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ABSTRACT

An approach to rare event simulation uses the tech

nique of splitting. The basic idea is to split sample

paths of the stochastic process into nlultiple copies

when they approach closer to the rare set; this in

creases the overall nUlnber of hits to the rare set for

a given an10unt of simulation time. This paper ana

lyzes the bias and efficiency of sonle sinlple cases of

this nlethod.

1 INTRODUCTION

Estinlations of the small probabilities of rare events

are required in the design and operation of many en

gineering systems. Consider the case of a teleconlmu

nications network. It is custonlary to model such sys

tems as a network of queues, with each queue having

a buffer of finite capacity. Infornlation packets that

arrive to a queue when its buffer is full are lost. The

rare event of interest may be the event of a packet be

ing lost. Current standards stipulate that the proba

bility of packet loss should not exceed 10- 9
. Or in a

reliability model of a space craft conlputer, we may be

interested in estinlating the probability of the event

that the system fails before the nlission completion.

Naturally, one would want this to be extrenlely low.

The nlain problenl with using standard simulation to

estimate such small probabilities is that a large num

ber of events have to be sinlulated in the model be

fore any sanlples of the rare event may occur. Hence

special simulation techniques are needed to make the

events of interest occur more frequently.

Inlportance sampling is a technique that has been

widely used for this purpose. The reader is referred

to Heidelberger (1995) and Shahabuddin (1995) for

some surveys. In inlportance sanlpling, the stochas

tic model is sinlulated with a new probability dy

namics (called a change of measure), that makes the

events of interest occur nl0re frequently. The sample

value is then adjusted to nlake the final estimate unbi

ased. Ho\vever, choosing any change of nleasure that
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nlakes the event of interest occur frequently is not

enough; how it is made to happen more frequently

is also very important. For example, an arbitrary

change of nleasure that makes the rare event happen

more frequently may give an estimator with an infi

nite variance. Thus the main problem in importance

sanlpling is to come up with an appropriate change

of measure for the rare event simulation problem in

hand. This may be difficult or almost impossible for

cOlllplicated models. Hence, even though importance

san1pling works very well for a large class of stochas

tic nl0dels, the scope of application of importance

sanlpling is limited to systems with "nice" structure.

This paper deals with an alternate approach to rare

event silllulation that uses the simulation technique

of splitting (see, e.g., Hamnlersley and Handscomb

1965). In standard simulation, the stochastic process

being simulated, spends a lot of tinle in a region of

the state space which is "far away" from the rare set

of interest, i.e, from where the chance of it entering

the rare set is extremely low. In splitting a region

of the state space that is ~~closer" to the rare set is

defined. Each tinle the process reaches this region,

from the ~ ' f a r away" region, many identical copies of

this process are generated. This way we get more

instances of the stochastic process spending time in

a region where the rare event is more likely to oc

cur. The boundary between the far away region and

the closer region is called a threshold. The above

described a case with one-threshold; one can easily

extend it to the case where we have multiple thresh

olds. This approach to rare event simulation was in

troduced in Kahn and Harris (1951) and used later in

Bayes (1970) and Hopmans and Kleijnen(1979). Re

cently it was revisited in a significant way by Villen

Altamirano and Villen-Altamirano (1991), Villen

Altamirano et al. (1994) and Villen-Altamirano and

Villen-Altamirano (1994), who used it for estimat

ing the probability of rare events in computer and

communication systems. They called their version of

this approach RESTART. A software package called

ASTRO (Villen-Altamirano and Villen-Altamirano
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1994) was created that implements their method.

They also did some approximate efficiency analysis

that gave some insights into threshold selection and

number of split paths generated at each threshold.

But a formal and thorough analysis was lacking.

Glasserman, Heidelberger, Shahabuddin, Zajic

(1996) (henceforth referred to as GHSZ) describe a

unifying class of n10dels and implementation condi

tions under which this type of n1ethod is provably

effective and even optimal (in an asymptotic sense)

for rare event simulation. The theory of branching

processes (see, e.g., Harris 1989) was used to derive

the unbiasedness and efficiency results. Experimental

results supporting the theoretical analysis and explor

ing the robustness of the splitting method, are also

reported in GHSZ. In this paper we introduce and de

rive some biasedness and efficiency results that sup

plement those in that paper. We begin with a simple

setting, and give conditions under which the splitting

method is optimal. We then give reasons why devi

ations from this simple setting result in difficulties.

Some of these have been handled in GHSZ, whereas

others are currently being investigated. Some analyt

ical results on the optimal selection of thresholds are

introduced next. Finally we give an analysis of the

bias introduced in one implementation of this method

that truncates sample paths to save simulation effort.

2 A SIMPLE SETTING

Consider the problem of estimating I = P(A), think

ing of A as a rare event. Let A = Ak => A k- I ... => Al

be a nested sequence of events which we think of

as intermediate thresholds. Let PI == P(A I ) and

Pi+1 == P(Ai+IIA i ), i = 1, ... , k - 1; then

I == Ik = PIP2 ... Pk·

We think of k increasing to infinity and r ---+ 0 (this

would happen, for example, if Pi = P for all i, where

P is some fixed constant between 0 and 1).

To motivate the above setting, consider a single

server queueing system with a finite buffer B. Define

the state of the system to be the number of jobs in

the queue. The problem may be to estimate the prob

abili ty that starting from state 0, the system reaches

state B before visiting O. We can think of this event

as the event A. Estimating probabilities of this type

are crucial to the simulation based estimation of per

formance measures like the steady state probability

of packet loss (see, e.g., Heidelberger 1995). Clearly,

if the overall arrival rate is smaller than the overall

service rate (which is a requirement for the stability

of the queue), and B is large, then the event A is a

rare event. Suppose now that we place k - 1 inter

mediate thresholds between 0 and B (with B being

the kth threshold). Let Ai be the event that start

ing from state 0, the number of jobs in the system

reaches threshold i before reaching O. Then clearly

A i+1 C .A· i and we have an exan1ple of the setting

mentioned in the previous paragraph.

Suppose that for each -i we can generate ni

Bernoulli random variables with parameter Pi, all

independent of each other. These are the building

blocks of a splitting estin1ator in this simple setting.

From each successful Bernoulli outcome at stage i, we

generate ni+1 stage-(i + 1) Bernoullis. Thus, at the

first stage we have Bernoullis

the jth of these, if successful, spawns

and so on. The estimator is

It is easy to show that I k is an unbiased estin1ator.

By conditioning on :Fk we mean conditioning on the

outcon1es of all Bernoullis up to stage k. Then

Doing this iteratively we get that E( Ik) = PI ... Pk ==

rk·
Returning to the simple queueing example intro-

duced above, a Bernoulli random variable might be

the indicator that a sin1ulated process reaches the

next threshold from the current one, without visit

ing state O. In particular, the Pi should be consid

ered unknown, so the ni+1 Bernoullis from each of

the successful outcomes at stage i would typically be

generated implicitly by simulating ni+1 samples of

the underlying process starting from stage i, until it

ei ther hits threshold i + I, or it hits 0 (see Figure 1).

If a sample path hits threshold i + 1 before hitting

0, then the corresponding Bernoulli random variable

is set to 1; else it is set to zero. Of course, since the

Bernoullis are all independent, the queuing process

must satisfy the assumption that the dynamics of the

process after it hits the -ith threshold, is independent

of the past and depends only on i. A simple example

where this is true is the M/M/1/N queue.
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Figure 1: Splitting with Three Thresholds and Two

Split Subpaths at Each Intermediate Threshold.
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We now calculate the variance of this estimator:
The condition in (i) is equivalent to

The next result examines the behavior of this variance

as k increases.

Lemma 1 (i) Iflinlinfj --+ oo y2:i=llog(niPi) > 0,

1 ) 1
limsup-: Llog(-) < 0

)--+00 J i=l niPi

if

which ensures convergence of (3) and proves (2). The

reverse inequality in (iii) similarly ensures divergence

of (3). For (ii), notice that

l i ~ ~ p ( 1 - Pi) }] (Pi~!i) < 00,

which holds under the condition in (ii). 0

The conditions in this lemma simplify in the im

portant special case that the Pi approach some limit p

and all ni equal som.e n for sufficiently large i. In this

setting, the three cases in the lemma can be replaced

with np > 1, np = 1, and np < 1. The corresponding

results for this special cases may be found in GHSZ.
In case (i) of the lemma, the second moment of

the estimator is also O( (Pl' .. pk)2), because the first

moment is PI ... Pk. Nonnegativity of variance makes

this the best possible rate of decrease for the sec

ond moment. In contrast, straightforward simulation

(corresponding to a single Bernoulli with parameter

PI ... Pk) has variance

(1)

(2)

Var[Ik +l ]

Var[E[Ik+ll:Fk]] + E[Var[Ik+ll:Fk]]

1
-'}- {Var[Iknk+IPk+l]
nk+1

+E[Iknk+lPk+l(l - Pk+l )]}

2 2 PI ... PkPk+l (1 - Pk+l)
Pk+l (1k + .

nl ... nk+1

2_ ~ (rrk 2) PI ... Pj (1 - Pj)
(1k - L..J Pz ,

j=1 i=j+l nl ... nj

which can also be written as

This recurrence relation can be solved to get

(ii) if -00 < lim infj --+ oo 2:1=110g(niPi),

(iii) if lim sUPk--+oo Pk <

lim infj --+00 J2:1=1 log(niPi) < 0,

1 and

per replication and a second moment of the same or

der.

We now supplement results for the variance with

an assessment of the computational effort. We as
sume, for simplicity, that the work per sample is con

stant across stages. (In many cases this may not be
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true. For example, in many queueing models the

expected cost of simulating a trial from threshold i

grows proportionally with i. This is because, with

positive probability bounded away from zero, the sys

tem never reaches threshold i + 1 and therefore many

trials consist of simulating the queue until it empties

again. However, these other cases can be handled

similarly and lead to similar conclusions.) Then the

expected work is proportional to the expected num

ber of samples, which is

nl + (nlPl)n2 + ... + (nlPl ... nk-lPk-l)nk

- ",k-l TIj
- nl i...Jj=O i=l Pi ni+l·

For the expected work we have:

Lemma 2 (i) If limsuPj-+oo t 2:i=llog(Pi n i+l) >
0, the expected work per run grows exponentially

in k.

(ii) I f 2 : ~ l l o g ( P i n i + l ) < 00, then the expected work
per run is O(k).

(iii) If lim SUPj -+00 J2:1=1 10g(Pi ni+l) < 0, then the

expected work per run is O( 1).

Proof. For case (i), note that

> ~ log (g Pini+l )

1 k-l

k I)og(Pini+d
i=l

so a positive limsup for this expression indicates expo

nential growth of expected work. The expected work

is O(k) if
1 k-l j

k 'Ellpi ni+l
j=O i=l

converges, and a sufficient condition for this is the

condition in case (ii) above. The condition in case

(iii) above ensures that the series

00 j

'Ellpini+l
j=O i=l

converges, by the root test. 0

As in Lemma 1, the conditions here can be replaced

with np >, =, or < 1 in the case of Pi -+ P and fixed

ni = n. The corresponding results for these special

cases may also be found in GHSZ.

The work-normalized variance, balancing compu

tational effort and estimator variance, is the product

of the variance and the expected work per run; see

Glynn and Whitt (1992) for full justification of this

criterion. Combining Lemmas 1 and 2 yields a con

dition for optimal splitting:

Theorem 1 If

j

-00 < lim infL log(pi ni)

i=l

and
00

L 10g(Pini+l) < 00,

i=l

then Ik is asymptotically efficient in the sense th.at

I
" logO(k2(Pl ... Pk)2)
1m - 2

k-oo log E[Ik] -.

We interpret this result to mean that splitting is

most effective when ni ~ l/Pi. GHSZ discuss the

use of a random number of splits in order to get the

expected number of subpaths equal to l/pi when Pi

is not the reciprocal of an integer.

The analysis above is based on a very simple model

of splitting in which the success probabilities Pi are

constant at each threshold, regardless of what may

have happened at previous thresholds. Consider esti

mating the probability that a Markov chain reaches

some rare set before returning to its initial state. We

label the initial state 0 and assun1e it is recurrent.

Imagine introducing intermediate thresholds in the

state space of the Markov chain and splitting each

path that reaches a threshold into some number of

subpaths. In general, the probability that the chain

will reach the ith threshold before 0, given that it

has reached the (i - 1)th threshold before 0, will de

pend on the state of the chain when it reached the

(i - 1)th threshold. The assumption of constant Pi

would hold if, say, there were just one state through

which the (i - 1)th threshold could be reached; but,

more typically, Pi would vary depending on the entry

state.

The case where we have a fixed and finite number

of entry states into each threshold, and the probabil

ity dynamics of the process is homogeneous (in some

limiting sense) with respect to the thresholds, is fur

ther analyzed in GHSZ. To get a sense of the pos

sible impact of the variability of the Pi'S in a more

general setting (i.e., uncountably infinite number of

entry states into thresholds), we consider a simple

two-threshold problem. Our objective is to estimate

, = PIP2 where, now, P2 = E[P2] , with P2 stochas

tic. The mechanism we have in mind is this: each

path has probabili ty PI of reaching the first thresh

old; upon reaching that threshold, its offspring are

randomly assigned a sample of P2 as their common

second-stage success probability. This accurately rep

resents the Markovian setting described above. The

estimator is
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with each I il '"'-' Bernoulli(PI) and each 2:::7,">2=1 li l i 2

conditionally Binon1ial( n2, P2), independent * for dif

ferent i l .

Let N2 = 2:::7
2

2
=1 li l i 2 for some i l . Then

Var[N2] = n2P2(1 - P2) + (n~ - n2)Var[p2].

Proceeding as we did for (1), we get

Var[h] = niln~ {n~p~nIPI(1- pd + nlPI V a r [ N ~ ] } .

This becomes

p ~ P I ( l - pd + PIP2(1 - p~) + pdn~ - n2~Var[p~].

nl n1 n 2 nIn§

The last term gives the effect of a random P2 com

pared with a fixed P2. To get a sense of its im

pact, divide through by ,2 = pip~, and suppose that

ni ~ 1lpi, i = 1,2. The contribution of the first two

terms is then O( 1) whereas the new variability tern1

contributes O(n§Var[p2]) = O(Var[p2]lp§)·
This simple observation has important inlplications

for the effectiveness of multithreshold splitting proce

dures: splitting will be most effective if there is little

variability in the success probability at each thresh

old. This further suggests (at least heuristically) that

the thresholds should be chosen in a way that is con

sistent with the most likely path to a rare set. For

then each subpath will draw a success probability

close to that for the nl0st likely path, resulting in

little variation across subpaths. Understanding the

large deviations behavior of a rare event n1ay there

fore be useful in designing a splitting procedure.

and the expected work per run becomes

k 1

2:-.
i=1 Pi

Our objective is then to minimize

k
~ I-Pi

g(Pl, .. · ,Pk) = L....J--
.. Pi
z ,}

subject to PI ... Pk =,. Rewriting the constraint and

appending it with a Lagrange multiplier yields

The first-order conditions

1 k k 1 ,,\
-22:(1-Pi)-2:~+~=0, i=l, ... ,k,

Pi j=1 j=1 p} pz

and 2:::J=llogPi - log, = 0, are solved by taking

Pi = P == ,11
k and ,,\ = kip. Moreover, the objective

9 is convex because it is a sunl of ternlS (1 - Pi )/Pj,

each of which is convex in (pi, Pj) (or simply Pi in

case j = i). Thus, it is optimal to make the Pi equal.

It is now a sin1ple matter to conclude that parti

tioning so that the Pi converge is asymptotically op

tinlal (at least anl0ng schen1es wi th ni = 1Ipi). For

h k I t (k) (k) b b b'l' . I . Ieac ,. e ql , ... , qk e any pro a 1 ltles mu tIp y-

ing to 'k. We claim that if Pk -1- P as k -1- 00, then

whenever the Pi converge. To see this, notice that

for all k. In addition, we now argue that

Al . nk 11k
so, SInce i =1 Pi = Ik, 'k -1- P, so

(4)

r g(Pl' ... , Pk)
un sup . (k) (k)::; 1.
k-+oo g(ql , ... , qk )

In light of the optimization carried out above,

(
11k 11k

9 'k ,... ,'k )
(k) (k)::; 1

g(ql , .. ·,qk )

3 OPTIMAL PARTITIONS

We now return to the sinlple setting fronl the start of

Section 2. In particular, the Pi are constant at each

threshold and we want to estimate, == "'lk = PI ... Pk,

with PI = PCAI) and Pi = p(.A i l ..4i - 1 ), continuing to

think of k -1- ()O and ,k ----+ 0. We consider the problem

of choosing the intermediate events Ao, ..4. 1 , ... , Ak-I

and make two observations: choosing these events so

that the Pi converge as i -1- 00 has an asymptotic op

timality property, and there is a connection between

being able to choose the thresholds so that the Pi con

verge and being able to analyze the large deviations

behavior of a rare event.

We begin by exan1ining the optin1al choice of

PI , ... ,Pk for fixed ,. Based on the analysis in Sec

tion 2, we restrict attention to the case ni = Ilpi,

ignoring the integrality constraint on the ni. In this

case, the variance becomes
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(5)

as k -1- 00, which verifies (4). We conclude that

choosing the Pi so that they converge to a limit is

asymptotically as effective (as k -1- oc» as using the

optimal partition at each k.

What does choosing the Pk to converge entail for

the sets A k ? We now point out that the availability of

a convergent Pk sequence is related to the A k satisfy

ing a limit theorem of the large deviations type. More

specifically, if the Pk converge then the P( A k ) have a

logarithmic limit; and if the P(Ak ) have an asynlp

totically exponential decay, then the Pk converge. For

if Pk -1- P then

k

lim -k
1

log P(A k ) = lim -k
1 L logpj = logp.

k-oo k-oo
j=l

And if

as k -1- 00 through integer values, then

This gives another sense in which knowing something

about the large deviations behavior of a rare event

could be useful in designing a splitting procedure.

Knowing the large deviations behavior should be use

ful in setting thresholds for which the resulting Pk

converge.

4 TRUNCATION BIAS

As mentioned before, in many queueing models the

expected cost of simulating a trial from threshold i

grows proportionally with i. This is because, with

positive probability bounded away from zero, the sys

tem never reaches threshold i + 1 and therefore many

trials consist of simulating the queue until it emp

ties again. As such unsuccessful trials do not con

tribute positive weight to the estimation of Ik, it

seems wasteful to devote significant computing re

sources to them. Therefore, it is desirable to "throw

away" trials that have dropped many thresholds from

the starting threshold and thus are very unlikely to

reach the next highest threshold. However, doing so

introduces some bias in the estimator. In this section

we analyze this "truncation" bias for a simple exam

ple, which should nevertheless yield insight into nl0re

complex situations.

We assume there is a truncation threshold d. If

a trial started at threshold i where i ::; d, then we

simulate the sample path the same way as in the case

without truncation. If a trial started from threshold i,

where i > d, ever drops to threshold (i - d), that trial

is counted as a failure and discarded. We analyze

this bias for the simplest possible queueing system
1

the M/j\l/I queue. We let A and J.l denote the arrival

and service rates 1 respectively, and define p = A/ J.l <
1. We assume A + J.l = 1. The embedded discrete

time Markov chain is a randool walk with increments

that take on the value +1 with probability A and -1

with probability J.l. In this case we let the thresholds

correspond to queue sizes of 1,2, ... k. To estimate

the bias \ve first need to calculate Pi 1 which is the

probability that the queue length ever reaches (i + 1)

before emptying, given that the initial queue length

is i. Such probabilities are known frool analysis of

the "gambler's ruin" probleol; see pages 344-348 of

Feller (1968). rvlore generally, if rj = P{hit 0 before

nl start at j}, then

1 _ pn- j

1 - pn

Specializing (5) to j =i and n = (i + 1) 1 we have Pi =

p[I- pi]/[I_ pi+l]. Now let P ~ denote the probability

of reaching threshold i+ 1 before threshold i-d, given

an initial1ueue length of i. Splitting using truncation

yields an unbiased estiolate of I ~ = f1~:/ p~. Note

that P ~ = Pi for 0 :::; i ::; d. The forolula for P ~ for

i 2: d is deterolined from the right-hand-side of (5)
with j = d and n = (j + 1): P ~ = p[I - pd]/[I_ pd+l].

We \vish to COOlpare I~ to Ik and in particular

wish to kno\v how d = dk should be chosen so that

' ~ / ' k ~ 1 as k ~ 00.

I k - 1 I [1 d] k - d- 1 k - 1 1_pi+1
'Yk = II Pi = - P II
Ik i=d+l Pi 1 - pd+l i=d+l 1 - pi .

(6)
The product ternl on the right-hand-side of (6) tele

scopes to [1 - pk]/[I - pd+l] which ---4 1 provided

both k and d -+ 00. Thus we require [(1 - pd)/(I 

pd+l )]k-d ---4 1. This will be true provided (1 

pd)k-d __ 1 or, equivalently, (k - d) log(I - pd) -+ O.

Using the Taylor series expansion log( 1 - f) ~ - f for

sOlall f, we then require that kpd ~ 0 (since dpd ~ 0

as d ---.,. (0). That is, we require that d ---.,. 00 and that

k not grow too quickly with respect to d, specifically:

(7)

In an asymptotically optimal splitting procedure the

expected cost to simulate all of the offspring from

a single trial from threshold 0 without truncation is

of order UJ = k2. With truncation, this is reduced

to order u/ == d x k. Thus UJ/u/ = kid can grow

arbitrarily large and still satisfy (7), i.e., by appro

priately choosing the truncation threshold we obtain

significant computational savings without introduc

ing significant bias. As a nuolerical example, when

Equation 6 is conlputed with p = 0.5, k = 20 and

d = 5, ~ / ~ I , k == 0.81 representing a truncation bias
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of about 20%, but when d is increased to 10, ,~/'k

increases to 0.996. Even with k = 50 (and d = 10),

, ~ / ' k = 0.98, representing only 2% bias.
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