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Abstract— A reduced complexity LDPC decoding method
is presented that dramatically reduces wire interconnect
complexity, which is a major issue in LDPC decoders.
The proposed Split-Row method makes column processing
parallelism easier to exploit, doubles available row processor
parallelism, and significantly simplifies row processors—
which results in smaller area, higher speeds, and lower
energy dissipation. Simulation results over an additive white
Gaussian channel show that the error performance of
high row-weight codes with Split-Row decoding is within
0.3–0.6 dB of the Min-Sum and Sum-Product decoding
algorithms. A full parallel decoder for a (3,6) LDPC code
with a code length of 1536 bits is implemented in a 0.18 µm
CMOS technology twice: once using the Split-Row method,
and once using the Min-Sum algorithm for comparison.
The Split-Row decoder operates at 53 MHz and delivers
a throughput of 5.4 Gbps with 15 decoding iterations per
block. The Split-Row decoder is about 1.3 times smaller,
has an average wire length 1.5 times shorter, and has a
throughput 1.6 times higher than the Min-Sum decoder.

I. INTRODUCTION

Low density parity check (LDPC) codes are a class of
linear block codes which were first introduced by Gallager
in 1963 [1]. Recently, LDPC codes have received a lot of
attention because their error performance is very close to
the Shannon limit when decoded using iterative methods [2].
They have emerged as a viable option for forward error
correction (FEC) systems and have been adopted by many
advanced standards, such as 10 Gigabit Ethernet (10GBASE-
T) [3] and digital video broadcasting (DVB-S2) [4]. Also
the next generations of WiFi and WiMAX are consider-
ing LDPC codes as part of their error correction systems.
Among the greatest barriers to the widespread adoption of
high throughput LDPC decoders are their enormous memory
bandwidth and interconnect requirements [5], [6], [7]. Previ-
ous work has studied efficient implementations of hardware
LDPC decoders. Serial decoders require less hardware but
deliver low decoding throughputs [8]. Semi-parallel decoders
perform row and column operations partially in parallel [6],
[9] and deliver higher throughput than serial decoders. Quasi-
Cyclic (QC) LDPC codes [10], [11] are well suited for semi-
parallel decoder implementations. In full parallel decoders,
row and column processors are directly connected to each
other according to the Tanner graph [12] of the corresponding

parity check matrix [5]. Full parallel decoders can provide
very high throughputs while operating at low clock rates. The
major challenge in implementing parallel decoders is the high
interconnect complexity between row and column processors.
There have been studies to reduce the interconnect complexity
by using structured LDPC codes [13] or optimizing mapping
techniques [14].

In this paper, we propose Split-Row, a reduced complexity
decoding method which splits each row module into two
nearly-independent simplified halves. This method reduces
the wire interconnect complexity between row and column
processors and increases parallelism in the row processing
stage. The Split-Row method also simplifies row processors
which results in an overall smaller decoder. We further propose
a mapping method to decrease the interconnect complexity
in a full parallel Split-Row decoder. The proposed mapping
architecture makes the overall decoder yet smaller, which
results in higher clock rates and higher energy efficiency than
with traditional mapping methods.

This paper is organized as follows: Section 2 provides a
brief overview of LDPC codes and their decoding. Section 3
details the Split-Row decoding algorithm. Section 4 presents
bit error rate simulation results for the Split-Row decoder.
Section 5 proposes a mapping method for a full-parallel
decoder with the Split-Row method. Section 6 provides chip
design results for a full-parallel decoder chip implementation
with Split-Row and Min-Sum algorithms.

II. STANDARD ITERATIVE DECODING OF LDPC CODES

LDPC codes are defined by an M × N binary matrix
called the parity check matrix H . The number of columns,
represented by N , defines the code length. The number of rows
in H , represented by M , defines the number of parity check
equations for the code. Column weight Wc is the number of
ones per column and row weight Wr is the number of ones per
row. LDPC codes can also be described by a bipartite graph or
Tanner graph [12]. The parity check matrix and corresponding
Tanner graph of an LDPC code with code length N = 9 bits
are shown in Fig. 1. Each check node Ci corresponding to
row i in H is connected to variable node Vj corresponding
to column j in H . LDPC codes can be iteratively decoded
in different ways depending on the complexity and error per-
formance requirements. Sum-Product (SP) [2] and normalized
Min-Sum [15], [16] are near-optimum decoding algorithms
which are widely used in LDPC decoders and are known as
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Fig. 1. Parity check matrix and Tanner graph representation of a (Wc =
2, Wr = 3) LDPC code with code length N = 9 bits. Check node Ci

represents a parity check constraint in row i and variable node Vj represents
bit j in the code.
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Fig. 2. Parity check matrix of a (Wc, Wr) LDPC code with code length
N highlighting row processing operations using standard decoding. For
simplicity, a Quasi-Cyclic structure is shown.

standard decoders. These algorithms perform row and column
operations iteratively using two types of messages: check
node message α and variable node message β. The parity
check matrix and the block diagram of the standard decoding
algorithm are shown in Fig. 2 and Fig. 3, respectively.

A. Sum-Product Decoding
We define V (i) = {j : Hij = 1} as the set of variable

nodes which participate in check equation i. C(j) = {i :
Hij = 1} denotes the set of check nodes which participate in
the variable node j update. Also V (i)\j denotes all variable
nodes in V (i) except node j. C(j)\i denotes all check nodes
in C(j) except node i. In the Sum-Product algorithm during
the row processing or check node update stage, each check
node Ci computes the α message for each variable node Vj

based on β messages from all other variable nodes Vj′ , j′ �= j
which are connected to Ci. In this stage, α is computed as
follows:

αij =
∏

j′∈V (i)\j

sign(βij′) × φ

⎛
⎝ ∑

j′∈V (i)\j

φ(|βij′ |)
⎞
⎠ (1)

ColRow

Mem
A

Mem
B

Fig. 3. Block diagram of a typical standard decoder

where,

φ(x) = − log
(

tanh
|x|
2

)
(2)

The first product term in Eq. 1 is called the parity (sign) up-
date and the second product term is the reliability (magnitude)
update. In column processing, which is also called the variable
node update stage, each variable node Vj computes the β
message for check node Ci by adding the received information
from the channel corresponding to column j (called λ), and
α messages from all other check nodes Ci′ , i′ �= i which are
connected to Vj .

βij = λj +
∑

i′∈C(j)\i

αi′j (3)

B. Min-Sum Decoding
The check node or row processing stage of SP decoding can

be simplified by approximating the magnitude computation
in Eq. 1 with a minimum function. The algorithm using this
approximation is called Min-Sum (MS) [17], [18]:

αij =
∏

j′∈V (i)\j

sign(βij′) × min
j′∈V (i)\j

(|βij′ |) (4)

In MS decoding, the column operation is the same as in SP
decoding. The error performance loss of MS decoding can be
improved by scaling the check (α) values in Eq. 4 with a scale
factor S ≤ 1 which normalizes the approximations [15], [16].

αij = S ×
∏

j′∈V (i)\j

sign(βij′) × min
j′∈V (i)\j

(|βij′ |) (5)

III. SPLIT-ROW LDPC DECODING

The parity check matrix for the row processing stage of the
proposed algorithm is shown in Fig. 4. As shown in the figure,
the row processing stage is divided into two independent
halves. This architecture has three major benefits: 1) it doubles
parallelism in the row processing stage, 2) it decreases the
number of memory accesses per row processor, 3) it makes
each row processor simpler. These three factors combine to
make row processors (and therefore the entire LDPC decoder)
smaller, faster, and more energy efficient. In addition, the Split-
Row method makes parallelism in the column processing stage
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Fig. 4. Parity check matrix highlighting row processing operation with
the proposed Split-Row algorithm. For simplicity, a Quasi-Cyclic structure
is shown.
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Fig. 5. Block diagram of the proposed Split-Row decoder

easier to exploit. To reduce performance loss due to errors
from this simplification, the sign computed from each row
processor is passed to its corresponding “half processor” with a
single wire in each direction—these are the only wires between
the two halves. A block diagram of the Split-Row decoder with
two memory blocks is shown in Fig. 5.

From a mathematical point of view, all steps are similar to
the SP algorithm except the row processing step. In each half
of the Split-Row decoder’s row operation, the parity (sign) bit
update is the same as in the SP algorithm. The magnitude part
is updated using half of the messages in each row of the parity
check matrix. We denote the parity check matrix H divided
into half columnwise by HSplit. VSplit(i) = {j : HijSplit =
1} denotes the set of variable nodes in each half of the parity
check matrix which participates in check equation i. Therefore,
modifying Eq. 1 using half of the messages yields:

αijSplit =
∏

j′∈V (i)\j

sign(βij′) × φ

⎛
⎝ ∑

j′∈VSplit(i)\j

φ(|βij′ |)
⎞
⎠ (6)

If the β input messages for a Split-Row decoder and an SP
decoder are the same in a particular decoding step, αijSplit

and αij will have the same sign, and |αijSplit| ≥ |αij |. From
Eq. 1 and Eq. 6 the proof of the first assertion is clear. The
proof of the second assertion comes from the fact that φ is a
positive function and therefore the sum of half of the positive

values is less than or equal to all:∑
j′∈VSplit(i)\j

φ(|βij′ |) ≤
∑

j′∈V (i)\j

φ(|βij′ |) (7)

Also φ(x) is a decreasing function, therefore the following
inequality holds:

φ

⎛
⎝ ∑

j′∈VSplit(i)\j

φ(|βij′ |)
⎞
⎠ ≥ φ

⎛
⎝ ∑

j′∈V (i)\j

φ(|βij′ |)
⎞
⎠ (8)

Returning to the computation of α in Eq. 1 and Eq. 6, we
obtain:

|αijSplit| ≥ |αij |. (9)

By normalizing the αijSplit values with a scale factor S
less than one we can improve the error performance of the
Split-Row algorithm.

αijSplit = S ×
∏

j′∈V (i)\j

sign(βij′)

×φ

⎛
⎝ ∑

j′∈VSplit(i)\j

φ(|βij′ |)
⎞
⎠ (10)

Application of the Split-Row method to Min-Sum is equally
viable. Similar to the Min-Sum algorithm, the optimal value
for S varies over different code rates and SNR values and can
be obtained experimentally.

IV. ERROR PERFORMANCE SIMULATION RESULTS

In this section, the error performance of two regular LDPC
codes for the proposed algorithm are presented. The simula-
tions are performed over an additive white Gaussian noise
(AWGN) channel with BPSK modulation. The maximum
number of iterations is set to Imax = 15. The following
labelings are used for the figures: “MS” for normalized Min-
Sum, “MS Split-Row” for the proposed Min-Sum Split-Row
algorithm and “S” for the scaling factor. Different scaling
factors are used to demonstrate the optimal performance.
Figure 6 depicts the error performance of a (4,16) Quasi-
Cyclic LDPC code with N = 1536 bits. As shown in the figure
with scaling factor S = 0.4, there is about 2 dB gain over the
curve with S = 1.0. At bit error rate (BER) = 3 × 10−7, the
performance gap between Min-Sum and Min-Sum Split-Row
S = 0.4, is 0.6 dB. Figure 7 shows the error performance of a
(6,32) RS-based LDPC code [19], N = 2048 bits, adopted by
the 10GBase-T Ethernet Standard [3]. At BER = 3×10−7, the
performance gap between Min-Sum and Min-Sum Split-Row
S = 0.35 is only 0.3 dB.

A. Split-Row Decoder Limitation
Error performance simulation results indicate that the Split-

Row decoding algorithm performs within a few tenths of a
dB from Sum-Product and normalized Min-Sum algorithms
for high row-weight (Wr ≥ 10) LDPC codes at a BER of
10−6 and lower. However, this method is not as well suited
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Fig. 6. Error performance of the proposed Min-Sum Split-Row decoder for
a (4, 16) QC-LDPC code, N = 1536 bits with different scaling factors.
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Fig. 7. Error performance of the proposed Split-Row decoder for a (6, 32)
RS-based LDPC code, N = 2048 bits [19] for different scaling factors.

for low row-weight LDPC codes since the error performance
gap for these codes is somewhat larger. The reason for this
increased gap is because a low row weight parity check matrix
reduces the number of participating variable nodes in each
half of the matrix to a small enough number such that check
equation computation accuracy is more strongly impacted. For
example, a Split-Row decoder for a (3,6) QC-LDPC code,
N=1536 experiences approximately 2.0 dB performance loss
at the BER of 10−6.

V. FULL PARALLEL DECODER IMPLEMENTATION WITH
THE SPLIT-ROW ALGORITHM

This section presents the implementation of a full parallel
decoder for the proposed Split-Row decoder. Figure 8 shows
the block diagram of a full parallel decoder for a (3, 6) LDPC
code with the proposed Split-Row decoder. The parity check
matrix of the code has 768 rows and 1536 columns. The
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Fig. 8. Full parallel decoder block diagram with the proposed Split-Row
method for a (3, 6) LDPC code, N = 1536.

number of quantization bits for each message is set to b = 5.
The row and column processors are connected directly to each
other according to the parity check matrix. This connection
is shown by the “Network Interconnection” module in the
figure. The full parallel decoder takes 1 clock cycle to finish
all row and column operations for one iteration. Therefore, the
decoding throughput is:

Throughput ≥ N

Imax
× Clock Frequency (11)

where Imax is the maximum number of iterations. The row
processor and column processor block diagrams are shown
in Figs. 9 (a) and (b), respectively, which are directly imple-
mented from Eq. 10 and Eq. 3.

Figure 10 shows a mapping method of the full parallel
decoder with (a) Min-Sum and (b) the proposed Min-Sum
Split-Row decoder. As shown in the figure, in the Split-Row
decoder, half of the row and column processors can be placed
separately and corresponding row processors are connected
with two sign wires. A (3,6) QC-LDPC code with code length
N = 1536 bits is used for the decoder implementation. There
are 768 row and 1536 column processors in Min-Sum and 768
row and 768 column processors in each half of the Min-Sum
Split-Row decoder.

Each row processor in the Min-Sum decoder connects to 6
column processors while each row processor in the Split-Row
decoder connects to 3 column processors. The main advantage
of the Split-Row method derives from the fact that it provides
significant reductions in circuit area and wire area (length),
which results in reduced total area and therefore increased
speed and energy efficiency. Its reduction in interconnect
complexity enables a compounding benefit with an increase
in circuit area utilization.

Both Min-Sum and Min-Sum Split-Row decoders are imple-



TABLE I
COMPARISON OF VLSI IMPLEMENTATIONS IN 0.18 µm CMOS FOR TRADITIONAL MIN-SUM AND THE PROPOSED MIN-SUM SPLIT-ROW

Decoder Core Chip Average Maximum Decoding CAD tool CAD tool
design utilization size wire clock throughput P&R P&R

length frequency run time req. RAM
(%) (mm2) (mm) (MHz) (Gbps) (minutes) (GB)

Min-Sum 40 22.08 0.224 32 3.2 320 3.9
Proposed Min-Sum Split-Row 50 16.80 0.142 53 5.4 193 2.3
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Fig. 9. (a) Row processor and (b) column processor architectures in the
Split-Row decoder for a (3,6) LDPC code.

mented in a 0.18 µm CMOS technology with 6 metal layers.
The netlists were synthesized to a standard cell library from
verilog descriptions and the final layout was generated by a
place and route (P&R) flow. Each synthesized row processor
in the Min-Sum Split-Row decoder is about 2.7 times smaller
than the row processors in the Min-Sum decoder, which leads
to shorter wires and smaller decoder areas in the Split-Row
decoder. Table I summarizes results for the two decoders.

The Min-Sum Split-Row decoder is about 1.3 times smaller
than the Min-Sum decoder. The average wire length in the
proposed decoder is about 1.5 times shorter than wire length
in Min-Sum decoder. Post place-and-route timing analysis
indicates that the Split-Row decoder can run at a clock rate
of 53 MHz.

With the number of iterations per block set to 15, the Min-
Sum Split-Row decoder delivers about 5.4 Gbps decoding
throughput, which is about 1.6 times higher than the through-
put of the Min-Sum decoder. Figure 11 shows the (a) floorplan,
and (b) final layout plot of the chip.

Other major factors for VLSI implementation of large
designs are CPU time and memory requirements for the place
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Fig. 10. Mapping of row and column processors for a Wr = 6 LDPC code
using (a) Min-Sum and (b) Min-Sum Split-Row decoders
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Fig. 11. Split-Row 0.18 µm CMOS decoder chip (a) floorplan and (b) final
layout plot

and route process. As shown in the table, the Split-Row CPU
time and memory were 1.65 times shorter and 1.7 times
smaller than those for the Min-Sum decoder, respectively. We
attempted implementing decoders for the (4,16) N = 1536
bits, and (6,32) N = 2048 bits LDPC codes; however the
CAD tool could not complete the designs because it required
more than the 4 GB available memory in our machine.

VI. CONCLUSION

The proposed Split-Row decoder architecture is a promising
approach to tradeoff between hardware complexity and error
performance of LDPC decoders. Compared to the near-optimal
decoding algorithms Sum-Product and Min-Sum, the error



performance loss of the proposed decoder for high row weight
LDPC codes is about 0.3–0.6 dB. The decoder chip imple-
mented with Split-Row has 1.2 times higher core utilization, is
1.3 times smaller, enables 1.5 times shorter wires on average,
and delivers 1.6 times higher throughput than the Min-Sum
decoder.
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