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ABSTRACT: A new multiconfigurational quantum chemical
method, SplitGAS, is presented. The configuration interaction
expansion, generated from a generalized active space, GAS,
wave function is split in two parts, a principal part containing
the most relevant configurations and an extended part
containing less relevant, but not negligible, configurations.
The partition is based on an orbital criterion. The SplitGAS
method has been employed to study the HF, N2, and Cr2
molecules. The results on these systems, especially on the
challenging, multiconfigurational Cr2 molecule, are satisfactory. While SplitGAS is comparable with the GASSCF method in
terms of memory requirements, it performs better than the complete active space method followed by second-order perturbation
theory, CASPT2, in terms of equilibrium bond length, dissociation energy, and vibrational properties.

I. INTRODUCTION

Chemical systems with a multiconfigurational electronic
structure in their ground state and/or excited states are
important in a number of contexts. For example, such systems
can be precursors of novel materials with unusual spin
properties1−3 or have interesting catalytic applications.4−7

However, such strongly correlated systems represent a
challenge for modern quantum chemistry. Quantum chemical
methods based on a single electronic configuration cannot
correctly describe these systems, and multireference methods
are instead required. A qualitative description of a strongly
correlated system is provided by the Complete Active Space
Self-Consistent Field (CASSCF) method,8 where the orbital
optimization is performed for a Full Configuration Interaction
(FCI) including the strongly correlated orbitals as active
orbitals. Currently, the size limit of CASSCF calculations is
about 18 electrons in 18 orbitals (singlet spin state). This limit
is due to the exponential scaling of the FCI expansion as a
function of the number of the active orbitals and electrons.
Therefore, even significant progress in computer technology
will not make a tangible difference in the size of accessible
active spaces.
The second-order complete active space perturbation

method, CASPT2,9 is an efficient method to describe dynamic
correlation for strongly correlated systems, and this method has

been extensively and successfully applied for a large number of
challenging systems. There are a number of drawbacks and
limitations of the CASPT2 method. These include (i) the
limitation in the size of the reference complete active space
(CAS) wave function; (ii) the intruder state problem
contaminating the first-order wave function correction which
can be partially solved by a level-shift correction (LS-
CASPT2);10,11 (iii) the overestimation of the energy of high-
multiplicity states which requires the IPEA zeroth-order
Hamiltonian;12 (iv) the lack of orthogonality of the individual
single-state CASPT2 solutions, which was solved by developing
the multistate (MS) CASPT2 approach.13,14

The implementation of the Cholesky decomposition (CD)
approach in the CASPT2 method15−17 has extended its
applicability to larger basis sets and thereby larger molecular
systems. For instance, a 1000 basis set CD-CASPT2 calculation
is feasible nowadays within the MOLCAS package.18

Truncation of the virtual space in CD-CASPT2 calculations is
also possible.19 However, the CD does not reduce the
complexity of the underlying FCI expansion, so there are
many quantum-chemical systems for which CASPT2 cannot
provide an accurate result. The implementation of the second-
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order perturbation theory restricted active space (RASPT2)
method allows the use of larger active spaces and extends
therefore the range of applicability of multireference second-
order perturbation methods.20−23 This development has been
followed by the formulation of the Generalized Active Space
(GAS) method.24 In GAS the user has the possibility of
choosing an arbitrary number of active spaces and control the
interspace excitations by means of constraints on the
occupation number of such spaces.
With the aim at approximating CASSCF wave functions,

density matrix renormalization group (DMRG) algorithms25−28

can potentially treat active spaces much beyond the nominal
limit (18 electrons in 18 orbitals). Although DMRG matrix
product states are often referred to as reproducing the
corresponding CASSCF wave functions, the underlying
polynomial parametrization is not guaranteed to account for
all electron correlation effects included in the FCI ansatz.
Despite this fundamental difference, DMRG algorithms provide
CASSCF-quality reference functions for PT2 correlation
treatment, as demonstrated by a recent study on the
challenging electronic structure of the chromium dimer.29

We have recently formulated the SplitCAS approach.30 The
basic idea is to partition the CI-expansion generated from a
CAS expansion into two parts, a principal part (P) containing
the most relevant configurations and an extended part (Q)
containing less relevant (but not negligible) configurations. The
CI-Hamiltonian matrix is partitioned into four blocks
accordingly. By using Löwdin’s partitioning technique31 and a
diagonal approximation for the interaction between two states
in the (Q) space, it is possible to reduce the full matrix problem
to an effective matrix problem of the size of the principal block
(PP). The principal block is thus dressed perturbatively
through the extended blocks and then diagonalized. The key-
point of these Split-type methods is the criteria chosen for the
splitting between the (P) and the (Q) space. In our original
work30 we proposed an energy-based splitting. The Config-
uration State Functions, CSFs, are first generated, then ordered
according to their energy, and finally divided into (P) and (Q)
parts, according to a user specific energetic threshold. This
energy-based variant of the SplitCAS approach has similarities
with later modifications of Löwdin’s partitioning technique like
Davidson’s “Reduced Model Space” approach32,33 and Shavitt’s
“Bk” method.34 These techniques encounter complications
from an algorithmic point of view, because they are not
compatible with standard Direct CI implementations requiring
expansions defined by occupations in one or several orbital-
subspaces. At this stage we should also mention, as an approach
to the electron correlation problem, the multireference, state-
specific, second-order, Brillouin−Wigner perturbation
theory35,36 and the active-space reduced density matrix
method.37

In this paper, we report the formulation and implementation
of a Split-type method based on an orbital partitioning. We
refer to this method as SplitGAS, because it is based on a
GASSCF-type of wave function. From the computational point
of view, the present approach is more advantageous, as it is
compatible with most standard direct CI algorithms requiring
expansions defined by orbital occupation numbers within
subspaces. Furthermore, we can take advantage of the natural
extensions of the CAS approach, such as GAS, in order to treat
FCI problems of large dimensionality. As we will show in the
following, with the SplitGAS method, we have been able to
achieve chemical accuracy for strong-correlation problems

bypassing any PT2 correction of multiconfigurational reference
functions, a remarkable result.
The paper is organized as follows: In section II we describe

the formulation of the method. In section III we discuss the
computational details and results for the HF, N2, and Cr2
molecules, and, finally, in section IV, we offer the concluding
remarks.

II. FORMULATION
The theory of the SplitGAS method is described in the original
paper.30 We summarize here the most important concepts and
the formulation of the orbital-based partitioning.
The definition of a wave function expansion in terms of

splitting of the orbitals into subspaces encompasses many forms
of CI-expansions. A simple choice of orbital sets is obtained by
first performing an orbital optimization for a reference state
consisting either of a Hartree−Fock or a CAS state and then
dividing the resulting orbitals in five sets: an inactive set, a
secondary set, and three other sets of orbitals:
(O) A space containing doubly occupied orbitals,
(A) A space containing some doubly occupied and some

virtual orbitals. It may coincide with the active space of the
reference state, if relevant.
(V) A space containing only virtual orbitals.
The orbital splitting is represented in Scheme 1. The (A)

space is a small active space, while the full (O)+(A)+(V) space

can be considered as a larger active space. All configurations
generated by excitations within the (A) space, by keeping the
orbitals in (O) doubly occupied and the orbitals in (V) empty,
form the principal space (P) of the CI-expansion, whereas all
configurations generated by single and double excitations out of
the (O) space and (A) space into the (V) space belong to the
extended space (Q) of the SplitGAS wave function. The
extended space (Q) hence plays an analogous role as a
perturbation to the primary space (P) and recovers the
remaining electron correlation, that can be both static and/or
dynamic.
The above orbital based partitioning scheme may be further

refined using other variants of the active space concept. For
instance, the user could use a RAS wave function as a reference
state, thereby dividing the above (A) space into three spaces.
The RAS wave function may then be chosen as the (P) space,
whereas the (Q) space is obtained by allowing varying
occupations in the five orbital spaces reported in Scheme 1.
By appropriate choices of the number of active spaces and

occupation number constraints, the user can perform any
partition of the CI-expansion, according to the chemistry of the
system under investigation. Only the most important
configurations will effectively contribute to the CI expansion
in the principal and extended space. In the GAS approach, one
can in principle choose an arbitrary number of orbital spaces,
and, as a consequence, the size of the problem does not exhibit
the exponential scaling as a function of the number of electrons

Scheme 1. Orbital Splitting Employed in the Definition of a
SplitGAS Wave Function
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and orbitals included in the various spaces, which makes the
CAS approach unfeasible for large active spaces. Through the
GAS choice, the principal space contains only the most
important configurations, while the other non-negligible
configurations are included in the extended space, and the
“dead-woods” generated from the CI-expansion can be, if not
eliminated, at least significantly reduced. This approach
bypasses thereby the scaling problems in terms of number of
operations and memory requirements of CI expansion in CAS-
type of calculations.
Both SplitGAS-CI and SplitGAS-SCF variants have been

developed. The former consists of the optimization of the CI
parameters only, while the latter combines the optimization of
both the CI coefficients and the orbitals. In this paper, we focus
on the SplitGAS-CI variant. We tested the SplitGAS method on
three systems, which pose increasing challenges as far as
electron correlation is concerned, namely the HF, N2, and Cr2
molecules.
With the SplitGAS method the eigenvalue E and eigenvector

of the dressed matrix U with elements

∑= −
−γ

γ γ

γγ
U H

H H

H Emn mn
m n

(1)

are determined. In eq 1 m and n refer to configuration state
functions (CSFs) of the principal (P) space, whereas γ is a CSF
of the extended (Q) space. The matrix-elements Hpq are thus
matrix elements between two configuration state functions
(CSFs) of the Hamiltonian operator

∑ ∑ δ̂ = ̂ + | ̂ ̂ − ̂H h E ij kl E E E
1
2

( )( )
kl

kl kl
ij kl

ij kl jk il
, (2)

where hkl and (ij|kl) are integrals over molecular orbitals of the
one- and two-body Hamiltonian, respectively, and Êkl is a spin-
free one-body excitation operator. Equation 1 represents
Löwdin’s original formulation31 approximated to the second-
order of the geometrical expansion (diagonal approximation).
Since SplitGAS belongs to the category of approximated CI

methods, it is not strictly size-extensive. However, in a
calculation the orbital spaces and occupations can be defined
and tailored in such a way that the CI-energies of the
subsystems and supersystem match.
Although the dimension of U is much smaller than the

dimension of the full matrix H, it is necessary to invoke direct
CI methods to obtain the eigensolutions of U. In the direct CI
formulation of the SplitGAS method a sigma vector of size (P)
is obtained from the dressed Hamiltonian matrix U as
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The direct CI vector may alternatively be written in matrix form
as

σ = − − −H H H E H C[ ( ) ]P PP PQ
diag
QQ QP P1

(4)

The direct CI vector of eq 4 may in principle be calculated by
storing only vectors of P-size. We have, however, initially
adopted an approach where two vectors over the (Q) space are
also stored. We have thus implemented in a local version of the
LUCIA38 code the following algorithm.
• compute HPPCP and save on scratch file 1 (size of P)
• compute HQPCP and save on scratch file 2 (size of Q)

• compute Hdiag
QQ and save on scratch file 3 (size of Q)

• compute (Hdiag
QQ−E)−1HQPCP and save on scratch file 2

• compute HPQ(Hdiag
QQ−E)−1HQPCP and save on scratch file 3

• Combine vectors on scratch files 1 and 3 to obtain σP

For computational simplicity and efficiency the direct CI
calculations of the sigma-vectors are carried out using Slater
determinants (SDs), whereas to reduce disk-space the vectors
are stored in the Configuration State Function (CSF) basis. For
the evaluation of the sigma vectors as well as the CSF-SD
transformations, the standard routines of LUCIA are used
without modifications. It is worth mentioning that at no time is
it necessary to store in memory a complete vector in the (P) or
(Q) space. Rather the program uses the standard facility of
LUCIA to separate the C- and sigma-vectors into batches and
having only one batch of C and sigma in memory at any given
time. As CSFs here are employed, a batch contains at least the
CSFs or SDs of a given occupation class, where an occupation
class contains all CSFs or SDs with a given number of electrons
in each GA space. Thus by increasing the number of GA spaces,
a given expansion may be divided into a larger number of
smaller batches, and the memory requirement is reduced. This
reduction is accompanied by an increase in the CPU wall-time
of usually less than 30%. This facility was important in the
calculations discussed below with up to about 2 billion
determinants in the (Q) space. It should be noted that the
memory requirements could be further reduced if only SDs
were used, as this would only require batches holding the alpha-
and beta-strings with given occupations in each GA space.
The computational complexity in a SplitGAS calculation may

for simple expansions easily be compared with the preceding
reference calculation. Assume that the reference expansion is a
FCI calculation with MS = 0 and nP electrons in NP orbitals,
whereas the active orbital space of the (Q) space is obtained by
adding a set of NQ unoccupied orbitals. A direct CI iteration in
the (P) space, i.e. the evaluation of HPP times a vector, requires
a number of floating points operations which through leading
order is proportional to nP

2(NP−nP/2)2 NP
det, where N

P
det is the

number of determinants in the P-expansion. Each iteration in
the SplitGAS approach requires the evaluation of HPQ times a
vector. The block HPQ includes all single and double excitation
out of NP orbitals in the P-expansion into NQ orbitals giving an
operation count that is proportional to nP

2 NQ
2 NP

det. Thus, the
evaluation of HPQ times a vector requires about NQ

2/(N−nP/
2)2 times the operations of the evaluation of HPP times a vector.
Consider as an example the Cr2 calculations discussed in
section III, with nP = NP = 12, and NQ = 40 (Cr2 SplitGAS-
2(12,12)//(12,52)) where the evaluation of the HPQ terms thus
is predicted to be 44 times more time-consuming than the
underlying FCI iteration. For a larger number of orbitals
correlated in the (Q) space and when additional numbers of
electrons are correlated in the extended space, the evaluation of
the HPQ term may be at least 2 orders of magnitude more
demanding than the preceding FCI iteration.
The second part of the computation is the evaluation of the

diagonal of HQQ. To determine the complexity of this
evaluation, it is first noted that the number of determinants
in the (Q) space, NQ

det, through leading order equals 1/2
NQ

2nP
2/(NP−nP/2)2NP

det. The determination of the diagonal of
the Hamiltonian matrix in the determinant basis requires a
double sum over occupied orbitals for each determinant, giving
a total operation count proportional to NQ

2nP
4/(NP−nP/

2)2NP
det, corresponding to a factor nP

2/(NP−nP/2)4 times the
operation count for constructing a direct CI vector for HPQ. For
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typical expansions nP is about NP, so the diagonal in the
determinant basis is less costly to construct than the evaluation
of terms of HPQ. The evaluation of the diagonal in the CSF
basis is more requiring than in the SD basis with a factor that
increases with an increasing number of open orbitals in the
various configurations, so in total, the evaluation of the diagonal
terms may be as or more requiring than the evaluation of the
terms from HPQ. The transformation between the SD and CSF
basis was neglected in the above, but in particular the
transformation for vectors in the (Q) space may be a sizable
part of the iteration time, due to the large dimensions in this
space.
A direct CI iteration with the dressed U-matrix of eq 1 is thus

typically at least 2 orders of magnitude more demanding than
direct CI iteration in the (P) space. On the other hand, a direct
CI iteration with the full Hamiltonian in the P+Q space has an
operation count that scales as NQ

2NQ
det or NQ

4nP
2/(NP−nP/

2)2NP
det and is typically 1 or 2 orders of magnitude larger than

that of that of the evaluation of terms from U. A direct
comparison of the complexity of the present approach and the
standard CASPT2 calculation is not straightforward, as the
latter approach in general uses internal contractions. If the
present approach were to be reformulated into an internal
contraction scheme and the full orbital space were used, the
complexity of the two approaches would be similar.
In the above, the complexity was discussed in terms of

operation counts. However, with the advance of multicore
CPUs and multi-CPU computers, the importance of operation
counts is reduced, and it is important to also include
considerations of concurrency and data-communication. In
the SplitGAS approach, only vectors with dimension NP

det need
to be stored and communicated to the various cores, so the
storage and communication requirements depend solely on the
size of the (P) space. Furthermore, using batching of the (P)
and (Q) space, the computational task of evaluating a sigma-
vector may be divided into a large number of independent
smaller computational tasks. The SplitGAS method with its
small requirements on storage and communication and high
degree of concurrency is therefore well suited to exploit
modern parallel computer facilities.

III. COMPUTATIONAL DETAILS AND RESULTS
Potential energy curves for the ground state of the HF, N2, and
Cr2 molecules were generated with several SplitGAS choices
and compared with Restricted HF, MP2, CASCI, CASSCF,
CASPT2, GASCI, GASSCF, and experimental counterparts.
Spectroscopic parameters were computed by solving the
numerical Schrödinger equation as implemented in the module
VIBROT available in MOLCAS-7.718 and compared to
available experimental values. Dissociation energies were
computed as energy differences between the diatomic at
equilibrium and the diatomic with the two atoms at large
separation (R > 100 Å).
A preliminary calculation is needed to obtain starting orbitals.

The necessary one- and two-electron integrals, transformed
from the atomic orbital basis to the molecular orbital basis, are
generated by the MOTRA module in MOLCAS-7.718 and used
by the SplitGAS algorithm implemented in the LUCIA code.38

The following notation is used for SplitGAS calculations:
SplitGAS-m(NP,nP)//(NT,nT) where m is the number of GA
spaces, NP and nP are the number of active electrons and active
orbitals in (P) space, and NT and nT are the number of active
electrons and orbitals in (P+Q).

A. The HF Molecule. For the HF molecule, potential
energy curves were computed using the cc-pVDZ basis set
(H:2s1p, F:3s2p1d, 19 basis functions in total)39 and by
imposing C2v point group symmetry constraints. Selected
calculations were also performed with the cc-pVTZ and cc-
pVQZ basis sets. Two SplitGAS partitions were employed. In
the first scheme, SplitGAS-2(8,4)//(8,18), the principal (P)
space includes the Restricted Hartree−Fock configuration
(1s22s22px

22py
2)F σ2HF, with single and double excitations out

of the 2s(F) and 2p(F) orbitals into all 14 virtual orbitals
representing the extended (Q) space (1 Slater determinant in
(P) and 1174 Slater determinants in (Q) space). For this
scheme Restricted HF orbitals were used as starting orbitals. In
the second test case, SplitGAS-3(2,2)//(8,18), the principal
(P) space is generated by a CAS(2,2) where the two active
orbitals are the bonding and antibonding sigma-type orbitals,
and the extended space is generated by single and double
excitations out of the 2s(F), 2px(F), and 2py(F) orbitals and/or
into the remaining 13 virtual orbitals (4 Slater determinants in
(P) space and 3780 Slater determinants in (Q) space). The
1s(F) orbital was kept inactive in both SplitGAS schemes.
The SplitGAS calculations were compared to (i) Restricted

Hartree−Fock, RHF, (ii) MP2, (iii) CASSCF(2,2), where the
two active orbitals are the σ and σ* orbitals, (iv) CASPT2(2,2),
(v) CASSCF(8,18) calculations (note that this is almost a full
CI except that the 1s(F) orbital is inactive), (vi) GASCI-
2(8,4)//(8,18)SD calculations, in which the 1s(F) orbital was
kept inactive, starting from RHF orbitals, and only single and
double excitations were considered, and (vii) available
experimental data.40,41 One should notice that, instead of
using a diagonal approximation for the (QQ) block of the CI
Hamiltonian matrix, as done in SplitGAS, in GASCI there is no
approximation of the CI Hamiltonian matrix. In the GASCI-
2(8,4)//(8,18) calculations all the states are coupled among
each other, while in SplitGAS-2(8,4)//(8,18) only the
restricted-HF configuration is explicitly coupled (through the
PQ and QP blocks) to the single and double excited
configurations. This is the effect of the diagonal approximation
in the (QQ) block.
Potential energy curves are presented in Figure 1, and

spectroscopic parameters for selected curves are presented in
Table 1. Not surprisingly, RHF and MP2 predict the wrong
ionic dissociation. Single and double excitations from the RHF
wave function, GASCI-2(8,4)//(8,18)SD, partially improve the
description of the system at dissociation. CASSCF(2,2)
significantly underestimates the dissociation energy. CASPT2-
(2,2) improves the description. It is interesting to notice the
slow convergence of CASPT2 with the basis set. SplitGAS-
2(8,4)//(8,18), in which single and double excitations to the
virtual orbitals are included perturbatively, and only the
Hartree−Fock configuration constitutes the principal (P)
space, overestimates the dissociation energy (De) by 0.47 eV
with respect to the corresponding GASCI-2(8,4)//(8,18)SD
result. SplitGAS-3(2,2)//(8,18) predicts an equilibrium bond
distance and dissociation energy in good agreement with
experiment. Moreover, with a double-ζ quality basis sets, it
produces values comparable with those obtained at the
CASPT2 level with a quadruple-ζ basis set. However, it
overestimates the dissociation energy and underestimates the
equilibrium bond distance when compared to the CAS(8,18)
method.

B. The N2 Molecule. For the N2 molecule, the cc-PVQZ
basis set (N:5s4p3d2f1g) and the D2h point group were
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employed. At equilibrium, N2 has a triply bonded singlet
ground state, which dissociated into two N (1s22s22p3) atoms.
A minimal active space includes six electrons distributed in six
orbitals, CAS(6,6).
For this system we performed: (i) restricted-HF calculations,

(ii) MP2, (iii) GASCI-2(10,5)//(10,12)SDT, in which two GA
spaces were chosen, one containing the five doubly occupied
valence orbitals and the other one containing seven low-lying
correlating virtual orbitals. Up to triple interspace excitations
were used to generate the CI space, (iv) analogous GASCI but
including up to sextuple excitations, GASCI-2(10,5)//(10,12)-
SDTQ56, (v) CASSCF(6,6) calculations, (vi) CASPT2(6,6),
(vii) CASSCF(10,14), including two additional doubly
occupied orbitals, mainly with 2s character on each N atom,
and six more virtual orbitals, (viii) CASPT2(10,14), and (ix)
four different SplitGAS schemes (vide infra).
We also performed the corresponding GASSCF calculation

for scheme (iii), GASSCF-2(10,5)//(10,12)SDT, to check if
orbital optimization recovers part of the correlation missed by a
truncated level of excitation.
In one of the SplitGAS schemes, only the HF configuration

was included in the principal space (P), while the

configurations arising from single and double excitations from
the five valence bonding orbitals to the seven low-lying virtual
orbitals were included in the extended (Q) space (1 Slater
determinant in (P) space and 245 in (Q) space). We will refer
to this calculation as SplitGAS-2(10,5)//(10,12). In the other
three cases a CAS(6,6) expansion was chosen for the principal
space (56 Slater determinants), while the extended orbital
space was different. In one case, SplitGAS-3(6,6)//(10,12),
13894 Slater determinants of the (Q) space couple with the
principal space. In the second case, SplitGAS-3(6,6)//(10,24)
192898 Slater determinants of the extended space couple with
the principal space. In the last case, SplitGAS-3(6,6)//(14,26),
the extended space included also single and double excitations
from the 1s orbitals, This choice leads to 659544 Slater
determinants coupling with the principal space. Optimized
CAS(6,6) natural orbitals were used as input orbitals for the
SplitGAS calculations. We also performed GASCI-type of
calculations to directly compare them with the SplitGAS
calculations. The optimized CAS(6,6) natural orbitals were
used, and starting from them an enlarged CI space was
generated, namely a GAS-3(6,6)//(10,12)SD, a GAS-3(6,6)//
(10,24)SD, and a GAS-3(6,6)//(14,26)SD. Instead of using the
diagonal approximation in the (QQ) block of the CI
Hamiltonian matrix, in the GASCI calculations no approx-
imation of the CI Hamiltonian matrix was employed. The
experimental data are taken from ref 42.
Selected potential energy curves are presented in Figure 2,

and selected spectroscopic parameters are reported in Table 2.

Both RHF and MP2 predict the wrong dissociation energy.
GASCI (GASCI-2(10,5)//(10,12)SDT) up to triple excitations

Figure 1. HF potential energy curves.

Table 1. HF Spectroscopic Constantsa

method Req (Å) De (eV) Do (eV) ωe (cm
−1) ωexe (cm

−1)

RHF 0.902 12.87 12.60 4454.5 97.7
CASSCF(2,2) 0.921 4.68 4.43 4071.4 110.2
CASPT2(2,2) 0.920 5.49 5.24 4159.5 102.1
CASPT2(2,2) cc-pVTZ 0.917 5.94 5.68 4201.1 96.9
CASPT2(2,2) cc-pVQZ 0.915 6.06 5.81 4203.6 99.5
GASCI-2(8,4)//(8,18)SD 0.917 7.39 7.13 4219.7 94.0
SplitGAS-2(8,4)//(8,18) 0.911 7.86 7.58 4558.9 261.8
SplitGAS-3(2,2)//(8,18) 0.915 6.01 5.74 4362.3 148.4
CASSCF(8,18) 0.920 5.49 5.23 4144.2 102.1
exp.40,41 0.917 6.12 4138.7 90.1

aUnless otherwise specified, the basis set used is cc-pVDZ.

Figure 2. N2 potential energy curves.
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does not correctly dissociate N2, because not all the relevant
excitations are included in the CI expansion, which is still
dominated by configurations with ionic character. Orbital
optimization coupled to this CI expansion (GASSCF-2(10,5)//
(10,12)SDT) does not solve the problem.
The CASSCF(6,6) calculation predicts a dissociation energy

of 8.80 eV, ca. 1 eV lower than the experimental value. By
including two doubly occupied orbitals, mainly N 2s, and six
virtual orbitals for correlation, CASSCF(10,14), the results
improve significantly. Inclusion also of a perturbative correction
to the second-order, CASPT2(10,14) gives results in good
agreement with experiment.
For the SplitGAS-2(10,5)//(10,12), (these results are not

reported) in which only the HF configuration is included in the
principal partition of the CI expansion with all single and
double excitations to the seven low-lying correlating virtual
orbitals forming the extended space, we experienced con-
vergence problems at bond distances greater than 3.0 Å. This
arises from the fact that at dissociation some important
configurations were left into the extended space. This
observation stresses that all the important configurations
along the reaction path must be included in the principal
space to guarantee the trustworthiness of the method and to
avoid convergence problems. All SplitGAS results for this
system give equilibrium bond lengths, vibrational frequencies,
and dissociation energies of CASPT2 quality.
A direct comparison of the GASCI curves and the analogous

SplitGAS curves is shown in Figure 3, and the spectroscopic
parameters are summarized in Table 3.
While the SplitGAS curves overlap with the corresponding

GASCI curves near the equilibrium region, they differ at

dissociation. The reason for this difference is that at
dissociation part of the correlation energy is neglected with
SplitGAS, because of the diagonal approximation for the (QQ)
block. As a result, SplitGAS slightly overestimates the
dissociation with respect to GASCI. In this case we can
therefore conclude that SplitGAS is closer to the experimental
value than the GASCI counterpart, due to cancellation of error.
The SplitGAS-3(6,6)//(10,24) and SplitGAS-3(6,6)//

(14,26) curves almost overlap. The same behavior is
encountered for the GASCI curves. This indicates that the
coupling between core electrons and valence orbitals for this
system is small.
Instead of natural orbitals, canonical orbitals could also be

used as starting orbitals for the SplitGAS calculations. For the
systems under investigation, canonical and natural orbitals are
almost identical. In general, however, these two sets of orbitals
may significantly differ, and the choice of one set or the other as
starting orbitals in a SplitGAS calculation might bring to a
different result.
As a final note to this section, we would like to note that the

discrepancy between SplitGAS and GASCI is much larger for
HF (Section A) than for N2 (Section B). The reason for this
difference is that in the N2 calculations the reference wave
function is a CAS(6,6). The additional configurations included
perturbatively in SplitGAS and explicitly in GASCI account for
the missing dynamic correlation. For the HF system, on the
other hand, we used restricted-HF as a reference wave function,
which is not as accurate as the reference wave function used for
N2.

C. The Cr2 Molecule. The Cr2 molecule
43,44 is a challenging

system for modern electronic structure theory methods because
it is highly multiconfigurational and both static and dynamic
correlations play an important role. For this molecule, the
ground state singlet potential energy curve was computed using
the ANO-RCC basis set45 with a VTZP (TZP, 6s5p3d2f1g)
and D2h point group. The Douglas-Kroll-Hess Hamiltonian

46,47

was employed to account for scalar relativity. Since the Cr atom
has a high-spin7S3 ground state and a (3d)5(4s)1 valence

Table 2. N2 Spectroscopic Constants Obtained Using the cc-PVQZ Basis Set

method Req (Å) De (eV) Do (eV) ωe (cm
−1) ωexe (cm

−1)

RHF 1.066 33.13 32.97 2730.4 111.9
GASCI-2(10,5)//(10,12)SDT 1.162 18.00 17.02 1301.3 749.3
GASSCF-2(10,5)//(10,12)SDT 1.096 19.83 19.68 2412.6 106.7
CASSCF(6,6) 1.102 8.80 8.75 2351.7 142.5
CASSCF(10,14) 1.097 9.85 9.70 2387.8 142.6
CASPT2(10,14) 1.101 9.55 9.40 2340.8 153.6
SplitGAS-3(6,6)//(10,12) 1.106 9.28 9.14 2364.1 462.2
SplitGAS-3(6,6)//(10,24) 1.110 9.53 9.39 2296.7 111.6
SplitGAS-3(6,6)//(14,26) 1.110 9.55 9.41 2298.4 111.8
exp42 1.098 9.76 2358.6

Figure 3. N2 potential energy curves: comparison of the SplitGAS and
GASCI methods.

Table 3. N2 Spectroscopic Constants: Comparison of
SplitGAS and GASCI (Basis Set: cc-PVQZ)

method Req (Å) De (eV) Do (eV) ωe (cm
−1)

GASCI-3(6,6)//(10,12)SD 1.108 9.12 8.99 2288.0
SplitGAS-3(6,6)//(10,12) 1.106 9.28 9.14 2364.1
GASCI-3(6,6)//(10,24)SD 1.111 8.88 8.74 2276.0
SplitGAS-3(6,6)//(10,24) 1.110 9.53 9.39 2296.7
GASCI-3(6,6)//(14,26)SD 1.111 8.89 8.75 2277.7
SplitGAS-3(6,6)//(14,26) 1.110 9.55 9.41 2298.4
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configuration, a complete spin pairing of two Cr atoms can
formally produce a hextuple bonded system.48−51 A minimal
active space includes 12 electrons distributed in 12 orbitals, the
3d and 4s on each Cr atom, CAS(12,12). Calculations at the
CASSCF(12,12) and CASPT2(12,12) levels are presented. For
the CASPT2 an imaginary shift of 0.2 au was chosen together
with an IPEA value of 0.45 au, which are considered the best
parameters for the Cr2 system.52 Orbitals up to the 3s were kept
frozen in the CASPT2 correction. CASPT2 calculations were
also performed with a larger ANO-RCC-type basis set, namely
the 21s15p10d6f4g2h basis contracted to a 10s10p8d6f4g2h
basis (7ZP because it is of septuple-zeta quality) and both
CASPT2 and SplitGAS calculations with a smaller basis set,
namely ANO-RCC-VDZP (DZP, 5s4p2d1f).
Four SplitGAS schemes were used, in which optimized

CASSCF(12,12) natural orbitals were employed, and the
principal (P) space included the whole CAS(12,12) CI
expansion. The four SplitGAS calculations differ in the size
and partitioning of the active space. In the smallest SplitGAS
case, two GA spaces were included, one including the twelve
valence orbitals, the other including 18 virtual orbitals, which
are used for the extended (Q) space, SplitGAS-2(12,12)//
(12,30). These 18 orbitals are the bonding and antibonding
combinations of the three 4p components, the 5s, 5pz, 4dσ, the
two 4dδ and the 4fσ atomic orbitals, and were selected as the
virtual canonical orbitals of correct symmetry with the lowest
energy. The rationale behind this choice was to include orbitals
that are primarily in the bonding region. The δ-orbitals were all
included as some of them, within the D2h point group, shared
the same irreducible representation with the σ-orbitals. Single
and double excitations of the 12 active electrons into the 18
virtual orbitals were allowed. In the second test, the extended
orbital space was further enlarged: SplitGAS-2(12,12)//
(12,52). Among the virtual orbitals we added bonding and
antibonding combinations of the 5px, 5py, 6s, 4dπ, 5dσ, 5dδ,
4fπ, and 4fδ atomic orbitals. The added orbitals were again
chosen as the virtual canonical orbitals of correct symmetry
with lowest energy. The two first SplitGAS expansions consider
therefore only correlation of the valence orbitals. In the third
expansion, three GA orbital spaces were employed: one space
containing the two doubly occupied 3pz orbitals, the second
space containing the twelve valence orbitals, and the third space
containing twenty correlating virtual orbitals. Single and double
excitations were allowed from the 3pz orbitals and/or into the
twenty extended virtual orbitals. We refer to this calculation as
SplitGAS-3(12,12)//(16,34). This expansion allows therefore
for a partial description of core−core, core−valence, and
valence correlation effects.
In the largest SplitGAS expansion, all electrons in the 3p-,

3d-, and 4s- derived orbitals were correlated. This was
accomplished by selecting a first GA space containing the six
molecular orbitals originating from 3p, a second GA space
containing the 12 molecular orbitals originating from 3d, 4s,
and a third orbital space containing 30 correlating orbitals. The
orbitals in the first and third space were again canonical orbitals
and were chosen as the inactive with highest orbital energy and
the virtual orbitals with lowest energy, respectively. In order to
reduce memory requirements, the last orbital space was actually
divided into four orbital spaces, so a total of six active orbital
spaces were actually used, and we refer to this calculation as
SplitGAS-6(12,12)//(24,48). The six orbital spaces are
described in Table 4.

The (Q) space was defined as the CSFs with at most one
hole in the first GA space and at most two electrons in last four
GA spaces. This expansion includes therefore core−valence as
well as valence correlation effects.
It is well-known that CASSCF(12,12) calculations do not

reproduce the qualitative features of the exact potential energy
curve, see also Figure 4. The reason for this failure is the lack of

dynamic correlation in these calculations. Dynamic correlation
for this molecule has been traditionally recovered by the
CASPT2 approach. Several Cr2 CASPT2 potential energy
curves have been proposed over the years, corresponding to
different parametrizations of the method. The original CASPT2
curve53 was affected by a severe intruder-state problem, which
’deteriorated’ the result. Using the level-shift technique in the
LS-CASPT2 method,10 the intruder-state problem was partially
solved, but a first parameter was introduced. An imaginary
level-shift was also employed as an alternative solution to the
intruder states problem.11 The most recent parametrization was
introduced as a shifted zeroth-order Hamiltonian (IPEA
shift).12 This approximation corrects for the systematic error
of the original formulation, where the correlation energy was
overestimated. The shape of the potential energy curve of the
Cr2 is affected by the choice of this new parameter,52 which
leads to different spectroscopic parameters. SplitGAS avoids
any empirical or semiempirical parametrization. The only
choice that one has to make is the active space in the principal
(P) and extended (Q) space.
Selected potential energy curves for Cr2 are plotted in Figure

4. A closer view of the CASPT2, SplitGAS-6(12,12)//(24,48),
and experimental curves is presented in Figure 5. The
spectroscopic constants are reported in Table 5. The calculated

Table 4. Number of Orbitals in Each Irrep of D2h in the
SplitGAS-6/(12,12)//(24,48) Calculation

irrep ag b3u b2u b1g b1u b2g b3g au

GAS1 1 1 1 0 1 1 1 0
GAS2 3 1 1 1 3 1 1 1
GAS3 7 0 0 0 7 0 0 0
GAS4 0 3 0 0 0 3 0 0
GAS5 0 0 3 0 0 0 3 0
GAS6 0 0 0 2 0 0 0 2

Figure 4. Cr2 potential energy curves. The curves are arbitrarily shifted
for better comparison (for absolute values see the Supporting
Information).
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and experimental vibrational frequencies are reported in Table
6.

In Figure 4 we report the curve for the CASSCF(12,12)
calculations only with the largest basis set, 7ZP. This potential
energy curve as well as the CASSCF(12,12) potential energy
curves for the other basis sets (not given in Figure 4) predicts
an unbounded Cr2 ground state. At the CASPT2(12,12)/DZP
level the curve does not have a minimum. At the CASPT2-
(12,12)/TZP level, the system is predicted to be bonded, with
an equilibrium bond length of 1.71 Å, a dissociation energy of
1.39 eV, and a vibrational constant ωe of 309 cm−1. Overall the
curve is flatter than the experimental one. By increasing the
basis set to 7ZP, the CASPT2(12,12) results improve
significantly. The equilibrium bond distance agrees with the
experimental value. The dissociation energy and ωe values are
slightly overestimated; the minimum is deeper and narrower
compared to the experimental one (Figure 5).
Let us now consider the SplitGAS calculations. Inspection of

Figure 4 shows that all the SplitGAS curves present a local

minimum at short distance, corresponding to the 3d-3d
interaction. However, only calculations including core-correla-
tion from all six 3p-derived orbitals, i.e. the calculations with the
(P)+(Q) active space of twenty-four electrons in forty-eight
orbitals, (24,48), reproduce the experimental curve, while the
other expansions (12,30), (12,52), and (16,34) without or with
only partial core−valence correlation energy, do not predict an
overall correct shape of the curve.
Figure 5 shows that the SplitGAS-6(12,12)//(24,48)/TZP

curve nicely overlaps with the experimental curve near the
equilibrium region, from 1.4 Å to 2.4 Å. The SplitGAS-
6(12,12)//(24,48) shoulder is more enhanced than the
experimental one. A shallow second minimum appears at
2.404 Å on the SplitGAS curve. The difference between the
experimental and SplitGAS-6(12,12)//(24,48) curves in the
region between 2.4 Å and 3.0 Å is not of particular concern; as
pointed out already by the authors of the experimental study,45

insufficient experimental vibrational data are available to allow
an accurate experimental fitting in that region of the curve. The
presence of the shallow minimum obtained with the SplitGAS-
6(12,12)//(24,48) method is therefore not to be excluded.
The spectroscopic parameters obtained with the SplitGAS-

6(12,12)//(24,48) method match the experimental values
(Table 5). The SplitGAS-6(12,12)//(24,48) vibrational
frequencies (Table 6) are in better agreement with the
experimental values than the CASPT2 ones obtained with the
largest basis set. In Table 6 we reported only the first nine
vibrational levels because these are those accurately determined
experimentally and represent a good reference for the
theoretical counterparts. Already for v = 9 the deviation of
the SplitGAS-6(12,12)//(24,48) frequency from the value
reported in ref 44 is large, probably because this vibrational
level is already in the nonaccurate experimental region.
We have compared calculations with DZP and TZP basis

sets, in order to investigate basis set effects. The CASPT2/DZP
curve does not have a minimum at short distance (1.7 Å). The
CASPT2/TZP curve, on the other hand, has a correct shape.
The SplitGAS/DZP curve has a similar shape as the CASPT2/
TZP near the first minimum, while it is more similar to the
CASPT2/DZP curve at large distance. Overall, with our choices
of orbital spaces, already at the DZP level the SplitGAS curve is
qualitatively correct, and, at the TZP level, it perfectly overlaps
with the experimental curve, in the region that has been
accurately measured.

IV. CONCLUDING REMARKS
We have presented a new method, SplitGAS, that generates
accurate multiconfigurational wave functions at an affordable
cost. The GAS CI-expansion is split into two parts, a principal
part containing the most relevant configurations and an
extended part containing less relevant (but not negligible)
configurations. The partition is based on an orbital criterion.
The SplitGAS approach has several advantages over existing
electronic structure methods for strong correlation:
• It gives equilibrium bond lengths, vibrational frequencies,

and dissociation energies of CASPT2 quality at computational
costs that in each iteration are similar to those of
(uncontracted) CASPT2 calculations but with memory
requirements that are similar to those of CASSCF.
• The construction of the wave function is based on the

active space choice, which requires exclusively chemical
knowledge of the given system. This implies that accurate
results can be obtained only upon careful selection of the

Figure 5. Enlarged region for selected Cr2 curves. The curves are
arbitrarily shifted for better comparison (for absolute values see the
Supporting Information).

Table 5. Cr2 Spectroscopic Constants for Selected Methods

method Req (Å) Do (eV) ωe (cm
−1)

CASPT2 (12,1,2)/DZP no min - -
CASPT2 (12,1,2)/TZP 1.713 1.39 309.1
CASPT2 (12,1,2)/7ZP 1.673 1.59 505.8
SplitGAS-6(12,12)//(24,48)/
DZP

1.720 1.17 324.9

SplitGAS-6(12,12)//(24,48)/
TZP

1.671 1.56 484.8

exp44 1.679 1.44 ± 0.05 480.6 ± 0.5

Table 6. Cr2 Lowest Vibrational Levels

v CASPT2/TZP CASPT2/7ZP SplitGAS/TZP exp44

1 401 563 476 452
2 334 519 450 423
3 266 461 416 405
4 208 394 382 365
5 175 334 350 340
6 146 280 316 315
7 126 239 278 280
8 119 207 228 250
9 119 176 86 210
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configurations included. Therefore, the method is not black-
box.
• Unlike PT2-type methods, it is free from any para-

metrization of the Hamiltonian.
• With small to middle size basis sets it gives results with

chemical accuracy. From this point of view the method might
benefit from cancellation of errors with the small basis sets.
• The SplitGAS method is not per se size-extensive.

However, the orbital spaces and occupations constraints of a
supersystem consisting of noninteracting subsystems may be
specified in such a way that the energy of the supersystem
equals the sum of the energies of the subsystems.
• Like all perturbation-based methods, the SplitGAS method

is not variational.
In the present paper we discussed a SplitGAS-CI

implementation in which only the CI parameters are optimized.
We are currently implementing an extension of the method that
combines the optimization of both the CI coefficients and the
orbitals.
We have employed SplitGAS to study several diatomic

molecules, including the challenging case of Cr2 for which we
have obtained good agreement with experiments comparable to
all the known best theoretical calculations. We have
demonstrated that a correct potential curve for the ground-
state of a challenging molecule like Cr2 may be obtained using a
double or triple-ζ basis set and limited many-electron
expansions. We are currently investigating whether this also
holds for other states of this molecule as well as other transition
metal dimers and trimers.
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