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ABSTRACT. We extend the priority method in  a-recursion theory to cer-
tain arguments with no a priori bound on the required preservations by proving
the splitting theorem for all admissible  a.  THEOREM: Let C be a regular a-
r.e. set and D be a nonrecursive a-r.e. set.   Then there are regular ct-r.e. sets
A   and B such that A U B = C, A n B = 0, A, B <aC and such that D
is not a-recursive in A  or B.   The result is also strengthened to apply to   <ca,
and various corollaries about the structure of the  a and ca recursively enu-
merable degrees are proved.

In ordinary recursion theory one can distinguish various types of priority
arguments. The major split is between finite and infinite injury constructions but
finer distinctions can and should be drawn. Thus for example one should mark
the difference between the arguments for the Friedburg-Muchnik solution of
Post's problem [2] and Sacks' splitting theorem [3], [7].  In the former there is
an a priori recursive bound on the preservations initiated for a given requirement
and so on the injuries it inflicts on lesser requirements. There are, however, no
such bounds available in the proof of the latter theorem.

As long as one remains within the confines of ordinary recursion theory
these distinctions are relatively unimportant. All that one ever needs in the proofs
is that the injuries to each initial segment of requirements are bounded.  Since
the union over an initial segment of co of finite sets is finite, the proofs go
through without regard to the more subtle questions of the existence of recursive
bounds on the injury sets. The situation changes dramatically when one enters
the realm of recursion theory generalized to all admissible ordinals a. The prob-
lem is that the union over an initial segment of a of sets each of which is a-fi-
nite need not be a-finite.  In general the collection itself must be given as an a-
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66 R. A. SHORE

finite union of a-finite sets for one to be sure that the union is a-finite.  Even
in the proof of the Friedburg-Muchnik theorem, however, one is not so lucky as
to have everything presented on a silver platter.  Indeed, a crucial point in the
Sacks-Simpson proof of the theorem in a-recursion theory [6] is their Lemma
2.3 which enables them to handle unions which are only a-r.e.  Unfortunately,
their lemma only applies to collections with a uniform a priori bound on the size
of the members.  It is therefore admirably suited to priority arguments of the
Friedburg-Muchnik type but does not seem to suffice for ones like the splitting
theorem which lack appropriate bounds.  Indeed to date the only priority argu-
ments that have been carried out for all admissibles have been of the Friedburg-
Muchnik type.  In this paper we exhibit a construction that enables one to han-
dle priority arguments of the second type.(2) In particular we prove a strong
form of the splitting theorem for all admissible ordinals.

Theorem, ¿er C be a regular a-r.e. set and D be a nonrecursive a-r.e.
set.   Then there are regular a-r.e. sets A and B such that A U B = C, A n
B = 0, A, B <a C and such that D is not a-recursive in A or B.

We should also remark that the methods developed in this paper have be-
come key elements in the generalization of an infinite injury priority argument
to all admissible ordinals. Indeed, by extending these methods and introducing
some other ideas as well we have used an infinite injury argument to show that
the recursively enumerable a-degrees are dense for all admissible a [10].

As for background material for this paper, a familiarity with the splitting
theorem in ordinary recursion theory would be helpful (particularly the account
in [7]) but is not necessary as we will make our proof in §1-3 essentially self-
contained.  In §0 we give all the basic definitions for a-recursion theory and
reference the few elementary but nonobvious facts that we need. After a heuris-
tic description of our construction at the beginning of   § 1  we give the formal
details of the procedure.  In  §2 we show that our goals for the construction are
in fact achieved via a priority argument and so prove the theorem.  §3 is devot-
ed to deriving some corollaries about the structure of the a-r.e.  degrees while in
§4 we indicate how to strengthen our results to include a-calculability degrees
as well.  Finally in §5 we discuss the problems of making the construction uni-
form and of splitting nonregular sets.

(2)C. T. Chong has independently proven that there are incomparable a-r.e. degrees be-

low every a-r.e. degree. Though an even stronger result is a simple corollary of our theorem
(Corollary 3.3) a similar priority argument is needed even for the weaker result. His methods
however are rather different from ours and do not seem to suffice for the splitting theorem.
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SPLITTING AN  a-RECURSIVELY ENUMERABLE SET 67

0. Preliminaries. Let La be the collection of sets constructed by level a
in Godel's constructible universe L. a is admissible if La satisfies the replace-
ment axiom schema of ZF for 2t   formulas. A subset of La is a-recursively
enumerable (a-r.e.) if it has a 2,   definition over La and a partial function /
is called partial a-recursive if its graph is a-r.e. The function is a-recursive if its
domain is all of a while subsets of a are recursive if their characteristic func-
tions are.  Note that there is a one-one a-recursive map of a onto La and so
it suffices to consider functions on a and subsets of a. Thus we only required
that a function be total on a rather than La to be a-recursive. We also remark
that a nonempty subset A of a is a-r.e. if and only if it is the domain of a
partial a-recursive function if and only if it is the range of an a-recursive func-
tion. Moreover, if A  is not a-finite (i.e., not a member of La) this last func-
tion can be chosen to be one-one.  For all such basic facts about a-recursion the-
ory that do not seem obvious we refer the reader to [4] or [6].

The main fact about admissible ordinals a is that one can perform Aj (=
a-recursive) recursions in La. Thus for example we can Godel number the a-
r.e. subsets of a {Re}e<a and we can even define an a-recursive simultaneous
enumeration of the a-r.e. sets. We indicate this process by writing Ä°  for the
elements of R€ enumerated by stage o in this standard enumeration. We now
use this enumeration to define relative computations and recursiveness. We begin
with an approximation.  [e]Jj (7) = S  if and only if

Op)(3t?)[<7, S, p, t?> 6 R° & Kp C C n a & K„ C (a - Q n a]

where we have coded all «-tuples (7,6,0,77) and a-finite sets Kp and Kn as
the ordinals   <7, 5, p, tj>, p and 77 in an a-recursive manner. We then say that
[e]C(?) = 5  if [e]„(7) = 5  for some a. We call <7, S,p,Tj> a computa-
tion associated with [e]£(7) = ô  and say that it requires Kv to be outside of
C. Note that this makes [e]c a possibly multivalued function. We will often
use the a-recursive well ordering of La gotten by restricting the usual well or-
dering of L to La to choose a least computation associated with some [e]£(7)
= 5.  If C is a-recursive (e.g. an approximation to an a-r.e. set) this proce-
dure will also be a-recursive.  In general we say that [e]^(7) or  [ef'i/y) is con-
vergent if it equals S  for some 5.

Finally, we say that a partial function / is weakly a-recursive in C(f<wa
Q if and only if / = [e]c for some e (and so in particular [e]c is single valued).
Of course, set B is weakly a-recursive in C if its characteristic function is.

Though it will be convenient to arrange our splitting of C into A and B
so that our given set D is not weakly a-recursive in A or B, ^^ is not the
reducibility in which we are really interested. The real notion of a-recursiveness
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68 R. A. SHORE

that we want requires that one be able to recover all a-finite subsets of A and
a-A (also written Ac) from B in order to say that A is a-recursive in B
(A <a B). Technically, <a has the advantage of being transitive while <wa is
not always so. Philosophically, it is really the a-finite sets, i.e. the members of
La, which are the individuals of our universe of discourse and about which we
should be inquiring of B. As for the formal definition, we say A <a C if and
only if there is an e such that

KyCA   <-* (3p)077)«p, r?, 7,0) G Re&Kp ÇC&K^Ça-C)
and

KyCa-A *■* (3p)(37?)((p, 77, 7, l)eRe&Kp ÇC&K^Ça-C)
for all a-finite sets K .

Note that if A is a-r.e. the first condition can always be satisfied, and so
to show that A ^ C one only needs an R that indicates relative to C when
K DA = 0. On the other hand, to show in our construction that D £a A  it
clearly suffices to show that D ^wa A i.e., [ef4 =£ D for any e. Finally as «^
is transitive we have the notion of a-degree: deg(4) = {B C.a\B <a A ^ B}.
As usual the a-degrees form an upper semilattice under <^. The join of two de-
grees deg(4) V deg(2?) is given by deg(A) V deg(Z?) = deg(C) where C =
{X + 2wllim(X) & X + n eA} U {X + In + 1 llim(X) & X + n GB}. Of course,
among the a-r.e. degrees there is a greatest, deg({(x, y)be GRy}), called the com-
plete a-r.e. degree.

Next we need the notion of projection. The Sj-projectum of a, called
a*, is the least ordinal ß such that there is a one-one a-recursive map / (called
a projection) of a into ß. The key fact about a* is that every 2X   subset of
a proper initial segment of a* is a-finite [4]. We can use such an a-recursive
projection f: a —> a* to push our Gödel numbering of reduction procedures be-
low a*.  In particular, we now use  [f~le\A  as our reduction procedure by first
defining [f~le]^{i) = S  if and only if there is an tj < a such that f(r¡) = e
and [77^(7) = 6.  We now continue as before to define [/"'e]4.  By having the
reduction procedures listed below a* we will be able to take advantage of the
fact that any a-r.e. subset of a bounded below a* is a-finite.

Finally, we define an iCa tobe regular if A O ß is a-finite for every
ß < a. Thus, for example, if a* = a every a-r.e. subset of a is regular. The
key fact here is that every a-r.e. degree contains a regular set, i.e., given any a-
r.e. set D there is an a-r.e. D' such that D <a D' <a D [5].

1. The construction.
1.1. The intuitive picture. We begin by noting that since every a-r.e. degree

contains a regular set we can assume without loss of generality that D is regular.
We let c and d be one-one a-recursive functions which enumerate C and DLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPLITTING AN a-RECURSIVELY ENUMERABLE SET 69

respectively. As usual, we dentoe the associated approximations to C and D by
C° = {c(i)\i<o},EP= {d(i) \i<a}.

The general plan of the construction calls for putting c(p) into exactly one
of A and B at stage a. This will assure us that A U B = C, A O B = 0 and
that A, B <a C. We will also have various elements that we wish to keep out of
A and B for the sake of requirements associated with the condition that D not
be recursive in A or B. These requirements will be ordered by a priority system
that will be developed along with the construction. At any stage o we will have
an approximation to the final priority listing which we will use to determine whe-
ther c(o) is put into A or B. Essentially we will choose whichever will pre-
serve the requirements of the highest possible priority.

In line with Sacks' original approach to this theorem [6] we try to insure
that D &a A by the roundabout method of preserving (for each e) computa-
tions of [e J4  on initial segments as long as they seem to agree with D. The
idea is that if [e]A = D for some e, then we would eventually be preserving the
first available computation of [e]"4 (jc) for each x.   We would then be able to
compute [ef4   and so D a-recursively-a contradiction.  On the basis of such
considerations, however, we can only argue that there is some bound on the jc's
for which we preserve computations of [e]4 (x). We cannot assign any uniform
a priori value to this bound and so find ourselves heir to the problems discussed
at the beginning of this paper.

Our strategy for handling these difficulties is first to arrange the requirements
[ef4 =£ D in blocks P   and then to consider [e]A =£ D for all e in P   as a sin-
gle requirement. Thus we will consider D(x) as computed from block P   if we
have any e in Py for which we as yet have no counterexample to  [e]4 = D
and for which [e]4 (x) = D(x).  Since we will prove that there is a bound on the
appearance of counterexamples, this blocking will not prevent us from recovering
D correctly should the preservations associated with Py be unbounded.  Finally
we will have the determination of the size and number of these blocks interwoven
with the construction in such a way that the blocks progress through the list of
reduction procedures cofinally with the progression of preservations and injuries
through a.

1.2. The actual construction. Since A and B play entirely analogous roles
in the construction we will describe explicitly only the A  part.  It is of course
understood that similar steps are to be taken on behalf of B. Before beginning

l-i      *the construction we let /: a-► a    be an a-recursive projection. The rest of
our terminology will be defined simultaneously with the construction.

At stage a we will have blocks P° each of which will be an initial segment
of a*. For each 7 we find the least x for which there is no 7 - A requirement
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70 R. A. SHORE

with argument x associated with a 7 - A active reduction procedure. If there
isa y-A active reduction procedure e in F^ for which [f~1e]A (x) = Da(x),
we create a y-A requirement with argument x associated with  e. This re-
quirement consists of the elements required to be out of A" by the least com-
putation associated with [f~le]Aa(x) = D°(x). (Aa, of course, is the set of ele-
ments enumerated in A by stage a.)

If at any stage we put an element of a y - A requirement into A we de-
stroy the requirement. A reduction procedure e < a* is y -A active at stage
a unless there is a y -A  requirement (as yet undestroyed) with argument x as-
sociated with e such that [f~le]£ (x) = 0 =£ D°(x), i.e., x has been enumerat-
ed in D since the requirement was created. The idea is that as long as we seem
to have a computation showing that [f~1e]A # D we need pay no further at-
tention to e.

Now for the definition of the blocks Py:

P°o = {0}, Vo,     P°y « Un 15 < 7} U f(y°y) + 1,
where yy = [J{t < a 1(3 S < 7) a 5-requirement is created at stage r oran ele-
ment of a S-requirement is enumerated in C at stage t}.

The idea is that (for some X) each block Py, 7 < X, will eventually reach
a constant value, P   which will reflect (via f) a bound on all injuries caused by
our having to preserve S-requirements for 5 < 7. Once we have such a bound
we can show that P +i  is bounded via the argument about recovering D allud-
ed to in  §1.1. Moreover, if X is the least ordinal such that   \J{Py\y < X}, then
every P   will be so handled and we will succeed in getting D^A.B.

Finally we take c(p) and put it into A or B so as to preserve as much
as possible.  More precisely, we consider the sets IA   (IB) of A(B) requirements
which would be destroyed by putting c(o) into A(B).  Let 5A  (SB) be the
least ordinal 7 such that IA (IB)   contains a 7-requirement. If 5^ < SB
we put c(p) into B; otherwise it goes into A. Thus we have given a 7-./I
requirement priority over a b-B requirement iff 7<5. This then completes
our description of the construction.

2. The priority argument. Our primary concern is to show that enough
blocks eventually settle down so that we can argue that [/"'e]4 ¥=Z> for every
e < a*.  We proceed inductively.

Lemma 2.1. If, by some stage r, P°& and y% have stabilized (i.e. become
constant) at values Ps and y6 respectively for S < 7 and   \J{P$ IS < 7} <
a*, then Py and yy eventually stabilize (of course at values less than a* and
a respectively).
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SPLITTING AN a-RECURSIVELY ENUMERABLE SET 71

Proof. Note that  \J{PS IS < 7} < a* implies that  UíVs IS < 7} < a
since /Cv6) < Utf*5 '5 < 7} for each 8 < 7 by definition and no sequence un-
bounded in a can project down to one bounded in a*. (f~l  is Sj, as / is,
and so therefore is its domain. Thus restricting the domain of f~l  to any prop-
er initial segment of a* produces an a-finite set. The admissibility of a then
says precisely that the range of f~l  on this a-finite set (which includes all the
y6 's) is bounded in a.)

To establish the lemma it clearly suffices to show that y° eventually stabi-
lizes.  For 7 a limit ordinal this is immediate from our assumptions and the de-
finition of yy. We therefore consider the case 7 = v + 1  and show that there is
a bound on the stages at which ^-requirements are created and at which elements
of such requirements are enumerated in C.

Let y = UÍV5 '5 < 7} and look at the construction from stage y onward.
By definition of the ys  everything connected with 5-requirements for 5 < v
has stopped acting up by stage y. In particular we never have to worry about
preserving any S-requirement for S < v after stage y. Thus any v-A  require-
ment existing at stage y or created thereafter is never destroyed. (It could only
be destroyed if some element which is also in a 6 - B requirement for 6 < v is
enumerated in C. This, of course, cannot occur by the definition of y.) The
computation associated with such a requirement is therefore correct, i.e.
ir'f]f(Ji) = [fleYi(x). We must show that there are not too many of them.

Consider the set  W of e in Pv such that e is f-inactive at some stage
after y. As being i>-inactive at stage a is a-recursive, this is a  2,  subset of
Pv < a* and so a-finite. Moreover, once any e becomes ^-inactive after stage
y it remains so forever since by the above remarks the associated requirement
can never be destroyed. Of course, the stages at which each e in W becomes
p-inactive are given by an a-recursive function g with domain  W (just carry out
the a-recursive construction from stage y onward until it occurs).  Since  W is
a-finite, the admissibility of a guarantees a bound, say r, on the range of g.
After stage t no 7 - .4  requirement which is associated with any e in W can
be created.  Moreover, any v-A  requirement with argument x created after
stage t is associated with a computation giving the correct value of D(x). The
point is that the elements required to be outside of A by this computation are
never put into A while the only change in D that can occur is that a new ele-
ment of D is enumerated. This, however, would put the reduction procedure in-
volved into W by the definition of v-inactive contradicting our choice of r.

Now at stage r there are active v-A  requirements with associated argu-
ments x for each x less than some ordinal ß with the possible omission of
some a-finite subset of ß.  After stage t new v-A  requirements are created
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72 R. A. SHORE

with arguments taken from the remaining elements in order. As the construction
is a-recursive, the admissibility of a guarantees that the only way such require-
ments could be created a-infinitely often is eventually to have one with argument
x for each x < a. Were this to occur we could calculate D a-recursively as fol-
lows: to decide if KC\D = 0, begin at stage t and proceed until a v-A re-
quirement with argument x associated with an e not in W has been created for
every x GK. (Since such a stage exists for each x £ K and the map from x
to that stage is recursive, there is one stage by which it has all happened.)  Now
simply check the values of the computations associated with each argument to
get the true value of D(x).  Since D is not a-recursive, there is a bound on the
stages at which v-A requirements are created.  Moreover the collection of v-
A requirements is an a-finite set and since C is regular there is a bound on the
stages at which elements of these requirements are enumerated in C. Thus the
contribution to yy from v-A requirements eventually stabilizes.  Beginning at
such a stage the same argument now shows that the contributions from v - B
requirements also stabilize.   Thus y° and hence Py attain constant values be-
low a and a* respectively.   D

In view of this lemma we can let X < a* be the least ordinal such that a =
\J {Ps IS < X} and be assured that X is a limit ordinal and that P6  does in fact
exist for each 5 < X. We are now in a position to prove that our construction
has succeeded. As noted before A U B — C and A O B = 0 are immediate
while A, B ^ C is only slightly less obvious. To check if K O A =0 just find
a stage a such that C C\K = C d K and ask if A" n K = 0 This clearly rep-
resents a reduction procedure for A from C as well as a proof that A and B
are regular. As A and B are a-r.e. by construction we only have to prove the
following:

Lemma 2.2. D is not a-recursive in A or B.

Proof. Assume not.  For the sake of definiteness say [/^ef4 = D.  Let
v be the least ordinal <X such that e<Pv. By Lemma 2.1 there is a least x
which is not the argument of a v-A requirement associated with a v - A  ac-
tive e' at any stage after yv. As [/"'ej4 = D, e cannot be v-A  inactive
at any stage after yv. Moreover, since A is a-r.e., there is a stage o >yv by
which the Kp CA appearing in a computation of [f~leYi(x) is already con-
tained in A" and so [fle]Aa(x) = [f~1e]i(x) (of course Kn Ca -A   im-
pliesthat Kn Ca-A" for every a). We may of course also assume that LP(x)=D(x). Since
LXx) = [f~le\i(x) we create, at stage a, a v-A requirement with argument jc asso-
ciated with the v-A active reduction procedure e. This, of course, contradicts
our choice of x.   O
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SPLITTING AN  a-RECURSIVELY ENUMERABLE SET 73

3. Some corollaries about a-degrees. In order to derive some interesting con-
sequences about a-degrees from the splitting theorem we first note a further con-
sequence of our construction.

Lemma 3.1. A V B=a C.

Proof. We have shown that A, B <a C and so AM B <a C. On the oth-
er hand AUB = C clearly implies that C ^ A V B.   D

We can now prove the usual corollaries of the splitting theorem.

Corollary 3.2. Let c and d be a-r.e. degrees such that d is not a-re-
cursive.   Then there are a-r.e. degrees a and b such that c = a V b, d =Éa a
and d£ab.    D

Corollary 3.3. // c is a nonzero a-r.e. degree, then there are a-r.e. de-
grees a and b such that c - a V b, 0 <aa <a c, 0 <a b <a c and a is in-
comparable with b.

Proof. Let C be a regular set of degree c and let D = C in the theorem.
Let a and b be the degrees of the sets A  and B guaranteed by the theorem.
Then if a and b are comparable (e.g. one is a-recursive) then a V b is a or
b.  But by the lemma í Ví = c and the theorem assures us that c =£ a and
c< b.   D

Corollary 3.4. No a-r.e. degree is minimal.    D

Corollary 3.5. If d is an incomplete, non-a-recursive a-r.e. degree then
there is an a-r.e. degree incomparable with d.

Proof. Let the C of the theorem be a regular complete a-r.e. set and let
D be a regular set of degree d.  Let a and b be the degrees of the sets given by
the theorem. If both a and b are comparable with d then both are recursive
in it and so a V b <a d but a V b = c and d ^a c-a contradiction.   D

4. A strengthening for a-calculability.
4.1. In this section we will show'how to modify our construction to guar-

antee that D is not a-calculable from A or B.
Roughly speaking one says that D is a-calculable from A (D <¡ca A) if

using a standard equation calculus system one can deduce precisely the correct
values of the characteristic function of D from some finite set of equations sup-
plemented by the complete graph of the characteristic function of A. This gives
a stronger reducibility than <^ because the deductions need not be a-finite nor
even of length less than a.  For a precise description of the equation calculus and
more details about ^,a we refer the reader to [4], [5] or [6].  For our purposesLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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it is enough to know that if A is regular and hyperregular then D <ca A iff
D <a A. (A is hyperregular if every function / <wa A with domain any ß < a
has its range bounded in a.) The idea here is that hyperregularity insures that in-
dividual deductions have length <a while regularity then guarantees that each
such deduction uses only a-finite amounts of information about A. Again we
refer to [4] and [5] for precise proofs.

Our goal will thus be merely to indicate how the sets A and B construct-
ed above can be made hyperregular. Roughly speaking, we will add on new re-
quirements as in [6] that try to preserve computations of [ej4 (x) on the larg-
est necessary ß < a on which it is total. Once these preservations have highest
priority [ej4  will become essentially a-recursive on ß and so will have bounded
range as required by the definition of hyperregularity.

4.2. The construction. We begin by noting that we can set an a priori bound
on the ordinals ß that we must consider for a fixed [ef4 .  First our indexing as
usual is such that each a-r.e. set has a many indexes. Thus for any e there are
unboundedly many e' suchthat [ef4 = [e'V1. We may thus assume that 0<e.
Moreover if a* < a it suffices to consider ß < a*. (Any ß > a* can be mapped
one-one into a* by an a-finite map-just restrict the a-recursive projection of
a into a* to ß.) Finally if a* is singular in La, i.e. for some y < a* there
is an a-finite map f. y —> a* whose range is unbounded in a*, we can restrict
ourselves to ß < a*. The only new point here is that if h <yVOl A is bounded
on every ß < a* but unbounded on a* then the map g: y —* a given by
g(x) — Ug <f(x)h(x) 's weakly recursive in A and maps y unboundedly into a
(f is a cofinality map y —► a*). Thus in our construction we need only worry
about ß < e when a* = a or a* <a is singular in La (here e < a* as usual)
while if a* is regular we consider ß < a*.  Keeping this in mind we make the
following additions to our construction:

At stage  a we find, for each v and each e < P°, the least x < e(a*)
such that there is no v - A  requirement with argument x associated with e.
If there is such an x and [f~le]A (x) is convergent we create a v - A require-
ment with argument x associated with e. The requirement consists of the neg-
ative facts about  A° used in the least computation showing that it is convergent.
We adjust the definition of P° to bound the creation of T7'-requirements and the
enumeration in C of elements contained in 77'-requirements for 77 < v. Of
course an 77' -A requirement is destroyed if anyone of its elements is put into A.
Finally we insert these requirements into the priority listing by giving i>'-require-
ments (for A and B) the same priority as the corresponding ^-requirements.
(Since v-A  and v - A  requirements do not conflict this presents no problems.)
We now determine whether to put c(a) into A or B as before.
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4.3. The priority argument. Our main goal is again to show that the P°
and y° stabilize. Once that has been done we can argue for the hyperregularity
of A as follows: Consider any e < a* and suppose that [f~le]A   is a function
with domain ß < e(a*).  Let v be the least ordinal such that e < Pv. Once we
are beyond stage yv any computations of [f~le]A (x) for x < e(a*) covering
an initial segment of e(a*) are made into requirements which are never de-
stroyed and so give the correct value of [f~le]A(x). Moreover if [f~xe^(x) is
defined at all we eventually get such a computation (A  is still a-r.e.). Thus we
can compute [f~1e\4   on ß by just going through the construction from stage
yv onward.  Since this is an a-recursive procedure  [f~le\A   >s bounded on ß
and A is hyperregular. We therefore conclude our proof by establishing Lemma
2.1 in this context.

Lemma 4.4. //, by some stage r, P\ and y\ have stabilized at values P6
and yô respectively for every 5 < 7 and \J{PS IS < 7} < a* then P° and ya
eventually stabilize.

Proof. As before, we need only consider the case y » v + 1  and we know
that the contributions for »»-requirements are bounded. We have only to show
that there is a bound on the stages at which v -requirements are created.  (The
regularity of C takes care of the other component of yy.) If a* = a or a* <
a is singular we can argue directly for this bound. As they are never destroyed
the v -requirements created after stage yv correspond in a one-one way with an
a-r.e. subset of P„ x Pv ((the associated requirement, the argument of the re-
quirement)) which is strictly less than a* by assumption. Thus the set is a-fi-
nite and so enumerated in bounded time.

If a* <a is regular we first consider the set  W of e < Pv such that for
every x < a* there are undestroyed /-requirements at stage yv which are as-
sociated with e or have such requirements created after stage yv. This subset of
Pv is a-r.e. and so a-finite.  Similarly all the requirements associated with e's
in W form an a-finite set and so are bounded.  Consider now the e not in W.

Were there some bound strictly less than a* on the arguments for which
we create v'-requirements after stage yv for these e, we could argue as above.
On the other hand, if there were no such bound, we could define an a-recursive
map from a final segment of a* into Pv by sending x to the e associated
with the first v -requirement with argument x created after yv. Since this
would contradict the regularity of a* in La, we can indeed conclude as in the
previous cases.    D

Of course there is now no difficulty in deriving all the corollaries of §3
for a-calculability degrees as well.  We can also draw additional ones about the
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a-r.e. degrees by adding on the requirement that the constructed degrees be hy-
perregular. As an example we state

Corollary 4.5. Every a-r.e. degree is the join of two hyperregular a-r.e.
degrees.    D

5. Open questions. We consider two problems in this section. The first is
whether the hypothesis that C is regular can be eliminated. On the basis of con-
siderations of a-degree alone one can show that it is not, in general, possible to
split a nonregular a-r.e. set.  In particular, if a* < a and the cofinality of a*
in La is less than the  22-projectum of a (the least ß such that there is a 22/Z,a
map of a  into  ß).   There is exactly one  a-r.e. degree containing a nonregu-
lar a-r.e. set [9].  Under such conditions it is of course impossible to split a non-
regular a-r.e. set since the constructed sets must be nonregular and of strictly
lower a-degree. We therefore ask if these conditions do not hold (i.e.,c/(a*) >
o2p(a)), can one then split an arbitrary nonregular a-r.e. set C. We can only
show that there are nonregular a-r.e. sets A  and B such that deg(A) V
deg(5) = deg(0 [9].

For our second question we turn to the more technical problem of unifor-
mity.  Basically we are interested in ways that the constructions of § § 1  and 4
can be made uniform, i.e., independent of any extraneous parameters or choices
related to a.  Essentially there were two such nonuniform choices in our basic
construction. The first amounted to assuming that D was regular while the sec-
ond consisted of choosing a projection /: a —► a*. Although we know of no
uniform procedure for producing a regular a-r.e. set with the same degree as a
given a-r.e. set, we can handle the first difficulty by a less direct method. As
for the second problem we can eliminate the choice of a projection but only at
the expense of a nonuniform splitting of the construction depending on a* be-
ing less than a or not.

To be more specific, we solve the first problem by going uniformly from a
given a-r.e. set D to a regular a-r.e. set E such that E <wa D. (E is the de-
ficiency set of D, i.e., {al(3r > o)(f(r) <f(a))} where / is a one-one recur-
sive enumeration of D.) We then substitute E for D in our construction.
Since we then show that in fact E ^jva A and E ^wa B it is clear that D £a
A and D <a B.

The second problem can be attacked with the methods of [8] to eliminate
a choice of projection. The idea is that one keeps guessing at a* and a projec-
tion using a parameterless Sj-skolem function. Although we omit the details all
goes well if in fact a* < a. One then eventually has correct guesses and the con-
struction becomes essentially that of §1. The problem is that if a* = a we
cannot use the same constuction and still guarantee that the blocks dealt with in-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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elude every reduction procedure. Of course, for a* = a no choices or infinite
parameters were needed in the original construction. Thus we can prove that
there exist two integers k and / which are Godel numbers for two placed func-
tions such that given an index ß for a regular a-r.e. set C and one y for a non-
recursive a-r.e. set D, k(ß, y) and l(ß, y) each give indexes of two regular a-
r.e. sets (A0,B0) and (A1,Bl) suchthat A¡UBt = C, A¡nB¡=0. More-
over D £a A¡ and D &a B¡, where i = 0 if a* < a and i = 1  if a* = a.
Although this seems to be sufficient for applications to recursion theory in high-
er type objects like that of [8] in [0], the result is not entirely satisfactory and
we ask if a single integer can be found which does the job for all a. We feel con-
fident that the answer to this question is yes. We are less sure of the answer to
the more difficult question of whether our subterfuge to avoid the nonregularity
of D can be eliminated. To be precise we repeat a question of Sacks [5]: Is
there a uniform method of going from an index of an a-r.e. set to an index of a
regular a-r.e. set of the same a-degree?
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