the functions l0(θ), lT (θ), and lT (θ) jackknifed up to the third order, for N = ∞ and T = 2, . . . , 40 when

θ0 = 1 and the fixed effects have a discrete distribution with probability .01 on each of the quantiles

Φ−1(.01j − .005), j = 1, 2, . . . , 100, of the standard normal distribution. Figure 2 shows graphs for up to

the second-order jackknife for T = 4, 6, 8, 12. The infeasible l0(θ) (solid) does not depend on T and is

maximized at θ = θ0 = 1. The difference between lT (θ) (dashed) and l0(θ) is large and vanishes at the rate

T−1. Although T is still relatively small, the half-panel jackknife, 2lT (θ) − lT/2(θ) (dotted line), is already

much closer to l0(θ) and is seen to converge faster to l0(θ) than lT (θ) does. The second-order jackknife,
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3lT (θ) − 3lT/2(θ) + lT/3(θ) (dashed-dotted; for T = 6, 12 only), is even closer to l0(θ) and converges still

faster. The improved convergence rate as the jackknife order increases is also borne out by the corresponding

maximizers, which are given in Table 9 for values of T up to 40 and up to the jackknife correction of the

third order.

Figure 2. Asymptotic profile log-likelihoods in the stationary autoregressive logit model
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Model: yit = 1{αi0 + θ0yit−1 ≥ εit}, εit logistically distributed, stationary yi0. True values: θ0 = 1, αi0

approximately N (0, 1). Plots: l0(θ) (solid), lT (θ) (dashed), 2lT (θ)−lT/2(θ) (dotted), 3lT (θ)−3lT/2(θ)+lT/3(θ)

(dashed-dotted; for T = 6, 12 only).

Table 9. Asymptotic bias in the stationary autoregressive logit model

T 4 5 6 8 10 12 16 20 30 40

θ̂ −1.574 −1.208 −.984 −.720 −.568 −.469 −.348 −.276 −.183 −.136
θ̇1/2 −.903 −.642 −.431 −.245 −.155 −.105 −.057 −.035 −.015 −.008
θ̇1/{2,3} −.100 −.030 .002 .008 .007 .005 .002 .001

θ̇1/{2,3,4} .019 .007 .003 .001 .000

Model: yit = 1{αi0 + θ0yit−1 ≥ εit}, εit logistically distributed, stationary yi0. True values: θ0 = 1, αi0

approximately N (0, 1).
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3.2. Two-step estimators

Triangular simultaneous-equation models are frequent in microeconometrics. They arise when dealing with

endogeneity of covariates or non-random sample selection, for example. Although, in principle, such models

can be estimated by full-information maximum likelihood, the use of limited-information methods—i.e., two-

step estimators based on control functions (Heckman and Robb 1985)—is more frequent in applied work.

One reason for this is that they are typically easier to implement (Rivers and Vuong 1988). Another reason

is that such two-step estimators can be generalized to semiparametric settings (Blundell and Powell 2003).

Here we discuss how the jackknife can be applied to such estimators.

To describe the setup, let λit(θ, αi) ≡ λ(zit; θ, αi) denote the control function, where the functional form of

λ is known. Write λit ≡ λit(θ0, αi0). In a sample-selection problem, λit would be a function of the propensity

score for observation zit to be selected into the sample, an event typically modeled as a threshold-crossing

process such as a probit model. Clearly, this propensity will depend both on the observed covariates and on

αi0. Similarly, when a covariate is endogenous, the control function could be the deviation of the endogenous

variable from its mean given a set of instrumental variables and fixed effects; we discuss this example in

more detail below.

Suppose the main equation of interest has unknown parameters ϑ0 and ηi0, which uniquely maximize an

objective function of the form E[q(zit;ϑ, ηi, λit)]. Note that, often, this function will not be a log-likelihood.

The two-step fixed-effect estimator of ϑ0 is

ϑ̂ ≡ arg max
ϑ

1

NT

N∑
i=1

T∑
t=1

q(zit, ϑ, η̂i(ϑ), λ̂it), (3.4)

where η̂i(ϑ) ≡ arg maxηi
1
T

∑T
t=1 q(zit, ϑ, ηi, λ̂it) and λ̂it ≡ λit(θ̂, α̂i(θ̂)), the fixed-effect estimator of the

control function. As before, typically, ϑT ≡ plimN→∞ϑ̂ 6= ϑ0. Under regularity conditions, ϑT − ϑ0 can

again be expanded in powers of T−1. Because λ̂it is a generated regressor which is itself estimated with bias

O(T−1), however, the bias formula in Hahn and Kuersteiner (2011) will no longer apply to this expansion.

Furthermore, the functional form of the leading bias changes if one uses a bias-corrected estimator instead

of θ̂ in the construction of the control function. Fernández-Val and Vella (2011) provide the exact bias

expression for this case and extend the analytical bias-correction approach of Hahn and Kuersteiner (2011)

to two-step estimators.

The additional complexity of the form of the leading bias of ϑ̂ due to the presence of generated regressors

is substantial. Nonetheless, given that this bias is of the form B/T for some constant B, the jackknife will

remove it regardless of where its components arise from. To describe the correction, consider a subpanel S

and let

ϑ̂S ≡ arg max
ϑ

1

N |S|

N∑
i=1

∑
t∈S

q(zit, ϑ, η̂iS(ϑ), λ̂itS),

where η̂iS(ϑ) ≡ arg maxηi
1
|S|
∑T
t∈S q(zit, ϑ, ηi, λ̂itS) and λ̂itS ≡ λit(θ̂S , α̂iS(θ̂S)). Observe that the plug-in

estimator of the control function, too, uses first-step estimates based on the subpanel. Indeed, the key point

to forming a jackknife correction of ϑ̂ will be that the full two-step estimator has to be computed for each

chosen subpanel. The intuition behind this is the presence of estimates of αi0 and θ0 in the first-stage

equation and, as such, is analogous to the one behind the jackknife correction of average effects above. The
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half-panel jackknife estimator for the two-step estimation problem then is

ϑ̃1/2 ≡ 2ϑ̂− ϑ1/2,

again using obvious notation. Under regularity conditions, ϑ̃1/2 will be asymptotically normal and correctly

centered as N/T → ρ. Its influence function has the form of that of a conventional two-step estimator (see,

e.g., Murphy and Topel 1985) and is omitted here for the sake of brevity. The expression for the asymptotic

variance in question is given in Fernández-Val and Vella (2011).

As an illustration, consider a triangular model where (yit, xit) are jointly generated through the structure

yit = 1{ηi0 + γ0yit−1 + δ0xit + uit ≥ 0}, xit = αi0 + %0xit−1 +$0wit + vit, (3.5)

where wit is a covariate that is determined exogenously, and (uit, vit) are latent disturbances which are

independent and identically distributed as(
uit
vit

)
∼ N

( (
0
0

)
,

(
1 ζ0σ0

ζ0σ0 σ2
0

) )
(3.6)

for correlation coefficient ζ0. The model in (3.5)–(3.6) is a routinely referred to as the simultaneous probit

model. Its cross-section has received considerable attention in the literature. Here, θ0 = (%0, $0, σ
2
0)′ and

ϑ0 = (γ0, δ0, ζ0)′. The joint likelihood of the data is complicated and full-information maximum likelihood is

computationally troublesome (Heckman 1978). Now, the likelihood contribution of an observation factors as

`it(ϑ, ηi; θ, αi) = `it(ϑ, ηi|θ, αi) `it(θ, αi),

say, where `it(θ, αi) is the contribution to the marginal likelihood of xit and `it(ϑ, ηi|θ, αi) is the contribution

to the conditional likelihood of yit given xit. These contributions are

`it(θ, αi) =
1√

2πσ2
exp

(
−1

2

(xit − αi − %xit−1 −$wit)2

σ2

)
,

which corresponds to the likelihood for a standard linear model, and

`it(ϑ, ηi|θ, αi) = Φ

(
ηi + γyit−1 + δxit + ζvit(θ, αi)√

1− ζ2

)yit [
1− Φ

(
ηi + γyit−1 + δxit + ζ vit(θ, αi)√

1− ζ2

)]1−yit

,

where vit(θ, αi) ≡ (xit−αi−%xit−1−$wit)/σ. This would be a conventional probit objective function for the

rescaled parameter ϑ/
√

1− ζ2 if θ0 and the αi0 were known. Thus, here, λit(θ, αi) = vit(θ, αi) and, following

Smith and Blundell (1986) and Rivers and Vuong (1988), a two-step fixed-effect estimator is a conventional

probit estimator, where the residual of a first-stage least-squares regression is added as a regressor. This

two-step estimator is very easy to implement.

As another example, consider the reverse situation in which

yit = ηi0 + γ0yit−1 + δ0xit + vit, xit = 1{αi0 + %0xit−1 +$0wit + uit ≥ 0}, (3.7)

where (uit, vit) are as before. In this case, for θ0 = (%0, $0)′ and ϑ0 = (γ0, δ0, ζ0, σ
2
0)′, the joint likelihood

has contributions

`it(ϑ, ηi; θ, αi) =
1

σ
φ (vit(ϑ, ηi)) Φ

(
uit(θ, αi) + ζ vit(ϑ, ηi)√

1− ζ2

)xit
[

1− Φ

(
uit(θ, αi) + ζ vit(ϑ, ηi)√

1− ζ2

)]1−xit

,

for vit(ϑ, ηi) ≡ (yit−ηi−γyit−1−δxit)/σ and uit(θ, αi) ≡ αi+%xit−1 +$wit. Although a factorization is still

possible, it does not readily provide an estimator. However, a simple two-step estimator can be constructed

from the observation that

E[yit|yit−1, xit, xit−1, wit, ηi0, αi0] = ηi0 + γ0yit−1 + δ0xit + ς0λit,
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where ς0 = ζ0σ0 and the control function is

λit(θ, αi) = [xit − Φ (uit(θ, αi))]
φ(uit(θ, αi))

Φ(uit(θ, αi)) [1− Φ(uit(θ, αi))]
,

as can be shown using standard properties of the bivariate normal density. Observe that λit is the generalized

residual (Gouriéroux, Monfort, Renault, and Trognon 1987) from a probit model for the first-stage equation.

Therefore, again, a two-step estimator can be easily implemented. First estimate a standard fixed-effect

probit model for xit to construct a plug-in estimate of λit. Next estimate (γ0, δ0, ς0) by running a least-

squares regression of yit on a set of unit-specific intercepts, yit−1 and xit, and the estimate of the control

function.

Table 10. Simulation results for the two-step estimator

bias sd

N T γ̂ δ̂ ς̂ γ̃1/2 δ̃1/2 ς̃1/2 γ̂ δ̂ ς̂ γ̃1/2 δ̃1/2 ς̃1/2

500 6 −.226 .113 −.094 −.009 −.056 .038 .017 .111 .069 .027 .196 .125

500 8 −.168 .108 −.084 .002 −.066 .043 .014 .095 .059 .021 .157 .100
500 12 −.109 .087 −.064 .007 −.075 .047 .011 .073 .047 .015 .107 .069
500 18 −.072 .064 −.045 .005 −.039 .026 .009 .056 .036 .011 .072 .046
20 20 −.068 .061 −.042 .003 −.023 .016 .041 .264 .169 .050 .330 .211
50 50 −.026 .023 −.015 .001 −.001 .001 .016 .098 .063 .017 .102 .066

100 100 −.013 .012 −.008 .000 .000 .000 .008 .047 .031 .008 .048 .031
se/sd confidence

N T γ̂ δ̂ ς̂ γ̃1/2 δ̃1/2 ς̃1/2 γ̂ δ̂ ς̂ γ̃1/2 δ̃1/2 ς̃1/2

500 6 .894 .792 .809 .635 .552 .497 .000 .692 .574 .756 .704 .653

500 8 .904 .809 .825 .642 .510 .520 .000 .659 .572 .778 .494 .540
500 12 .927 .840 .846 .713 .673 .680 .000 .666 .612 .796 .706 .748
500 18 .938 .880 .886 .791 .791 .790 .000 .712 .680 .849 .852 .862
20 20 .934 .883 .890 .796 .799 .798 .578 .906 .906 .882 .876 .877
50 50 .966 .909 .918 .908 .887 .901 .604 .916 .918 .925 .921 .922

100 100 .975 .933 .938 .943 .938 .929 .601 .924 .926 .935 .935 .932

Model: yit = ηi0 +γ0yit−1 +δ0xit +vit and xit = 1{αi0 +%0xit−1 +$0wit +uit ≥ 0}, stationary (yi0, xi0, zi0).

Data generated with wit = −
√

2/3αi0+.5wit−1+N (0, 1), %0 = $0 = γ0 = δ0 = ζ0 = .5, σ0 = 1, αi0 ∼ N (0, 1),
and ηi0 ∼ N (0, 1). 10, 000 Monte Carlo replications.

To check the small-sample behavior of the two-step estimator we simulated data from the model comprised

of (3.6)–(3.7). The data generating process for the binary variable xit was identical to the one used to generate

the simulation results in Table 3, with the autoregressive parameter fixed at .5, and so we need not restate

the results for the first-stage equation here. For the main equation, we drew ηi0 ∼ N (0, 1) and set δ0 = 1−γ0

to keep the long-run multiplier of xit on yit fixed. In Table 10 we present results for γ0 = .5 and ζ0 = .5,

and for various panel sizes. The table shows that the uncorrected two-step fixed-effect estimator is biased,

with the bias being largest for the autoregressive parameter. The asymptotic bias in the limit distribution

under rectangular-array asymptotics also manifests itself clearly in the coverage rates for the confidence

interval. The jackknife removes most of the bias and yields confidence intervals that are correctly centered

as N/T → ρ. Because of the reduction in bias, the coverage rates of the jackknife also improve on the

uncorrected estimate when T is much smaller than N , although quite some undercoverage remains in such

cases. This is so because the plug-in estimator of the asymptotic variance underestimates the finite-sample

variability when T is small. Indeed, in short panels, the ratio of the standard errors to the standard deviations

is considerably worse for the jackknife.
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4. EMPIRICAL ILLUSTRATION: FEMALE LABOR-FORCE PARTICIPATION

Understanding the determinants behind intertemporal labor-supply decisions of women has been the goal

of a substantial literature. Classic work on the behavior at the intensive margin—that is, the number of

hours worked—includes Heckman and MaCurdy (1980) and Mroz (1987), among others. Heckman (1993)

stresses the importance of decisions regarding the extensive margin, that is, the choice of whether or not to

participate in the labor market. It is widely recognized that data on such intertemporal participation decisions

are characterized by a high degree of serial correlation, and understanding to which degree this correlation is

driven by state dependence and unobserved heterogeneity is of great importance (see, e.g., Heckman 1981a).

Hyslop (1999) used a simple model of search behavior under uncertainty to specify the participation decision

as a threshold-crossing model and estimated a random-effect probit version of this model from the PSID

data. He found evidence of strong state dependence and substantial unobserved heterogeneity in the data.

Carro (2007) and Fernández-Val (2009) estimated fixed-effect versions of Hyslop’s model and confirmed his

main findings. Here, we re-estimate the model in Fernández-Val (2009) using the various bias-correction

approaches available.

Let yit be a binary indicator for labor-force participation of individual i at time t. The threshold-crossing

specification we will estimate assumes that

yit = 1{αi0 + γ0yit−1 + x′itδ0 ≥ εit}, (4.1)

where εit are independent standard-normal innovations and xit is a vector of time-varying covariates. We

included the number of children of at most two years of age (# children 0–2), between 3 and 5 years of age

(# children 3–5), and between 6 and 17 years of age (# children 6–17), as well as the log of the husband’s

earnings (log husband income; expressed in thousands of 1995 U.S. dollars), and a quadratic function of age.

We do not include time-constant covariates such as race or level of schooling as they are absorbed into the

fixed effect. The interaction between labor-market and fertility decisions has been discussed in Browning

(1992), among others. In his random-effect setup, Hyslop (1999) is unable to reject exogeneity of fertility

decisions once lagged participation decisions are taken into account.
6

Like Carro (2007) and Fernández-Val (2009) we estimate (4.1) from waves 13 to 22 of the PSID, which span

the period 1979–1988. The sample consists of 1461 women aged between 18 and 60 in 1985 who, throughout

the sampling period, were married to men who were in the active labor force the whole time. During

the sampling period, 664 women changed participation status at least once. Table 11 provides descriptive

statistics over both the full sample and the subsample of informative units per year. Women belonging to

the latter group are, on average, younger, have more young children, and are married to a husband whose

annual income is higher.

The estimation results for the various estimators are collected in Table 12. Estimated standard errors

are given in italics below the point estimates. All bias-corrected estimates show significantly larger state

dependence than maximum likelihood, with the coefficient estimates of lagged participation being about one

third higher. The upward bias correction for the autoregressive coefficient is in line with the Monte Carlo

findings above. The jackknife estimate θ̃1/2 of lagged participation is somewhat larger than that of the other

estimators; θ̇1/2 is very similar to the analytical corrections. This, too, is in accordance with our Monte

Carlo results. The bias adjustments for the coefficients on the impact of the number of children is smaller

6
Similarly, with cross-sectional data, Mroz (1987) finds statistical evidence that allows treating fertility as exogenous to hours

worked once participation is controlled for.
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Table 11. Descriptive statistics

mean and standard deviation (in italics) over all units

year 1980 1981 1982 1983 1984 1985 1986 1987 1988

lagged participation .722 .707 .695 .692 .711 .746 .740 .741 .735
.448 .455 .461 .462 .453 .435 .439 .438 .441

# children 0–2 .323 .331 .318 .261 .211 .190 .168 .137 .103
.528 .537 .533 .494 .455 .440 .408 .363 .325

# children 3–5 .307 .313 .321 .330 .337 .320 .268 .215 .185
.524 .525 .535 .524 .540 .541 .505 .463 .430

# children 6–17 .934 .960 .973 1.015 1.034 1.077 1.124 1.164 1.165
1.138 1.124 1.102 1.081 1.068 1.062 1.064 1.081 1.109

husband income 39.200 39.041 39.115 40.541 43.039 43.572 44.485 45.580 46.038
23.514 23.598 30.601 34.375 41.915 39.798 42.621 53.411 55.784

age 33.310 34.251 35.300 36.279 37.288 38.358 39.272 40.309 41.336
8.841 8.848 8.829 8.861 8.863 8.847 8.845 8.837 8.857

mean and standard deviation (in italics) over informative units

year 1980 1981 1982 1983 1984 1985 1986 1987 1988

lagged participation .575 .531 .502 .496 .540 .620 .606 .609 .595
.495 .499 .500 .500 .499 .486 .489 .488 .491

# children 0–2 .413 .438 .410 .338 .267 .242 .198 .152 .105
.575 .597 .577 .550 .503 .487 .429 .385 .327

# children 3–5 .377 .386 .410 .425 .447 .410 .339 .276 .232
.563 .565 .586 .566 .587 .583 .556 .519 .465

# children 6–17 .840 .906 .956 1.038 1.097 1.184 1.272 1.363 1.385
1.107 1.111 1.085 1.068 1.073 1.078 1.070 1.107 1.143

husband income 40.085 40.406 40.153 42.274 45.354 45.498 46.380 46.811 47.907
24.110 24.694 33.746 41.741 50.048 44.330 49.693 45.601 54.061

age 31.545 32.496 33.535 34.526 35.565 36.592 37.512 38.551 39.575
8.278 8.282 8.259 8.303 8.315 8.277 8.277 8.272 8.295

Data source: PSID 1979–1988.

and similar for all estimators, taking standard errors into account. Regarding the husband’s income and the

woman’s age, θ̇AH deviates from the other estimators, with point estimates that are insignificantly different

from zero at conventional significance levels. The other procedures find a significant negative impact of an

increase in the husband’s income on the participation propensity, and a significant concave response to an

increase in the woman’s age.

The last two columns of the table provide maximum-likelihood and split-panel jackknife estimates of

the average effect for each of the regressors. For lagged participation, the reported effect is the impact of

changing yit−1 from zero to one on the probability of participation in period t. For the number of children,

the effect measures the effect of an additional child in the corresponding age category. The effect for age is

defined similarly. For the husband’s income, the effect is the derivative of the participation probability. The

averaging was done over both the fixed effect and the empirical distribution of the data. The largest impact

of adjusting for incidental-parameter bias occurs again for the effect of state dependence, with the estimated

marginal effect being adjusted upward by a factor of two. The magnitude of the remaining marginal-effect

estimates is adjusted less drastically.

One may express doubt against the underlying assumption of stationarity in this model. It is unlikely that

the initial observations on participation are draws from a steady-state distribution. Our investigation into

this issue above, however, suggests that this should not be a cause for major concern in this model. Potentially

more problematic is that the covariates are not stationary. Obviously, the cross-sectional distributions of age,

# children 0–2, # children 3–5, and # children 5–17 change over time, but also the husband’s average wage is
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Table 12. Female labor-force participation: Estimation results

index coefficients average effects (%)

θ̂ θ̃1/2 θ̃HK θ̃F θ̇1/2 θ̇AH θ̇C µ̂ µ̂1/2

lagged participation .754 1.335 .993 1.030 1.048 .972 1.083 10.503 21.451
.043 .048 .043 .043 .043 .043 .043 .315 .337

# children 0–2 −.561 −.680 −.486 −.441 −.553 −.472 −.416 −6.963 −8.394
.058 .063 .059 .058 .059 .059 .058 .213 .144

# children 3–5 −.291 −.370 −.225 −.202 −.262 −.162 −.189 −3.592 −4.458
.054 .059 .055 .055 .055 .054 .055 .110 .078

# children 6–17 −.092 −.139 −.072 −.064 −.077 .039 −.054 −1.122 −1.337
.043 .047 .044 .044 .044 .044 .044 .035 .034

log husband income −.235 −.300 −.221 −.199 −.239 .030 −.200 −2.845 −4.382
.055 .059 .056 .056 .056 .055 .056 .088 .067

age 2.036 1.542 1.838 1.606 1.813 −.041 1.595 17.681 13.559
.396 .445 .402 .402 .405 .398 .404 .647 .723

age squared −.238 −.176 −.214 −.187 −.214 −.014 −.183 — —
.053 .060 .054 .054 .054 .053 .054 — —

Standard errors in italics. Data source: PSID 1979–1988.

clearly trending upward over the sampling period. This could explain some of the observed differences in the

results delivered by the various estimators. Another potential reason is model misspecification, which is likely

to show up in the form of diverging estimates across methods. As a robustness check to non-stationarity, we

re-estimated the model after including yearly time dummies as additional regressors. Time dummies absorb

aggregate time effects and, to some degree, the effect of the changing distribution of the regressors over

time. The estimation results were very similar to the ones given here and are available in the supplementary

material.

CONCLUDING REMARKS

Our analysis has suggested several routes worth pursuing in future research. First, it would be interesting

to further investigate the higher-order properties of bias-corrected estimators. For the jackknife, we derived

the higher-order bias in a sequential large N , large T setting. For the analytical bias corrections, the higher-

order bias has not yet been derived. A more encompassing analysis should also lead to higher-order variance

properties, possibly under joint large N,T asymptotics. This would aid in understanding the differences in

small-sample performance between the various bias-correction approaches.

Second, we noticed that inference based on the asymptotic variance can lead to confidence bounds that

are too narrow for small T . This is especially so for estimators of average effects and for two-step estimators.

In additional Monte Carlo work we found that the nonparametric bootstrap of Efron (1979), applied along

the cross-sectional dimension of the panel, can perform much better in such cases. Theoretical results would

be very valuable.

Third, it would be worth investigating to what extent the scope of bias correction can be extended

beyond the setting of stationary data. We have examined the performance of the jackknife corrections

under some common deviations from stationarity and suggested validity tests for the jackknife. In a recent

paper, Fernández-Val and Weidner (2013) argue that, under regularity conditions, the introduction of time

dummies in a class of linear-index models can be successfully handled by a small modification of the jackknife

procedures discussed here.

Lastly, it would be of interest to construct bias-corrected estimators for quantile effects, and to analyze
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their properties. One technical difficulty to overcome here is the non-smoothness of the moment functions,

which implies that the derivation of the relevant expansions must rely on different techniques than those

used here.
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Arellano, M. and S. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an

application to employment equations. Review of Economic Studies 58, 277–297.

Arellano, M. and S. Bonhomme (2009). Robust priors in nonlinear panel data models. Econometrica 77,

489–536.

Arellano, M. and S. Bonhomme (2012). Identifying distributional characteristics in random coefficients panel

data models. Review of Economic Studies 79, 987–1020.

Arellano, M. and J. Hahn (2006). A likelihood-based approximate solution to the incidental parameter

problem in dynamic nonlinear models with multiple effects. Unpublished manuscript.
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