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ABSTRACT OF THE THESIS 

 

LEVERAGING WIRELESS NETWORK VIRTUALIZATION FOR FLEXIBLE SHARING OF WLANs 

By DIPTI VETE 

 

Thesis Director: 

Professor Dipankar Raychaudhuri 

 

 

 

Providing air-time guarantees across a group of clients forms a fundamental building 

block in sharing an access point (AP) across different virtual network service providers. 

Though this problem has a relatively simple solution for downlink group scheduling 

through traffic engineering at the AP, solving this problem for uplink (UL) traffic presents 

a challenge for fair sharing of wireless hotspots. Among other issues, the mechanism for 

uplink traffic control has to scale across a large user base, and provide flexible operation 

irrespective of the client channel conditions and network traffic loads. In this thesis the 

SplitAP architecture is proposed that addresses the problem of sharing uplink airtime 

across groups of users by extending the idea of network virtualization. The architecture 
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discussed in this thesis allows different algorithms to be deployed on it for enforcing UL 

airtime fairness across different client groups. 

 

In this thesis, the design features of the SplitAP architecture are highlighted followed by 

results from evaluation on a prototype deployed with the two algorithms for controlling 

UL group fairness like: (1) Linear Proportional Feedback Control (LPFC) and (2) Linear 

Proportional Feedback Control plus (LPFC+). Performance comparisons on the ORBIT 

testbed show that the proposed algorithms are capable of providing group air-time 

fairness across wireless clients irrespective of the network volume, and traffic type. The 

algorithms show up to 40% improvement with a modified Jain fairness index.
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CHAPTER 1 

INTRODUCTION AND RELATED WORK 

1.1 Introduction 

The onset of ubiquitous wireless systems in the form of inexpensive handheld devices is 

expected to lead to an ever increasing deployment of wireless hotspots [12]. 

Differentiation in the quality of service provided on shared hardware for wireless 

Internet Service Providers (ISPs) provides a substantial challenge with more and more 

ISPs aiming to provide services at public locations such as airports, cafes and shopping 

areas. A mechanism is required to ensure that this access point (AP) sharing will work 

across a wide range of client hardware, while providing each user group (clients 

belonging to a single ISP) with aggregate air-time commensurate to the revenue 

contract of the ISP with the wireless equipment provider. Apart from providing baseline 

fairness in terms of air-time across different user groups, other requirements for sharing 

WLAN access point hardware across different ISPs include:  

(1) Different broadcast domains,  

(2) Different levels of security,  

(3) Support different protocols above a basic L2 connection,  

(4) Ease of deployment, and  

(5) Minimum bandwidth loss for resource partitioning. 
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To solve this problem the SplitAP architecture is proposed in this thesis that employs 

wireless network virtualization. Network virtualization is a concept derived from the 

server systems area of research which has recently been applied to network sharing. 

Virtualization is a mechanism that allows for seamless sharing of a particular resource by  

using three key features: Abstraction, Programmability and Isolation. Each of these 

features is applied as shown in the Figure 1.  

              

Figure 1: A single wireless access point emulating multiple virtual access points. Clients 

from different networks associate with corresponding VAPs though they use the same 

underlying hardware. 

 

Abstraction allows the users of the system to use the SplitAP architecture with minimal 

changes to the client hardware or software. As shown in the Figure 1,  virtual access 

points (VAPs) [4] are used that are supported by most commodity AP hardware to 
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emulate the functionality of two different physical APs (ISP1, ISP2) with a single physical 

AP, thus allowing the use of the client MAC protocols and hardware without making any 

changes to them respectively. 

  

In the setup, programmability is provided by allowing the person deploying the 

hardware to allocate different UL air-time quotas for individual virtual access points. 

Finally, isolation across groups of wireless users is provided through air-time control at 

the clients based on the information provided by the SplitAP controller running at the 

AP.  

 

Since downlink air-time fairness has been studied previously [6], and a spate of recent 

applications such as those supported by web 2.0 [3], peer-to-peer file sharing [18], and 

video conferencing have resulted in significantly increased uplink air-time usage, the 

problem of uplink air-time control across the virtual networks formed by wireless user 

groups is addressed in this thesis. Through the use of a SplitAP prototype discussed 

here, the performance of our sample algorithms for providing uplink air-time fairness 

across user groups is shown, while providing all of the features discussed above. 

Specifically the contributions of this thesis are: 

1) Proposal, design and implementation of the SplitAP software architecture based 

on the extension of the virtual access point functionality for sharing a single 

physical AP across groups of users. 

2) Design and evaluation of the LPFC and LPFC+ algorithms for group UL air-time     
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      control using the SplitAP setup on commercial off-the-shelf hardware. 

3) Extensive evaluation to show that the results obtained on the SplitAP 

infrastructure are as per the requirement while achieving the system 

performance with minimal overhead. 

 

1.2 Related Work 

 

Among AP based infrastructures, DenseAP architecture proposed in [16], describes a 

mechanism for sharing airtime by managing handoffs across APs. Another setup to 

share downlink air-time has been discussed for WiMAX radios in [6]. The SplitAP setup 

explained in this thesis specifically deals with the problem of providing architecture for 

sharing UL air-time of a single AP across multiple WLAN user groups. In terms of the 

methodology itself, a comparison of wireless virtualization approaches is presented in 

[15]. However, it does not address the problem of fair sharing of UL air-time across 

client groups. 

 

In the domain of air-time fairness, a body of work [14], [10], [7], [5] discusses the use of 

EDCA parameters such as contention windows and transmission opportunities for 

controlling airtime usage across clients. The study in [14] attempts to ensure fairness 

across competing uplink stations with TCP traffic using EDCA parameters. Time fair 

CSMA protocol proposed in [10] controls minimum contention window size to achieve 
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estimated target uplink throughput for each competing station in multirate WLAN. In [5] 

authors suggest that in a proportional fair allocation based on 802.11e EDCA 

parameters, equal share of channel time is given to high and low bit rate stations and, as 

a result, high bit rate stations can obtain more throughput. Another study in [7] 

proposes two control mechanisms for airtime fairness, one using AIFS and the other 

using contention window size. The studies in [14], [10], [7], and [5] are based on 

simulations. 

 

One study in [17] proposes a Time Based Regulator system that achieves uplink air-time 

fairness by ensuring equal "long term" channel occupancy time for every node in the 

WLAN. Though this study presents results based on an implementation, it does not deal 

with the problems of clients sending traffic with different frame sizes, offered loads, and 

sharing of airtime across user groups. The TWHTB system discussed in [8] uses 

information on current channel quality to the respective station associated with AP to 

schedule downlink transmission to that particular station by limiting frame transmission 

rate. However, this scheme does not take into account Uplink flows and corresponding 

traffic variations. Another study discussed in [11] discusses an approach where each 

station monitors the number of active stations and calculates the target access time 

based on this information. The study uses sniffing on the client side, while also requiring 

modification of NAV field in the MAC header, and results are based on simulations. 
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In addition none of these studies address the problem of enforcing client-group UL 

airtime fairness which is addressed by algorithms run on our SplitAP setup. 

 

Rest of the thesis is organized as follows. Chapter 2 gives a brief overview of what 

network virtualization is and how can it be leveraged to solve the problem we are 

tackling in this thesis. Chapter 3 discusses the problem of providing uplink air-time 

fairness across user groups, and presents the design of our SplitAP architecture. Chapter 

4 presents a discussion on the two sample algorithms evaluated with the SplitAP 

framework. Chapter 5 presents the results from the system, and finally, chapter 6 

discusses the conclusions and future work. 
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CHAPTER 2 

NETWORK VIRTUALIZATION 

 

This chapter begins by providing an overview of what virtualization is. This is followed by 

a discussion about how this concept is extended to both wired and wireless networks. 

This is followed by how the network virtualization is applied for the problem statement 

covered in this thesis using the Virtual Access Points (VAPs) feature provided by 

MADWIFI driver for atheros chipset to create multiple virtual APs (slices) from one 

physical access point.  Finally, we conclude this chapter with some basic experiments to 

test the performance of VAP. 

 

2.1 WHAT IS VIRTUALIZATION? 

 

Virtualization is a framework or methodology of dividing the resources of a computer 

into multiple execution environments, by applying one or more concepts or 

technologies such as hardware and software partitioning, time-sharing, partial or 

complete machine simulation, emulation, quality of service, and many others [19]. 

 

The general process of virtualization is best explained with Figure 2.1. The hardware 

machine to be virtualized lies at the bottom of the virtualization solution. Virtualization 
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may or may not be supported on this machine directly. On top of the actual hardware 

resource there is a hypervisor more commonly known as Virtual Machine Monitor 

(VMM). This layer acts as an abstraction between the hardware and the operating 

system (OS). 

 

Figure 2.1: Layered abstraction of virtualization [1] 

 

If the OS performs the functions of the hypervisor itself, then such operating system is 

called the host operating system. The actual virtual machines (VMs) form the topmost 

layer of the entire virtualization solution. These VMs are isolated operating systems, and 

they function as if the entire host hardware platform is dedicated to each one of them. 

These VMs are independent of each other and can have applications associated with 

them.  

 

Having understood what virtualization is, we take a look at the different types of 

virtualization techniques that are possible [1] - 
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2.1.1 Hardware emulation 

In this technique, virtualization is provided by creating virtual machines that emulate 

the hardware itself. This technique allows OS to run without making any modifications 

to it. The main drawback of this technique is that it is very slow. 

 

Figure 2.1.1: Hardware emulation [1] 

 

Example of hardware emulation is QEMU. Figure 2.1.1 shows the basic architecture of 

Hardware Emulation.  

2.1.2 Full virtualization 

Virtual machine manager is used to mediate between the host machine and guest OS in 

this type of virtualization technique. 
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Figure 2.1.2: Full virtualization [1] 

 

This requires some protected instructions to be trapped and managed by the VMM 

since the underlying hardware is shared by all the virtual machines (VMs). This 

technique also allows the OS to run unmodified. At the same time it does need to be 

compatible with the underlying hardware. VMware and z/VM are the examples of this 

type of virtualization. This technique is as depicted in Figure 2.1.2. 

2.1.3 Paravirtualization 

This method is similar to full virtualization; wherein it uses a hypervisor to mediate 

access to the hardware; but it requires that the guest operating system has some 

virtualization-aware code present in it. Figure 2.1.3 explains this technique. This 

mechanism does away with the need to trap any privileged instructions, since the guest 

OS is aware of the virtualization process. Paravirtualization comes closest to offering 
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performance that is close to that of an unvirtualized system. Xen and UML make use of 

the paravirtualization technique. 

 

 

Figure 2.1.3: Paravirtualization [1] 

2.1.4. Operating system-level virtualization 

The final technique as shown in Figure 2.1.4 virtualizes server on the top of the 

operating system itself. This method isolates the independent servers from each other, 

while supporting the same operating system to be used by them. This can provide native 

performance at the cost of changes to the operating system kernel. OpenVz is an 

example of operating system-level virtualization technique. 
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Figure 2.1.4: Operating system-level virtualization block diagram [1] 

 

2.2 Leveraging virtualization for networks 

 

Network virtualization provides a powerful way to run multiple networks, each 

customized to a specific purpose, at the same time over a shared substrate [21]. 

Network virtualization is intended to optimize network speed, reliability, flexibility, 

scalability, and security. It delivers increased application performance by dynamically 

maximizing network asset utilization while reducing operational requirements [22]. It is 

said to be especially effective in networks that experience sudden, large, and 

unforeseen surges in usage [23].  

2.3 Wireless Access Point Virtualization   

This section talks about how the virtualization concepts and techniques explained in 

previous section are applied for virtualizing a wireless access point. 
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2.3.1 Why is virtualization needed? 

Virtualization enables a single machine/node to emulate multiple logical instances of a 

required physical/hardware resource within the same or different slices. One of the 

main challenges with the radio nodes on ORBIT grid is to provide a setup where multiple 

experimenters could run experiments which involve a wireless access point and their 

respective stations/clients as a part of their experimentation setup. This configuration is 

achieved by using virtual access point (VAP) functionality provided by 802.11 driver that 

is further explained in the next section. 

 

2.3.2 Virtual Access Points (VAPs) 

A VAP is defined as a logical abstraction that could be run on a physical access point 

which then emulates the behavior of a conventional access point to all the client 

stations in the WLAN [24]. Using a VAP allows for two or more AP mechanisms to share 

the same channel thereby helping channel and energy conservation. In contrast to the 

TDMA approach for channel multiplexing, VAPs are more suitable for running short and 

long-term experiments with less stringent constraints on the current testbed resources. 

The concept of VAPs is incorporated in the 802.11 driver, which operates just above the 

MAC layer and below the IP layer. The driver provides the multiple AP abstraction to the 

higher layers though it is operating on a single lower layer. Hence all the protocols 

operating on the machine are agnostic to the presence of the abstraction. 
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Compared to the TDMA approach, the VAP does not require tight synchronization 

among the different experiment nodes. However, this scheme requires traffic shaping 

and is limited to fixed star topology wireless networks [15]. Since channel conservation 

is of prime importance, we choose to use VAP methodology on the ORBIT grid for 

evaluation of air-time fairness provided by SplitAP mechanism. 

 

2.3.3 Baseline Throughput Performance with VAP 

Throughput, latency and jitter are usually the three main parameters, which determine 

a user’s utilization and experience on a network device. Throughput for individual 

experiments in a virtualized environment is expected to be lesser than those under 

single user conditions. However, performance under these conditions is largely 

contingent on how fairly the resources are shared. A virtualized channel is shared 

among multiple users running simultaneous experiments and the end performance can 

largely be a function of individual experiment parameters rather than just a fair share 

between users. This study was insightful in determining that a VAP provides significant 

advantages over a conventional physical access point setup [15]. 

 

VAP Overhead 

A VAP creates an abstraction of multiple physical access points running from the same 

hardware for the stations associating with it. Creation of these logical entities requires 

state maintenance and independent management signaling for each of the networks 

managed by each VAP. The overheads of maintaining the state of multiple networks at a 
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single hardware device is studied in [15]. The experimental setup is as shown in Figure 

2.3.3(a) and Figure 2.3.3(b).  

 

Figure 2.3.3: Experimental setup for performance evaluation with physical and virtual 

access points [15] 

 

Figure 2.3.3(a) shows a setup with one AP and all four clients within the same network. 

Figure 2.3.3(b) has the same nodes. However, each client belonged to a different logical 

network created by the VAPs. Care was taken to ensure that there is no capture within 

the network by choosing client nodes such that they had comparable RSSI at the access 

point. Results were evaluated for both uplink and downlink performance with a 

saturated channel and equal offered load per client. Other experiment parameters were 

maintained as shown in Figure 2.3.3(c). Figure 2.3.3(d) plots the observed per client 

throughput  for uplink and downlink traffic.  
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Figure 2.3.3(c): Experimental parameters used with ORBIT nodes [15] 

 

Figure 2.3.3(d): Impact of virtualizing using channel multiplexing approaches. [15] 

 

Performance of a single client with a single access point was taken as a reference for 

comparison. Key observations that were made from the results are: 

• As with any time sharing approach, the entire bandwidth (which is seen in the scenario 

with 1 client) was shared across 4 clients. 
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• There was a slight deterioration in uplink traffic performance with both the AP and the 

VAP as compared to the reference flow with 1 client. 

• There was no added deterioration with uplink traffic using VAPs for having clients on 

multiple networks, as compared to an AP with all clients in one network. Hence, it was 

concluded that the deterioration was seen in both cases, which lead to a net channel 

throughput decrease of 9.75%. This decrease for the virtualized scenario as compared to 

no vitualization was due to the increased channel contention overhead. 

• Downlink overheads for both AP and VAP with 4 clients were negligible as compared 

to that with a single client. 

• Error bars for both cases show little variance in throughput. Hence it was concluded that 

using a VAP adds no conspicuous overhead to the throughput performance of an AP.  

 

This behavior was confirmed by investigating the source code for the MADWIFI driver 

where the VAPs are created. The driver does minimal additional processing to 

differentiate between the packets received for the different virtual interfaces. The above 

study suggests that experiments evaluating aggregate throughput with test setups running 

a single AP or multiple VAP should generate comparable results with the channel 

utilization being determined by the number of clients [15]. 
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CHAPTER 3 

SPLITAP DESIGN OVERVIEW 

 

Throughout this thesis the notion of slices is used to refer to the resources allocated to a 

group of users belonging to a single ISP. The terms groups or slices will be used 

interchangeably henceforth. Our infrastructure enforces fairness in uplink (UL) airtime 

usage across slices, thus allowing individual ISPs to fairly share the underlying WLAN 

hardware and the corresponding channel. We start with a formal definition of the 

problem of sharing UL airtime across a group of users, followed by a conceptual 

description of our virtualization based design. Eventually, the details of the algorithms 

used for UL airtime allocation are discussed.  

 

3.1 Group Uplink Airtime Fairness: Problem Statement 

 

Consider a set of M client groups (slices) with each group Si having Ni clients. Let the 

fraction of UL air time allocated for every slice Si � M, be denoted by Wi. Wi for each 

slice is decided during the time of deployment of the infrastructure and can be 

dependent on a wide range of criterion like pricing, importance of the group and so on. 

If φ
i
j denotes the measured UL air time consumed by the client j � Si slice, the fraction of 

UL air-time used by every client associated with the access point is calculated as C
i
j: 
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The condition of group fairness requires that, the total measured UL airtime for all 

clients within a slice Si is limited to Wi: 

 

The above condition should be fulfilled while placing no limitation on the individual 

values of C
i
j i.e. all nodes within a single slice Si should be able to share the UL airtime 

fairly, independent of the usage on other slices. Hence, in the worst case every client 

should be able to utilize UL airtime 0 ≤ C
i
j ≤ Wi as long as the Equation (2) is not violated 

and all clients within Si share the available UL airtime fairly.  

Qualitatively summarizing the constraints of the slice/group fairness mechanism:  

(1) Flexibility: If the channel usage is below saturation, and there are no hard 

guarantees, each client should be able to access the entire available channel time for 

the slice,  

(2) Within a group: Sharing of UL airtime should be fair and equal,  

(3) Scalable: Should work with a large number of clients without significant control 

overheads,  
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(4) Adaptable: Should be able to comfortably adapt to changing environment with 

dynamic addition or removal of wireless clients, the network load, protocol type and the 

channel conditions for individual clients.  

Hence, to allow deployment of algorithms that will be able to realize such a group 

airtime fairness mechanism, our SplitAP infrastructure will need to provide all needed 

control and measurement features while being transparent to the users of the system. 

 

3.2 Virtualization Based Design 

 

We will now discuss how each of the virtualization features is implemented as a part of 

our SplitAP architecture.  

Abstraction: The functionality of virtual access points is employed and extended which is 

available as a standard feature on commercial access points for emulating multiple 

virtual access points on a single physical access point while operating on the same 

wireless channel [4]. Using this feature the physical AP will be able to broadcast beacons 

for independent virtual networks (ISPs). Hence clients belonging to different ISP slices 

can see the ESSID of their ISP and associate with it, thereby making client side 

connectivity transparent and simple.  

Programmability: Each of the ISPs should have independent control of settings in their 

network. Using virtual access points, different features can be set per WLANs such as 
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different security policies, broadcast domains, IP settings, independent control of MAC 

settings such as aggregation and 802.11e based WMM parameters. 

Isolation: Isolation across virtual networks (client groups) is a fundamental requirement 

for supporting multiple networks and will be the main topic discussed in this thesis. 

Ideally, this could be done through a strict TDMA scheduler across the virtual networks. 

However, such a scheduler would require a large change in the MAC mechanism of the 

clients, thus making them completely incompatible with other 802.11 based commercial 

access points. The SplitAP mechanism
1
 proposed in this thesis is an incremental design 

to the existing 802.11 framework and is currently capable of existing as a stand alone 

entity outside of the driver. The functionality in our system is split as shown in the 

Figure 3.2. 

 

The SplitAP controller at the AP is responsible for emulating the virtual access points, 

accounting of traffic by client groups, and determining the weights of UL airtime for 

each group. The client software is responsible for enforcing the commands broadcasted 

by the controller and reporting usage statistics like the physical layer rate and the 

average packet size reported by the client interface. The remaining discussion will focus 

on the implementation of individual components, followed by a brief overview of the 

algorithms for providing uplink airtime fairness across the ISP slices. 

 

 

                                                 
1
 A brief overview of this work is also available in [25]. 



 

 

 

22 

 

Figure 3.2: A single wireless access point emulating multiple virtual access points. 

Clients from different networks associate with corresponding VAPs though they use 

the same underlying hardware 

 

3.3 SplitAP Controller 

The access point infrastructure runs a multi-threaded ruby controller that performs the 

actions described in Algorithm (1). In the controller, sliceID is a unique identifier used for 

identifying independent slices owned by different ISPs. The algorithm computes slice UL 
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airtime usage time[sliceID] for every sliceID, by iterating and determining the UL airtime 

usage reported by individual clients within every slice sliceID. Based on this estimate, it 

determines the offset of the actual slice utilization from the allocated UL airtime 

fraction. If this offset is greater than a threshold (Θ), the AP controller uses UDP 

broadcast as a means of sending CsliceID to clients to limit control traffic, since the number of 

control messages are now dependent on the number of slices rather than number of clients. 

Ideally, these CsliceID will be included in the beacons of individual virtual access points, thereby 

eliminating the need for a separate signaling mechanism. CsliceID the maximum UL airtime 

fraction that can be consumed by any individual client within the slice sliceID. The value 

of CsliceID is always chosen as inversely proportional to the UL airtime utilization for that 

slice. This fraction of channel time is calculated based on the previously broadcasted 

value and the corresponding slice utilization. LPFC and LPFC+ algorithms discussed later 

are two means of calculating CsliceID based on current UL airtime utilization numbers and 

or the number of associated clients. 
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3.4 Client Plugin Design 

 

In the current design, the client needs to install an application that allows the user to 

connect to a SplitAP based wireless service provider. Eventually, to make this application 

platform independent, it could be implemented as a web browser plugin that controls 

client’s UL traffic based on commands from the controller. The client software stack in 

the current SplitAP architecture is as shown in Figure 3.3.  
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Figure 3.4: Network stack at the wireless client associating with the SplitAP 

infrastructure 

 

The SplitAP client control and reporting module is responsible for two functionalities:  

(1) Determining and reporting client side parameters such as physical layer rate 

(through access of the rate table), and average packet sizes by querying the proc 

filesystem or using the driver statistics.  

(2) Converting the maximum airtime limit enforced by the SplitAP controller to a rate 

value, and accordingly controlling the shaping module to rate limit the client. The 
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shaping module is implemented by using the Click [13] modular router that 

transparently controls outbound traffic from the interface. 

 

3.5 Algorithms for deployment with SplitAP 

 

The SplitAP design offers a convenient way to deploy different algorithms on the AP for 

controlling uplink airtime across slices. Each of the algorithms discussed in this section 

are ways to implement the getwt() function discussed in Algorithm (1) and provide the 

value CsliceID, which is the maximum airtime that can be consumed by any client in Slice 

SsliceID. 

 

3.5.1  Algorithm(1): LPFC 

This is a simple linear proportional feedback control (LPFC) based algorithm that uses a 

dynamic estimate of the number of clients associated with the AP to calculate the CsliceID. 

Information on the number of clients associated with the AP is available in the SplitAP 

controller through querying of the proc interface on the AP. The algorithm calculates 

CsliceID simply by determining current number of clients in the slice SsliceID and 

proportionally splitting the available (quota of) airtime WsliceID among the number of 

clients NsliceID within the slice. The SplitAP architecture allows this corrected CsliceID to be 

broadcasted every one second or at another interval desired by the ISP using the slice. 
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3.5.2 Algorithm(2): LPFC+ 

Instead of generating and broadcasting the CsliceID purely based on the slice UL airtime 

quota and number of clients in the slice, the LPFC+ algorithm relies on monitoring the 

current UL airtime utilization for the slice, which is available through the SplitAP client 

reports and appropriately controlling CsliceID. The algorithm selects CsliceID in such a way 

that even if the offered load by clients in a slice is not the same, it allows the clients to 

increase traffic, by increasing CsliceID until the UL airtime quota for the slice is reached. If 

the quota is exceeded (or under-utilized), the LPFC+ controller proportionally reduces 

(or increases) CsliceID, the maximum airtime that can be used by any client in the Slice 

sliceID. As with the LPFC algorithm, the CsliceID can be broadcasted every one second or 

at any other value desired by the ISP owning the slice.  
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CHAPTER 4 

EXPERIMENTAL EVALUATION AND RESULTS 

 

All experimental results presented in this evaluation are based on the clients with 

Atheros 5212 chipsets, and using Madwifi 0.9.4 [2] drivers. The clients are all operating 

in the 802.11a mode with a frame size of 1024bytes, and 54Mbps physical layer rate 

unless mentioned otherwise. Traffic is generated with the Iperf tool [1]. We begin with a 

brief definition of the metrics used, followed by baseline performance of the LPFC 

algorithm and a comparison with LPFC+. 

 

4.1 Metrics 

 

Preliminary evaluations with a small number of clients will be based purely on 

comparison of UL airtime allocated to individual slice. Further, in our evaluations, we 

modify and use the Jain fairness index [9] for determining weighted UL airtime fairness 

across flows and flow groups. 

 

Modified Jain Index: Let the sum of fraction of channel time used by all clients in slice k 

be denoted as Ck. Then, 
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The fairness index (I) determines the global variation in channel utilization across slices. 

We further scale the airtime by slice quotas to evaluate fairness under saturation with 

different slice weights, while also accounting for performance deterioration due to bad 

channel quality. 

 

4.2 Baseline Performance With LPFC 

 

To measure the baseline performance with the LPFC algorithm, we consider a setup 

with two clients on different slices sending UDP UL traffic using Iperf traffic generator. 

 

Varying Transmission Rates In the first experiment, we vary transmission rates of the 

two clients on Slice 1 and 2 as shown on the x-axis in Figure 4.2(a), Figure 4.2(b) Figure 

4.2 (c) and Figure 4.2(d). We observe that, in the vanilla case (without the SplitAP 

mechanism running the LPFC algorithm), the air-time used by the two clients are 

inversely dependent on the transmission rates. Also, the aggregate throughput achieved 

using SplitAP framework is slightly higher as against the traditional Vanilla system. This 

is a result of statistical multiplexing of packets by the CSMA MAC operating as a part of 

the 802.11 DCF mechanism. 
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Figure 4.2(a): Varying rate experiment (50 – 50 sharing) – Total Achieved Throughput 

 

 

Figure 4.2(b): Varying rate experiment (50 – 50 sharing) - Airtime Utilization 
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Figure 4.2(c): Varying rate experiment (10 – 90 sharing) – Total Achieved Throughput 

 

Figure 4.2(d): Varying rate experiment (10 – 90 sharing) – Airtime Utilization 
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Varying Packet Sizes Now we will vary the packet size of the uplink traffic from each 

client to check its impact on the overall sharing of air time at the access point for the 

two clients.  

As seen in the results in Figure 4.2(f) and Figure 4.2(h), the airtime consumed at the 

access point without the use of our scheme (vanilla) is directly dependent on the size of 

the packets used by the uplink traffic. Typically, this results from a statistical 

multiplexing of packets over the air. However, using our SplitAP infrastructure with the 

LPFC algorithm we are able to control uplink traffic in direct proportion to the air time 

usage by each client. Our scheme accounts for the extra airtime spent in channel 

accesses and PHY/MAC overheads with smaller packet sizes resulting in fair sharing 

across the clients and thus virtual networks. This is also evident from the aggregate 

achieved throughput results as seen in Figure 4.2(e) and Figure 4.2(g). It is observed that 

the aggregate throughput achieved using SplitAP framework is comparable with the 

traditional Vanilla system. As before we observe that our infrastructure allows control of 

air-time across the clients in a preset 50 - 50 and 10 – 90 percentage. This percentage 

could be easily varied. 
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Figure 4.2(e): Varying packet size experiment (50 -50 sharing) – Total Achieved 

Throughput 

 

Figure 4.2(f): Varying packet size experiment (50 -50 sharing) – Airtime Utilization 



 

 

 

34 

 

Figure 4.2(g): Varying packet size experiment (10 - 90 sharing) – Total Achieved 

Throughput 

 

Figure 4.2(h): Varying packet size experiment (10 - 90 sharing) - Airtime Utilization 
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Varying Offered Loads In this experiment, we vary the offered loads across the two 

clients. Combinations of offered loads used across the clients are as shown on the x-axis 

in the results in Figure 4.2(i), Figure 4.2(j), Figure 4.2(k) and Figure 4.2(l). The maximum 

offered load is limited to 33Mbps because the channel saturates at that value of the 

offered load when the physical layer rate is 54Mbps. The channel saturates at this 

slightly higher value than normal since the Madwifi drivers use fast framing 

optimizations to improve performance within allocated txops. However, this does not 

affect our evaluation since it is enabled in all measurement cases. The aggregate 

throughput achieved using SplitAP framework in this case is slightly deteriorated 

compared to the traditional Vanilla system. This is because LPFC algorithm uses 

conservative approach and limits airtime of slice 2 (with 33Mbps physical rate) even 

though the other client is not using its share. We observe that LPFC scheme limits 

airtime of Slice 2, to ensure better fairness as compared to the vanilla case with no 

control. 
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Figure 4.2(i): Varying offered load experiment (50 – 50 sharing) - Total Achieved 

Throughput 

 

Figure 4.2(j): Varying offered load experiment (50 – 50 sharing) – Airtime 

Utilization 
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Figure 4.2(k): Varying offered load experiment (10 – 90 sharing) – Total Achieved 

Throughput 

 

Figure 4.2(l): Varying offered load experiment (10 – 90 sharing) – Airtime 

Utilization 
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4.3  Improvement With LPFC+ 

 

Since the LPFC+ algorithm allows the allocation of slice weights such that within a slice 

we may have varying utilization by independent clients, such a mechanism allows for 

fair co-existence of transport protocols with different requirements. In this experiment 

we have two slices: Slice 1 has a client sending constant UDP uplink traffic, while the 

Slice 2 has two clients. The first client in Slice 2 is sending varying amount of UDP uplink 

traffic, while the other client in Slice 2 is transferring a 200MB file with a FTP file 

transfer. Results from this experiment are as shown in Figure 4.3.  

 

Figure 4.3: TCP and UDP co-existence in a single slice with LPFC+. Constant UDP traffic 

of 5Mbps is supported by slice 1, while the Client 2 with FTP transfer and the client 3 

with varying UDP loads share the slice 2. 
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We observe that the client on slice 1 is not affected despite one of the clients on Slice 2 

using UDP traffic. We also observe that the clients on Slice 2 share the UL airtime. When 

the UDP offered load is less at 4Mbps, the FTP transfer is faster and happens at an 

aggregate rate of 18.3Mbps. When the UDP offered load on the client increases, the FTP 

client reduces its rate, thereby requiring longer time for the FTP transfer completion. It 

is important to note that a similar performance could be achieved even by using LPFC 

instead of LPFC+. However, in that case the FTP client on slice 2 would always be limited 

to a fixed uplink rate thereby resulting in wastage of free bandwidth. 

 

4.4 Performance with Real-time traffic using LPFC+ 

 

As explained before, since the LPFC+ algorithm allows the allocation of slice weights 

such that within a slice we may have varying utilization by independent clients, such a 

mechanism controls the amount of UL and DL traffic load on each slice thus providing 

isolation between them. In this experiment we have two slices: Slice 1 has a client 

sending constant UDP uplink traffic of 30Mbps and has slice weight WsliceID = 0.2, while 

the Slice 2 has two clients with slice weight WsliceID = 0.8. The first client in Slice 2 is 

sending constant amount of UDP uplink traffic, while the other client in Slice 2 is sending 

varying amount of UDP uplink traffic in steps of 5Mbps. Results from this experiment 

are as shown in Figure 4.4.  



 

 

 

40 

 

The realtime performance of the system when client traffic is varying is seen from Figure 

4.4. From Figure 4.4 we observe that the throughput of slice 1 remains constant 

(5Mbps), while within slice 2 the framework tries to accommodate the client 1 as UL 

UDP traffic from client 2 goes on increasing. 

 

Figure 4.4: Results for studying performance with realtime traffic using improved 

LPFC+ algorithm 
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4.5 Comparison: LPFC Vs LPFC+ 

 

In a final experiment we consider a setup with two slices: Slice 1 has a single client 

pumping UDP UL traffic at saturation, while Slice 2 has 5 clients associated with it. For 

different experiments, varying number of clients 1 - 5 on Slice 2 will send saturation UL 

traffic along with the client on Slice 1. In this case we consider the performance of both 

LPFC and LPFC+ algorithms, as compared to that without our SplitAP setup (Vanilla).  

Figure 4.5(a): Comparison of UL airtime group fairness for: LPFC, LPFC+, and a vanilla 

system without our SplitAP framework. 
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A comparison of the measured modified fairness index is as shown in Figure 4.5(a). We 

observe that the group fairness index I is always greater than 0.97 with the use of our 

infrastructure, while it falls down up to 0.6 in a vanilla system without our setup. 

 

Figure 4.5(b): Comparison of UL throughput for: LPFC, LPFC+, and a vanilla system 

without our SplitAP framework. 

 

The throughput measurements in Figure 4.5(b) show that the improvements in fairness 

are at the cost of a small decrease in net throughput with LPFC+, thus justifying the use 

of our scheme. The throughput performance with our LPFC scheme is less when lesser 
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number of clients on Slice 2 pump traffic. This is because it sees five clients associated 

with the slice from the beginning, and presents a conservative estimate of CsliceID which 

results in lower throughput. The LPFC+ scheme on the other hand dynamically measures 

airtime for every slice and adapts its CsliceID resulting in better performance. It cannot 

reach channel capacity since it keeps a 15% tolerance, but is able to divide the 

remaining airtime fairly. The 15% tolerance value to prevent the system from reaching 

channel capacity was selected since we achieved best performance on our SplitAP 

framework with this value while minimizing the wastage of bandwidth based on the 

extensive experimental evaluation we carried out. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This study discusses the design of the SplitAP architecture that allows the operator to 

deploy a shared physical access point, which is capable of running algorithms that 

control UL airtime across user groups. We demonstrate the feasibility of the proposed 

architecture by implementing the LPFC and LPFC+ algorithms on a prototype. Results 

obtained from the measurements on the ORBIT testbed show a significant improvement 

in the group airtime fairness, while resulting in marginal degradation of overall system 

throughput.  

 

Future directions include search for more efficient algorithms that can be deployed on 

the SplitAP framework. Evaluation of the UL airtime fairness issue for mesh and ad-hoc 

wireless network topologies needs to be done. But the VAP mechanism for time-sharing 

of physical wireless access point that we have leveraged in this study will not work in 

case of mesh and ad-hoc networks. A new distributed control mechanism based on 

explicit Time Division Multiple Access (TDMA) based scheduler would be required to 

achieve the airtime fairness for these distributed network topologies as against the 

current centralized controller with enhanced signaling mechanism. Also, the stand alone 

client application of SplitAP architecture could be implemented as a web browser plugin 

to make it platform independent. Finally, the slice airtime quota/weight, CsliceID could be 
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included in the beacons of individual VAPs thereby eliminating the need for a separate 

signaling mechanism. 
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