

2010

Dipti Vete

ALL RIGHTS RESERVED

LEVERAGING WIRELESS NETWORK VIRTUALIZATION FOR FLEXIBLE SHARING OF

WLANs

BY DIPTI VETE

A thesis submitted to the

Graduate School - New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor D. Raychaudhuri

and approved by

New Brunswick, New Jersey

October, 2010

ii

ABSTRACT OF THE THESIS

LEVERAGING WIRELESS NETWORK VIRTUALIZATION FOR FLEXIBLE SHARING OF WLANs

By DIPTI VETE

Thesis Director:

Professor Dipankar Raychaudhuri

Providing air-time guarantees across a group of clients forms a fundamental building

block in sharing an access point (AP) across different virtual network service providers.

Though this problem has a relatively simple solution for downlink group scheduling

through traffic engineering at the AP, solving this problem for uplink (UL) traffic presents

a challenge for fair sharing of wireless hotspots. Among other issues, the mechanism for

uplink traffic control has to scale across a large user base, and provide flexible operation

irrespective of the client channel conditions and network traffic loads. In this thesis the

SplitAP architecture is proposed that addresses the problem of sharing uplink airtime

across groups of users by extending the idea of network virtualization. The architecture

iii

discussed in this thesis allows different algorithms to be deployed on it for enforcing UL

airtime fairness across different client groups.

In this thesis, the design features of the SplitAP architecture are highlighted followed by

results from evaluation on a prototype deployed with the two algorithms for controlling

UL group fairness like: (1) Linear Proportional Feedback Control (LPFC) and (2) Linear

Proportional Feedback Control plus (LPFC+). Performance comparisons on the ORBIT

testbed show that the proposed algorithms are capable of providing group air-time

fairness across wireless clients irrespective of the network volume, and traffic type. The

algorithms show up to 40% improvement with a modified Jain fairness index.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Prof. Dipankar

Raychaudhuri for his constant support, guidance and concern. Despite all his

commitments and responsibilities he always gave me time and guided me whenever I

needed it.

I am deeply indebted to my most valuable mentor & advisor, Gautam Bhanage for his

continuous guidance and motivation throughout the project. I sincerely appreciate all

his efforts, time and contribution to this thesis.

I acknowledge the help that came from Ivan Seskar with the Orbit implementation and

technical guidance. I express sincere gratitude to Chandru Raman for his moral support,

motivation and help throughout this work. Finally, I would like to thank my family and

friends for being with me and supporting me throughout my thesis work.

v

DEDICATION

To My Grand Parents and Parents

vi

ABBREVIATIONS

AP Access Point

VAP Virtual Access Point

WLAN Wireless Infrastructure Local Area Network

ISP Internet service provider

UL Uplink

DL Downlink

MADWIFI Multiband Atheros Driver for Wifi

CSMA Carrier sense multiple access

 LPFC Linear Proportional Feedback Control

LPFC+ Linear Proportional Feedback Control plus (advanced)

FTP File Transfer Protocol

MB Mega Byte

IP Internet Protocol

MAC Medium Access Control

Mbps Mega bits per second

TCP Transmission Control Protocol

UDP User Datagram Protocol

ORBIT Open Access Research Testbed for Next-Generation Wireless

Networks

vii

TABLE OF CONTENTS

ABSTRACT OF THE THESIS ... ii

ACKNOWLEDGMENTS.. iv

DEDICATION .. v

1 INTRODUCTION AND RELATED WORK... 1

1.1 Introduction .. 1

1.2 Related Work .. 4

2 NETWORK VIRTUALIZATION .. 7

2.1 WHAT IS VIRTUALIZATION? .. 7

2.1.1 Hardware emulation... 9

2.1.2 Full virtualization.. 9

2.1.3 Paravirtualization ... 10

2.1.4. Operating system-level virtualization... 11

2.2 Leveraging virtualization for networks ... 12

2.3 Wireless Access Point Virtualization ... 12

2.3.1 Why is virtualization needed? ... 13

2.3.2 Virtual Access Points (VAPs) .. 13

2.3.3 Baseline Throughput Performance with VAP .. 14

3 SPLITAP DESIGN OVERVIEW... 18

3.1 Group Uplink Airtime Fairness: Problem Statement .. 18

3.2 Virtualization Based Design .. 20

3.3 SplitAP Controller.. 22

viii

3.4 Client Plugin Design .. 24

3.5 Algorithms for deployment with SplitAP .. 26

3.5.1 Algorithm(1): LPFC .. 26

3.5.2 Algorithm(2): LPFC+ ... 27

4 EXPERIMENTAL EVALUATION AND RESULTS ... 28

4.1 Metrics .. 28

4.2 Baseline Performance With LPFC.. 29

4.3 Improvement With LPFC+ .. 38

4.4 Performance with Real-time traffic using LPFC+ .. 39

4.5 Comparison: LPFC Vs LPFC+ .. 41

5 CONCLUSIONS AND FUTURE DIRECTIONS ... 44

REFERENCES .. 46

ix

LIST OF FIGURES

Figure 1: A single wireless access point emulating multiple virtual access points. Clients

from different networks associate with corresponding VAPs though they use the same

underlying hardware... 2

Figure 2.1: Layered abstraction of virtualization [1] .. 8

Figure 2.1.1: Hardware emulation [1] .. 9

Figure 2.1.2: Full virtualization [1] .. 10

Figure 2.1.3: Paravirtualization [1] ... 11

Figure 2.1.4: Operating system-level virtualization block diagram [1]............................. 12

Figure 2.3.3: Experimental setup for performance evaluation with physical and virtual

access points [15].. 15

Figure 2.3.3(c): Experimental parameters used with ORBIT nodes [15] 16

Figure 2.3.3(d): Impact of virtualizing using channel multiplexing approaches. [15] 16

Figure 3.2: A single wireless access point emulating multiple virtual access points. Clients

from different networks associate with corresponding VAPs though they use the same

underlying hardware... 22

Figure 3.4: Network stack at the wireless client associating with the SplitAP

infrastructure .. 25

Figure 4.2(a): Varying rate experiment (50 – 50 sharing) – Total Achieved Throughput. 30

Figure 4.2(b): Varying rate experiment (50 – 50 sharing) - Airtime Utilization................ 30

Figure 4.2(c): Varying rate experiment (10 – 90 sharing) – Total Achieved Throughput. 31

x

Figure 4.2(d): Varying rate experiment (10 – 90 sharing) – Airtime Utilization 31

Figure 4.2(e): Varying packet size experiment (50 -50 sharing) – Total Achieved

Throughput ... 33

Figure 4.2(f): Varying packet size experiment (50 -50 sharing) – Airtime Utilization 33

Figure 4.2(g): Varying packet size experiment (10 - 90 sharing) – Total Achieved

Throughput ... 34

Figure 4.2(h): Varying packet size experiment (10 - 90 sharing) - Airtime Utilization 34

Figure 4.2(i): Varying offered load experiment (50 – 50 sharing) - Total Achieved

Throughput ... 36

Figure 4.2(j): Varying offered load experiment (50 – 50 sharing) – Airtime Utilization... 36

Figure 4.2(k): Varying offered load experiment (10 – 90 sharing) – Total Achieved

Throughput ... 37

Figure 4.2(l): Varying offered load experiment (10 – 90 sharing) – Airtime Utilization... 37

Figure 4.3: TCP and UDP co-existence in a single slice with LPFC+. Constant UDP traffic of

5Mbps is supported by slice 1, while the Client 2 with FTP transfer and the client 3 with

varying UDP loads share the slice 2. ... 38

Figure 4.4: Results for studying performance with realtime traffic using improved LPFC+

algorithm... 40

Figure 4.5(a): Comparison of UL airtime group fairness for: LPFC, LPFC+, and a vanilla

system without our SplitAP framework.. 41

Figure 4.5(b): Comparison of UL throughput for: LPFC, LPFC+, and a vanilla system

without our SplitAP framework. ... 42

1

CHAPTER 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

The onset of ubiquitous wireless systems in the form of inexpensive handheld devices is

expected to lead to an ever increasing deployment of wireless hotspots [12].

Differentiation in the quality of service provided on shared hardware for wireless

Internet Service Providers (ISPs) provides a substantial challenge with more and more

ISPs aiming to provide services at public locations such as airports, cafes and shopping

areas. A mechanism is required to ensure that this access point (AP) sharing will work

across a wide range of client hardware, while providing each user group (clients

belonging to a single ISP) with aggregate air-time commensurate to the revenue

contract of the ISP with the wireless equipment provider. Apart from providing baseline

fairness in terms of air-time across different user groups, other requirements for sharing

WLAN access point hardware across different ISPs include:

(1) Different broadcast domains,

(2) Different levels of security,

(3) Support different protocols above a basic L2 connection,

(4) Ease of deployment, and

(5) Minimum bandwidth loss for resource partitioning.

2

To solve this problem the SplitAP architecture is proposed in this thesis that employs

wireless network virtualization. Network virtualization is a concept derived from the

server systems area of research which has recently been applied to network sharing.

Virtualization is a mechanism that allows for seamless sharing of a particular resource by

using three key features: Abstraction, Programmability and Isolation. Each of these

features is applied as shown in the Figure 1.

Figure 1: A single wireless access point emulating multiple virtual access points. Clients

from different networks associate with corresponding VAPs though they use the same

underlying hardware.

Abstraction allows the users of the system to use the SplitAP architecture with minimal

changes to the client hardware or software. As shown in the Figure 1, virtual access

points (VAPs) [4] are used that are supported by most commodity AP hardware to

3

emulate the functionality of two different physical APs (ISP1, ISP2) with a single physical

AP, thus allowing the use of the client MAC protocols and hardware without making any

changes to them respectively.

In the setup, programmability is provided by allowing the person deploying the

hardware to allocate different UL air-time quotas for individual virtual access points.

Finally, isolation across groups of wireless users is provided through air-time control at

the clients based on the information provided by the SplitAP controller running at the

AP.

Since downlink air-time fairness has been studied previously [6], and a spate of recent

applications such as those supported by web 2.0 [3], peer-to-peer file sharing [18], and

video conferencing have resulted in significantly increased uplink air-time usage, the

problem of uplink air-time control across the virtual networks formed by wireless user

groups is addressed in this thesis. Through the use of a SplitAP prototype discussed

here, the performance of our sample algorithms for providing uplink air-time fairness

across user groups is shown, while providing all of the features discussed above.

Specifically the contributions of this thesis are:

1) Proposal, design and implementation of the SplitAP software architecture based

on the extension of the virtual access point functionality for sharing a single

physical AP across groups of users.

2) Design and evaluation of the LPFC and LPFC+ algorithms for group UL air-time

4

 control using the SplitAP setup on commercial off-the-shelf hardware.

3) Extensive evaluation to show that the results obtained on the SplitAP

infrastructure are as per the requirement while achieving the system

performance with minimal overhead.

1.2 Related Work

Among AP based infrastructures, DenseAP architecture proposed in [16], describes a

mechanism for sharing airtime by managing handoffs across APs. Another setup to

share downlink air-time has been discussed for WiMAX radios in [6]. The SplitAP setup

explained in this thesis specifically deals with the problem of providing architecture for

sharing UL air-time of a single AP across multiple WLAN user groups. In terms of the

methodology itself, a comparison of wireless virtualization approaches is presented in

[15]. However, it does not address the problem of fair sharing of UL air-time across

client groups.

In the domain of air-time fairness, a body of work [14], [10], [7], [5] discusses the use of

EDCA parameters such as contention windows and transmission opportunities for

controlling airtime usage across clients. The study in [14] attempts to ensure fairness

across competing uplink stations with TCP traffic using EDCA parameters. Time fair

CSMA protocol proposed in [10] controls minimum contention window size to achieve

5

estimated target uplink throughput for each competing station in multirate WLAN. In [5]

authors suggest that in a proportional fair allocation based on 802.11e EDCA

parameters, equal share of channel time is given to high and low bit rate stations and, as

a result, high bit rate stations can obtain more throughput. Another study in [7]

proposes two control mechanisms for airtime fairness, one using AIFS and the other

using contention window size. The studies in [14], [10], [7], and [5] are based on

simulations.

One study in [17] proposes a Time Based Regulator system that achieves uplink air-time

fairness by ensuring equal "long term" channel occupancy time for every node in the

WLAN. Though this study presents results based on an implementation, it does not deal

with the problems of clients sending traffic with different frame sizes, offered loads, and

sharing of airtime across user groups. The TWHTB system discussed in [8] uses

information on current channel quality to the respective station associated with AP to

schedule downlink transmission to that particular station by limiting frame transmission

rate. However, this scheme does not take into account Uplink flows and corresponding

traffic variations. Another study discussed in [11] discusses an approach where each

station monitors the number of active stations and calculates the target access time

based on this information. The study uses sniffing on the client side, while also requiring

modification of NAV field in the MAC header, and results are based on simulations.

6

In addition none of these studies address the problem of enforcing client-group UL

airtime fairness which is addressed by algorithms run on our SplitAP setup.

Rest of the thesis is organized as follows. Chapter 2 gives a brief overview of what

network virtualization is and how can it be leveraged to solve the problem we are

tackling in this thesis. Chapter 3 discusses the problem of providing uplink air-time

fairness across user groups, and presents the design of our SplitAP architecture. Chapter

4 presents a discussion on the two sample algorithms evaluated with the SplitAP

framework. Chapter 5 presents the results from the system, and finally, chapter 6

discusses the conclusions and future work.

7

CHAPTER 2

NETWORK VIRTUALIZATION

This chapter begins by providing an overview of what virtualization is. This is followed by

a discussion about how this concept is extended to both wired and wireless networks.

This is followed by how the network virtualization is applied for the problem statement

covered in this thesis using the Virtual Access Points (VAPs) feature provided by

MADWIFI driver for atheros chipset to create multiple virtual APs (slices) from one

physical access point. Finally, we conclude this chapter with some basic experiments to

test the performance of VAP.

2.1 WHAT IS VIRTUALIZATION?

Virtualization is a framework or methodology of dividing the resources of a computer

into multiple execution environments, by applying one or more concepts or

technologies such as hardware and software partitioning, time-sharing, partial or

complete machine simulation, emulation, quality of service, and many others [19].

The general process of virtualization is best explained with Figure 2.1. The hardware

machine to be virtualized lies at the bottom of the virtualization solution. Virtualization

8

may or may not be supported on this machine directly. On top of the actual hardware

resource there is a hypervisor more commonly known as Virtual Machine Monitor

(VMM). This layer acts as an abstraction between the hardware and the operating

system (OS).

Figure 2.1: Layered abstraction of virtualization [1]

If the OS performs the functions of the hypervisor itself, then such operating system is

called the host operating system. The actual virtual machines (VMs) form the topmost

layer of the entire virtualization solution. These VMs are isolated operating systems, and

they function as if the entire host hardware platform is dedicated to each one of them.

These VMs are independent of each other and can have applications associated with

them.

Having understood what virtualization is, we take a look at the different types of

virtualization techniques that are possible [1] -

9

2.1.1 Hardware emulation

In this technique, virtualization is provided by creating virtual machines that emulate

the hardware itself. This technique allows OS to run without making any modifications

to it. The main drawback of this technique is that it is very slow.

Figure 2.1.1: Hardware emulation [1]

Example of hardware emulation is QEMU. Figure 2.1.1 shows the basic architecture of

Hardware Emulation.

2.1.2 Full virtualization

Virtual machine manager is used to mediate between the host machine and guest OS in

this type of virtualization technique.

10

Figure 2.1.2: Full virtualization [1]

This requires some protected instructions to be trapped and managed by the VMM

since the underlying hardware is shared by all the virtual machines (VMs). This

technique also allows the OS to run unmodified. At the same time it does need to be

compatible with the underlying hardware. VMware and z/VM are the examples of this

type of virtualization. This technique is as depicted in Figure 2.1.2.

2.1.3 Paravirtualization

This method is similar to full virtualization; wherein it uses a hypervisor to mediate

access to the hardware; but it requires that the guest operating system has some

virtualization-aware code present in it. Figure 2.1.3 explains this technique. This

mechanism does away with the need to trap any privileged instructions, since the guest

OS is aware of the virtualization process. Paravirtualization comes closest to offering

11

performance that is close to that of an unvirtualized system. Xen and UML make use of

the paravirtualization technique.

Figure 2.1.3: Paravirtualization [1]

2.1.4. Operating system-level virtualization

The final technique as shown in Figure 2.1.4 virtualizes server on the top of the

operating system itself. This method isolates the independent servers from each other,

while supporting the same operating system to be used by them. This can provide native

performance at the cost of changes to the operating system kernel. OpenVz is an

example of operating system-level virtualization technique.

12

Figure 2.1.4: Operating system-level virtualization block diagram [1]

2.2 Leveraging virtualization for networks

Network virtualization provides a powerful way to run multiple networks, each

customized to a specific purpose, at the same time over a shared substrate [21].

Network virtualization is intended to optimize network speed, reliability, flexibility,

scalability, and security. It delivers increased application performance by dynamically

maximizing network asset utilization while reducing operational requirements [22]. It is

said to be especially effective in networks that experience sudden, large, and

unforeseen surges in usage [23].

2.3 Wireless Access Point Virtualization

This section talks about how the virtualization concepts and techniques explained in

previous section are applied for virtualizing a wireless access point.

13

2.3.1 Why is virtualization needed?

Virtualization enables a single machine/node to emulate multiple logical instances of a

required physical/hardware resource within the same or different slices. One of the

main challenges with the radio nodes on ORBIT grid is to provide a setup where multiple

experimenters could run experiments which involve a wireless access point and their

respective stations/clients as a part of their experimentation setup. This configuration is

achieved by using virtual access point (VAP) functionality provided by 802.11 driver that

is further explained in the next section.

2.3.2 Virtual Access Points (VAPs)

A VAP is defined as a logical abstraction that could be run on a physical access point

which then emulates the behavior of a conventional access point to all the client

stations in the WLAN [24]. Using a VAP allows for two or more AP mechanisms to share

the same channel thereby helping channel and energy conservation. In contrast to the

TDMA approach for channel multiplexing, VAPs are more suitable for running short and

long-term experiments with less stringent constraints on the current testbed resources.

The concept of VAPs is incorporated in the 802.11 driver, which operates just above the

MAC layer and below the IP layer. The driver provides the multiple AP abstraction to the

higher layers though it is operating on a single lower layer. Hence all the protocols

operating on the machine are agnostic to the presence of the abstraction.

14

Compared to the TDMA approach, the VAP does not require tight synchronization

among the different experiment nodes. However, this scheme requires traffic shaping

and is limited to fixed star topology wireless networks [15]. Since channel conservation

is of prime importance, we choose to use VAP methodology on the ORBIT grid for

evaluation of air-time fairness provided by SplitAP mechanism.

2.3.3 Baseline Throughput Performance with VAP

Throughput, latency and jitter are usually the three main parameters, which determine

a user’s utilization and experience on a network device. Throughput for individual

experiments in a virtualized environment is expected to be lesser than those under

single user conditions. However, performance under these conditions is largely

contingent on how fairly the resources are shared. A virtualized channel is shared

among multiple users running simultaneous experiments and the end performance can

largely be a function of individual experiment parameters rather than just a fair share

between users. This study was insightful in determining that a VAP provides significant

advantages over a conventional physical access point setup [15].

VAP Overhead

A VAP creates an abstraction of multiple physical access points running from the same

hardware for the stations associating with it. Creation of these logical entities requires

state maintenance and independent management signaling for each of the networks

managed by each VAP. The overheads of maintaining the state of multiple networks at a

15

single hardware device is studied in [15]. The experimental setup is as shown in Figure

2.3.3(a) and Figure 2.3.3(b).

Figure 2.3.3: Experimental setup for performance evaluation with physical and virtual

access points [15]

Figure 2.3.3(a) shows a setup with one AP and all four clients within the same network.

Figure 2.3.3(b) has the same nodes. However, each client belonged to a different logical

network created by the VAPs. Care was taken to ensure that there is no capture within

the network by choosing client nodes such that they had comparable RSSI at the access

point. Results were evaluated for both uplink and downlink performance with a

saturated channel and equal offered load per client. Other experiment parameters were

maintained as shown in Figure 2.3.3(c). Figure 2.3.3(d) plots the observed per client

throughput for uplink and downlink traffic.

16

Figure 2.3.3(c): Experimental parameters used with ORBIT nodes [15]

Figure 2.3.3(d): Impact of virtualizing using channel multiplexing approaches. [15]

Performance of a single client with a single access point was taken as a reference for

comparison. Key observations that were made from the results are:

• As with any time sharing approach, the entire bandwidth (which is seen in the scenario

with 1 client) was shared across 4 clients.

17

• There was a slight deterioration in uplink traffic performance with both the AP and the

VAP as compared to the reference flow with 1 client.

• There was no added deterioration with uplink traffic using VAPs for having clients on

multiple networks, as compared to an AP with all clients in one network. Hence, it was

concluded that the deterioration was seen in both cases, which lead to a net channel

throughput decrease of 9.75%. This decrease for the virtualized scenario as compared to

no vitualization was due to the increased channel contention overhead.

• Downlink overheads for both AP and VAP with 4 clients were negligible as compared

to that with a single client.

• Error bars for both cases show little variance in throughput. Hence it was concluded that

using a VAP adds no conspicuous overhead to the throughput performance of an AP.

This behavior was confirmed by investigating the source code for the MADWIFI driver

where the VAPs are created. The driver does minimal additional processing to

differentiate between the packets received for the different virtual interfaces. The above

study suggests that experiments evaluating aggregate throughput with test setups running

a single AP or multiple VAP should generate comparable results with the channel

utilization being determined by the number of clients [15].

18

CHAPTER 3

SPLITAP DESIGN OVERVIEW

Throughout this thesis the notion of slices is used to refer to the resources allocated to a

group of users belonging to a single ISP. The terms groups or slices will be used

interchangeably henceforth. Our infrastructure enforces fairness in uplink (UL) airtime

usage across slices, thus allowing individual ISPs to fairly share the underlying WLAN

hardware and the corresponding channel. We start with a formal definition of the

problem of sharing UL airtime across a group of users, followed by a conceptual

description of our virtualization based design. Eventually, the details of the algorithms

used for UL airtime allocation are discussed.

3.1 Group Uplink Airtime Fairness: Problem Statement

Consider a set of M client groups (slices) with each group Si having Ni clients. Let the

fraction of UL air time allocated for every slice Si � M, be denoted by Wi. Wi for each

slice is decided during the time of deployment of the infrastructure and can be

dependent on a wide range of criterion like pricing, importance of the group and so on.

If φ
i
j denotes the measured UL air time consumed by the client j � Si slice, the fraction of

UL air-time used by every client associated with the access point is calculated as C
i
j:

19

The condition of group fairness requires that, the total measured UL airtime for all

clients within a slice Si is limited to Wi:

The above condition should be fulfilled while placing no limitation on the individual

values of C
i
j i.e. all nodes within a single slice Si should be able to share the UL airtime

fairly, independent of the usage on other slices. Hence, in the worst case every client

should be able to utilize UL airtime 0 ≤ C
i
j ≤ Wi as long as the Equation (2) is not violated

and all clients within Si share the available UL airtime fairly.

Qualitatively summarizing the constraints of the slice/group fairness mechanism:

(1) Flexibility: If the channel usage is below saturation, and there are no hard

guarantees, each client should be able to access the entire available channel time for

the slice,

(2) Within a group: Sharing of UL airtime should be fair and equal,

(3) Scalable: Should work with a large number of clients without significant control

overheads,

20

(4) Adaptable: Should be able to comfortably adapt to changing environment with

dynamic addition or removal of wireless clients, the network load, protocol type and the

channel conditions for individual clients.

Hence, to allow deployment of algorithms that will be able to realize such a group

airtime fairness mechanism, our SplitAP infrastructure will need to provide all needed

control and measurement features while being transparent to the users of the system.

3.2 Virtualization Based Design

We will now discuss how each of the virtualization features is implemented as a part of

our SplitAP architecture.

Abstraction: The functionality of virtual access points is employed and extended which is

available as a standard feature on commercial access points for emulating multiple

virtual access points on a single physical access point while operating on the same

wireless channel [4]. Using this feature the physical AP will be able to broadcast beacons

for independent virtual networks (ISPs). Hence clients belonging to different ISP slices

can see the ESSID of their ISP and associate with it, thereby making client side

connectivity transparent and simple.

Programmability: Each of the ISPs should have independent control of settings in their

network. Using virtual access points, different features can be set per WLANs such as

21

different security policies, broadcast domains, IP settings, independent control of MAC

settings such as aggregation and 802.11e based WMM parameters.

Isolation: Isolation across virtual networks (client groups) is a fundamental requirement

for supporting multiple networks and will be the main topic discussed in this thesis.

Ideally, this could be done through a strict TDMA scheduler across the virtual networks.

However, such a scheduler would require a large change in the MAC mechanism of the

clients, thus making them completely incompatible with other 802.11 based commercial

access points. The SplitAP mechanism
1
 proposed in this thesis is an incremental design

to the existing 802.11 framework and is currently capable of existing as a stand alone

entity outside of the driver. The functionality in our system is split as shown in the

Figure 3.2.

The SplitAP controller at the AP is responsible for emulating the virtual access points,

accounting of traffic by client groups, and determining the weights of UL airtime for

each group. The client software is responsible for enforcing the commands broadcasted

by the controller and reporting usage statistics like the physical layer rate and the

average packet size reported by the client interface. The remaining discussion will focus

on the implementation of individual components, followed by a brief overview of the

algorithms for providing uplink airtime fairness across the ISP slices.

1
 A brief overview of this work is also available in [25].

22

Figure 3.2: A single wireless access point emulating multiple virtual access points.

Clients from different networks associate with corresponding VAPs though they use

the same underlying hardware

3.3 SplitAP Controller

The access point infrastructure runs a multi-threaded ruby controller that performs the

actions described in Algorithm (1). In the controller, sliceID is a unique identifier used for

identifying independent slices owned by different ISPs. The algorithm computes slice UL

Shared

Backhaul

• Emulate VAPs

•Slice traffic accounting

• Calculate per slice client

 weight Wk, broadcast Wk

• Receive broadcast Wk

• Controller shaper

• Report statistics

Wireless

23

airtime usage time[sliceID] for every sliceID, by iterating and determining the UL airtime

usage reported by individual clients within every slice sliceID. Based on this estimate, it

determines the offset of the actual slice utilization from the allocated UL airtime

fraction. If this offset is greater than a threshold (Θ), the AP controller uses UDP

broadcast as a means of sending CsliceID to clients to limit control traffic, since the number of

control messages are now dependent on the number of slices rather than number of clients.

Ideally, these CsliceID will be included in the beacons of individual virtual access points, thereby

eliminating the need for a separate signaling mechanism. CsliceID the maximum UL airtime

fraction that can be consumed by any individual client within the slice sliceID. The value

of CsliceID is always chosen as inversely proportional to the UL airtime utilization for that

slice. This fraction of channel time is calculated based on the previously broadcasted

value and the corresponding slice utilization. LPFC and LPFC+ algorithms discussed later

are two means of calculating CsliceID based on current UL airtime utilization numbers and

or the number of associated clients.

24

3.4 Client Plugin Design

In the current design, the client needs to install an application that allows the user to

connect to a SplitAP based wireless service provider. Eventually, to make this application

platform independent, it could be implemented as a web browser plugin that controls

client’s UL traffic based on commands from the controller. The client software stack in

the current SplitAP architecture is as shown in Figure 3.3.

25

Figure 3.4: Network stack at the wireless client associating with the SplitAP

infrastructure

The SplitAP client control and reporting module is responsible for two functionalities:

(1) Determining and reporting client side parameters such as physical layer rate

(through access of the rate table), and average packet sizes by querying the proc

filesystem or using the driver statistics.

(2) Converting the maximum airtime limit enforced by the SplitAP controller to a rate

value, and accordingly controlling the shaping module to rate limit the client. The

26

shaping module is implemented by using the Click [13] modular router that

transparently controls outbound traffic from the interface.

3.5 Algorithms for deployment with SplitAP

The SplitAP design offers a convenient way to deploy different algorithms on the AP for

controlling uplink airtime across slices. Each of the algorithms discussed in this section

are ways to implement the getwt() function discussed in Algorithm (1) and provide the

value CsliceID, which is the maximum airtime that can be consumed by any client in Slice

SsliceID.

3.5.1 Algorithm(1): LPFC

This is a simple linear proportional feedback control (LPFC) based algorithm that uses a

dynamic estimate of the number of clients associated with the AP to calculate the CsliceID.

Information on the number of clients associated with the AP is available in the SplitAP

controller through querying of the proc interface on the AP. The algorithm calculates

CsliceID simply by determining current number of clients in the slice SsliceID and

proportionally splitting the available (quota of) airtime WsliceID among the number of

clients NsliceID within the slice. The SplitAP architecture allows this corrected CsliceID to be

broadcasted every one second or at another interval desired by the ISP using the slice.

27

3.5.2 Algorithm(2): LPFC+

Instead of generating and broadcasting the CsliceID purely based on the slice UL airtime

quota and number of clients in the slice, the LPFC+ algorithm relies on monitoring the

current UL airtime utilization for the slice, which is available through the SplitAP client

reports and appropriately controlling CsliceID. The algorithm selects CsliceID in such a way

that even if the offered load by clients in a slice is not the same, it allows the clients to

increase traffic, by increasing CsliceID until the UL airtime quota for the slice is reached. If

the quota is exceeded (or under-utilized), the LPFC+ controller proportionally reduces

(or increases) CsliceID, the maximum airtime that can be used by any client in the Slice

sliceID. As with the LPFC algorithm, the CsliceID can be broadcasted every one second or

at any other value desired by the ISP owning the slice.

28

CHAPTER 4

EXPERIMENTAL EVALUATION AND RESULTS

All experimental results presented in this evaluation are based on the clients with

Atheros 5212 chipsets, and using Madwifi 0.9.4 [2] drivers. The clients are all operating

in the 802.11a mode with a frame size of 1024bytes, and 54Mbps physical layer rate

unless mentioned otherwise. Traffic is generated with the Iperf tool [1]. We begin with a

brief definition of the metrics used, followed by baseline performance of the LPFC

algorithm and a comparison with LPFC+.

4.1 Metrics

Preliminary evaluations with a small number of clients will be based purely on

comparison of UL airtime allocated to individual slice. Further, in our evaluations, we

modify and use the Jain fairness index [9] for determining weighted UL airtime fairness

across flows and flow groups.

Modified Jain Index: Let the sum of fraction of channel time used by all clients in slice k

be denoted as Ck. Then,

29

The fairness index (I) determines the global variation in channel utilization across slices.

We further scale the airtime by slice quotas to evaluate fairness under saturation with

different slice weights, while also accounting for performance deterioration due to bad

channel quality.

4.2 Baseline Performance With LPFC

To measure the baseline performance with the LPFC algorithm, we consider a setup

with two clients on different slices sending UDP UL traffic using Iperf traffic generator.

Varying Transmission Rates In the first experiment, we vary transmission rates of the

two clients on Slice 1 and 2 as shown on the x-axis in Figure 4.2(a), Figure 4.2(b) Figure

4.2 (c) and Figure 4.2(d). We observe that, in the vanilla case (without the SplitAP

mechanism running the LPFC algorithm), the air-time used by the two clients are

inversely dependent on the transmission rates. Also, the aggregate throughput achieved

using SplitAP framework is slightly higher as against the traditional Vanilla system. This

is a result of statistical multiplexing of packets by the CSMA MAC operating as a part of

the 802.11 DCF mechanism.

30

Figure 4.2(a): Varying rate experiment (50 – 50 sharing) – Total Achieved Throughput

Figure 4.2(b): Varying rate experiment (50 – 50 sharing) - Airtime Utilization

31

Figure 4.2(c): Varying rate experiment (10 – 90 sharing) – Total Achieved Throughput

Figure 4.2(d): Varying rate experiment (10 – 90 sharing) – Airtime Utilization

32

Varying Packet Sizes Now we will vary the packet size of the uplink traffic from each

client to check its impact on the overall sharing of air time at the access point for the

two clients.

As seen in the results in Figure 4.2(f) and Figure 4.2(h), the airtime consumed at the

access point without the use of our scheme (vanilla) is directly dependent on the size of

the packets used by the uplink traffic. Typically, this results from a statistical

multiplexing of packets over the air. However, using our SplitAP infrastructure with the

LPFC algorithm we are able to control uplink traffic in direct proportion to the air time

usage by each client. Our scheme accounts for the extra airtime spent in channel

accesses and PHY/MAC overheads with smaller packet sizes resulting in fair sharing

across the clients and thus virtual networks. This is also evident from the aggregate

achieved throughput results as seen in Figure 4.2(e) and Figure 4.2(g). It is observed that

the aggregate throughput achieved using SplitAP framework is comparable with the

traditional Vanilla system. As before we observe that our infrastructure allows control of

air-time across the clients in a preset 50 - 50 and 10 – 90 percentage. This percentage

could be easily varied.

33

Figure 4.2(e): Varying packet size experiment (50 -50 sharing) – Total Achieved

Throughput

Figure 4.2(f): Varying packet size experiment (50 -50 sharing) – Airtime Utilization

34

Figure 4.2(g): Varying packet size experiment (10 - 90 sharing) – Total Achieved

Throughput

Figure 4.2(h): Varying packet size experiment (10 - 90 sharing) - Airtime Utilization

35

Varying Offered Loads In this experiment, we vary the offered loads across the two

clients. Combinations of offered loads used across the clients are as shown on the x-axis

in the results in Figure 4.2(i), Figure 4.2(j), Figure 4.2(k) and Figure 4.2(l). The maximum

offered load is limited to 33Mbps because the channel saturates at that value of the

offered load when the physical layer rate is 54Mbps. The channel saturates at this

slightly higher value than normal since the Madwifi drivers use fast framing

optimizations to improve performance within allocated txops. However, this does not

affect our evaluation since it is enabled in all measurement cases. The aggregate

throughput achieved using SplitAP framework in this case is slightly deteriorated

compared to the traditional Vanilla system. This is because LPFC algorithm uses

conservative approach and limits airtime of slice 2 (with 33Mbps physical rate) even

though the other client is not using its share. We observe that LPFC scheme limits

airtime of Slice 2, to ensure better fairness as compared to the vanilla case with no

control.

36

Figure 4.2(i): Varying offered load experiment (50 – 50 sharing) - Total Achieved

Throughput

Figure 4.2(j): Varying offered load experiment (50 – 50 sharing) – Airtime

Utilization

37

Figure 4.2(k): Varying offered load experiment (10 – 90 sharing) – Total Achieved

Throughput

Figure 4.2(l): Varying offered load experiment (10 – 90 sharing) – Airtime

Utilization

38

4.3 Improvement With LPFC+

Since the LPFC+ algorithm allows the allocation of slice weights such that within a slice

we may have varying utilization by independent clients, such a mechanism allows for

fair co-existence of transport protocols with different requirements. In this experiment

we have two slices: Slice 1 has a client sending constant UDP uplink traffic, while the

Slice 2 has two clients. The first client in Slice 2 is sending varying amount of UDP uplink

traffic, while the other client in Slice 2 is transferring a 200MB file with a FTP file

transfer. Results from this experiment are as shown in Figure 4.3.

Figure 4.3: TCP and UDP co-existence in a single slice with LPFC+. Constant UDP traffic

of 5Mbps is supported by slice 1, while the Client 2 with FTP transfer and the client 3

with varying UDP loads share the slice 2.

39

We observe that the client on slice 1 is not affected despite one of the clients on Slice 2

using UDP traffic. We also observe that the clients on Slice 2 share the UL airtime. When

the UDP offered load is less at 4Mbps, the FTP transfer is faster and happens at an

aggregate rate of 18.3Mbps. When the UDP offered load on the client increases, the FTP

client reduces its rate, thereby requiring longer time for the FTP transfer completion. It

is important to note that a similar performance could be achieved even by using LPFC

instead of LPFC+. However, in that case the FTP client on slice 2 would always be limited

to a fixed uplink rate thereby resulting in wastage of free bandwidth.

4.4 Performance with Real-time traffic using LPFC+

As explained before, since the LPFC+ algorithm allows the allocation of slice weights

such that within a slice we may have varying utilization by independent clients, such a

mechanism controls the amount of UL and DL traffic load on each slice thus providing

isolation between them. In this experiment we have two slices: Slice 1 has a client

sending constant UDP uplink traffic of 30Mbps and has slice weight WsliceID = 0.2, while

the Slice 2 has two clients with slice weight WsliceID = 0.8. The first client in Slice 2 is

sending constant amount of UDP uplink traffic, while the other client in Slice 2 is sending

varying amount of UDP uplink traffic in steps of 5Mbps. Results from this experiment

are as shown in Figure 4.4.

40

The realtime performance of the system when client traffic is varying is seen from Figure

4.4. From Figure 4.4 we observe that the throughput of slice 1 remains constant

(5Mbps), while within slice 2 the framework tries to accommodate the client 1 as UL

UDP traffic from client 2 goes on increasing.

Figure 4.4: Results for studying performance with realtime traffic using improved

LPFC+ algorithm

41

4.5 Comparison: LPFC Vs LPFC+

In a final experiment we consider a setup with two slices: Slice 1 has a single client

pumping UDP UL traffic at saturation, while Slice 2 has 5 clients associated with it. For

different experiments, varying number of clients 1 - 5 on Slice 2 will send saturation UL

traffic along with the client on Slice 1. In this case we consider the performance of both

LPFC and LPFC+ algorithms, as compared to that without our SplitAP setup (Vanilla).

Figure 4.5(a): Comparison of UL airtime group fairness for: LPFC, LPFC+, and a vanilla

system without our SplitAP framework.

42

A comparison of the measured modified fairness index is as shown in Figure 4.5(a). We

observe that the group fairness index I is always greater than 0.97 with the use of our

infrastructure, while it falls down up to 0.6 in a vanilla system without our setup.

Figure 4.5(b): Comparison of UL throughput for: LPFC, LPFC+, and a vanilla system

without our SplitAP framework.

The throughput measurements in Figure 4.5(b) show that the improvements in fairness

are at the cost of a small decrease in net throughput with LPFC+, thus justifying the use

of our scheme. The throughput performance with our LPFC scheme is less when lesser

43

number of clients on Slice 2 pump traffic. This is because it sees five clients associated

with the slice from the beginning, and presents a conservative estimate of CsliceID which

results in lower throughput. The LPFC+ scheme on the other hand dynamically measures

airtime for every slice and adapts its CsliceID resulting in better performance. It cannot

reach channel capacity since it keeps a 15% tolerance, but is able to divide the

remaining airtime fairly. The 15% tolerance value to prevent the system from reaching

channel capacity was selected since we achieved best performance on our SplitAP

framework with this value while minimizing the wastage of bandwidth based on the

extensive experimental evaluation we carried out.

44

CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

This study discusses the design of the SplitAP architecture that allows the operator to

deploy a shared physical access point, which is capable of running algorithms that

control UL airtime across user groups. We demonstrate the feasibility of the proposed

architecture by implementing the LPFC and LPFC+ algorithms on a prototype. Results

obtained from the measurements on the ORBIT testbed show a significant improvement

in the group airtime fairness, while resulting in marginal degradation of overall system

throughput.

Future directions include search for more efficient algorithms that can be deployed on

the SplitAP framework. Evaluation of the UL airtime fairness issue for mesh and ad-hoc

wireless network topologies needs to be done. But the VAP mechanism for time-sharing

of physical wireless access point that we have leveraged in this study will not work in

case of mesh and ad-hoc networks. A new distributed control mechanism based on

explicit Time Division Multiple Access (TDMA) based scheduler would be required to

achieve the airtime fairness for these distributed network topologies as against the

current centralized controller with enhanced signaling mechanism. Also, the stand alone

client application of SplitAP architecture could be implemented as a web browser plugin

to make it platform independent. Finally, the slice airtime quota/weight, CsliceID could be

45

included in the beacons of individual VAPs thereby eliminating the need for a separate

signaling mechanism.

46

REFERENCES

[1] Iperf traffic generator. http://sourceforge.net/projects/iperf/.

[2] Madwifi driver. http://www.madwifi.org

[3] Web 2:0 framework. http://tinyurl.com/dqt86.

[4] B. Aboba. Virtual access points, ieee document, ieee 802.11-03/154r1.

http://tinyurl.com/yjjkwpv.

[5] A. Banchs, P. Serrano, and H. Oliver. Proportional fair throughput allocation in

multirate ieee 802.11e wireless lans. Wireless Networks, 13(5):649–662, 2007.

[6] G. Bhanage, R. Daya, I. Seskar, and D. Raychaudhuri. VNTS: a virtual network traffic

shaper for air time fairness in 802:16e slices, 5 2010.

[7] C.-T. Chou, K. G. Shin, and S. S. N. Contention-based airtime usage control in

multirate ieee 802.11 wireless lans. IEEE/ACM Trans. Networking, 14(6):1179–1192,

2006.

[8] R. G. Garroppo, S. Giordano, S. Lucetti, and L. Tavanti. Providing airtime usage

fairness in ieee 802.11 networks with the deficit transmission time (dtt) scheduler.

Wirel. Netw., 13(4):481–495, 2007.

[9] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems. Technical report,

DEC, September 1984.

[10] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal. Airtime fairness for ieee 802.11

multirate networks. IEEE Transactions on Mobile Computing, 7(4):513–527, 2008.

47

[11] D.-Y. KIM, E.-C. PARK, and C.-H. CHOI. Distributed access time control for per-

station fairness in infrastructure wlans. Transactions on Communications, Vol.E89-

B(9):2572–2579, 2006.

[12] K. Knight. Jiwire: Wifi to become predominant connection for mobile users.

http://tinyurl.com/yjukaq9.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular

router. ACM Trans. Comput. Syst., 18(3), 2000.

[14] D. Leith, P. Clifford, D. Malone, and A. Ng. Tcp fairness in 802.11 e wlans.

Communications Letters., Vol.9(11):964–966, 2005.

[15] R. Mahindra, G. Bhanage, G. Hadjichristofi, I. Seskar, D. Raychaudhuri, and Y. Zhang.

Space versus time separation for wireless virtualization on an indoor grid. In proceedings

of NGI, pages 215–222, April 2008.

[16] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill. Designing high performance

enterprise wi-fi networks. In NSDI’08: Proceedings of the 5th USENIX Symposium on

Networked Systems Design and Implementation, pages 73–88, Berkeley, CA, USA, 2008.

USENIX Association.

[17] G. Tan and J. Guttag. Time-based fairness improves performance in multi-rate

wlans. In ATEC ’04: Proceedings of the annual conference on USENIX Annual Technical

Conference, pages 23–23, Berkeley, CA, USA, 2004. USENIX Association.

[18] M. Wagner. How iphone 3.0 may revolutionize the smartphone industry.

http://tinyurl.com/c4vkpa.

48

[19] An Introduction to Virtualization.

http://www.kernelthread.com/publications/virtualization/.

[20] M. Tim Jones. Virtual Linux - An overview of virtualization methods, architectures,

and implementations.

http://www.ibm.com/developerworks/library/l-linuxvirt/index.html.

[21] J. Rexford, E. Keller, M. Yu, Y. Zhu. Internet routing and network virtualization.

http://www.cs.princeton.edu/~jrex/virtual.html

[22] N. Lippis III. Network Virtualization: The new building blocks of network design.

http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns431/ns725/net_imple

mentation_white_paper0900aecd80707cb6.pdf

[23] SearchServerVirtualization.com

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci1035141,00.ht

ml

[24] B. Aboba. Virtual Access Points. IEEE document, IEEE 802.11-03/154r1.

http://www.drizzle.com/∼aboba/IEEE/11-03-154r1-I-Virtual-Access-Points.doc.

[25] G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri. SplitAP: Leveraging Wireless

Network Virtualization for Flexible Sharing of WLANs, 8 2010.

