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Abstract
In current commodity systems, applications have no way
of limiting their trust in the underlying operating system
(OS), leaving them at the complete mercy of an attacker
who gains control over the OS. In this work, we describe
the design and implementation of Proxos, a system that
allows applications to configure their trust in the OS by
partitioning the system call interface into trusted and un-
trusted components. System call routing rules that in-
dicate which system calls are to be handled by the un-
trusted commodity OS, and which are to be handled by a
trusted private OS, are specified by the application devel-
oper. We find that rather than defining a new system call
interface, routing system calls of an existing interface al-
lows applications currently targeted towards commodity
operating systems to isolate their most sensitive compo-
nents from the commodity OS with only minor source
code modifications.
We have built a prototype of our system on top of the
Xen Virtual Machine Monitor with Linux as the com-
modity OS. In practice, we find that the system call rout-
ing rules are short and simple – on the order of 10’s of
lines of code. In addition, applications in Proxos incur
only modest performance overhead, with most of the cost
resulting from inter-VM context switches.

1 Introduction

While significant effort has been invested into making
our computing infrastructure more secure, the number
of security incidents continues to increase at an alarm-
ing pace. The CERT Coordination Center reports that
the number of security incidents increased approximately
six-fold in the three years between 2000 and 2003, af-
ter which they indicate that incidents had become so
commonplace that they were not even worth report-
ing [4]. Despite these statistics, businesses and individu-
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als continue to put increasing trust in computers to store
and secure sensitive information, such as financial data,
health records, and recently, votes for government elec-
tions [15].
Though a great deal of work goes into making oper-
ating system kernels more secure, in the vast majority
of cases the vulnerabilities being exploited are not in the
kernel, but in privileged applications running as user pro-
cesses. The problem lies not in the reliability of kernel
code, but in the overly permissive interface that com-
modity operating systems (OSs) export, which a privi-
leged application can abuse to make the operating system
kernel read or modify the state of any other application.
On the other hand, many applications require such privi-
leges to run on a commodity operating system, providing
the attacker with many opportunities to take control of
the operating system interface. As a result, it seems ap-
propriate that applications that perform security-sensitive
operations should have little or no trust in the kernel that
lies on the other side of a commodity OS interface.
There have been several attempts to address this situa-
tion. One solution is to use a microkernel [1], which min-
imizes the amount of code running in supervisor mode.
However, changing the underlying architecture of the OS
kernel without changing the interface that applications
use will not give applications any more protection than
they currently have. On the other hand, narrowing the
application-OS interface requires a large amount of effort
to port or rewrite applications currently targeted towards
a broad commodity OS interface [23]. There have also
been attempts to restrict the interface in existing com-
modity OSs such as Linux with fine-grained access con-
trols [16]. While effective in principle, the ability to have
such controls means that the policy description must be
equally fine-grained, making it very complex and time
consuming to configure such systems correctly [14]. A
third solution is to run the security-sensitive application
in its own private OS on a virtual machine (VM) execut-
ing on top of a virtual machine monitor (VMM), and thus
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completely remove all other applications from the trusted
computing base (TCB) of the system [10]. This private
OS would only support the one application and be spe-
cially tailored to its needs. The problem that arises is that
applications typically share data and interact with other
applications through operating system facilities such as
files and pipes. Therefore, short of changing the way ap-
plications communicate, we are forced to move the other
applications into the private OS as well. As a result, the
security-sensitive application is made to tolerate other
applications in its TCB that it needs to interact with, but
does not necessarily trust.
In this work, we attempt to address these issues by
building a system that allows an application developer to
choose what operating system facilities should be pro-
vided by an untrusted commodity OS, and what facili-
ties need to be provided by a trusted private OS. In this
way, applications may continue to use functionality in
the commodity OS to communicate with other programs,
and avoid having to duplicate functionality in the private
OS that does not have to be trusted. This ability is pro-
vided by running both commodity and private OSs on a
VMM, and using a thin operating system proxy, called
Proxos, which we have designed. Proxos is a small li-
brary that mimics an operating system by handling sys-
tem calls made by the application.
Proxos takes a novel approach to allowing applications
to specify their trust in an operating system. Rather than
requiring that the application developer partition the ap-
plication code into components based on whether they
trust the commodity OS or not [23], Proxos only re-
quires the developer to partition the system call interface
into system calls that must be trusted and those that need
not. Using high-level system call routing rules specified
by the application developer, Proxos transparently routes
each system call made by the application to the commod-
ity OS if the request does not need to be trusted, or to
the private OS if it does. Specifying trust by partitioning
the system call interface has the benefit that applications
currently implemented for commodity OSs can be eas-
ily ported to Proxos with very little effort (typically by
only modifying on the order of several hundred lines of
code). Consequently, the application developer is able to
remove the entire commodity OS from the TCB of their
application while maintaining reasonable performance.
In this paper, we make three main contributions. First,
we have designed a language that allows developers to
configure trust relationships using short and simple sys-
tem call routing rules. In practice, we find that routing
rules can usually be specified in 50 lines or less. Sec-
ond, we have designed and implemented a prototype of
Proxos on top of the Xen VMM [2], with Linux as the
commodity OS. We describe the modifications we made
to Xen and Linux and evaluate the amount of code that

these modifications add to each component. Finally, we
demonstrate the utility of our system by porting three ex-
isting applications: a web browser that protects user pri-
vacy, an SSH authentication server, and an SSL certifi-
cate service used by the Apache web server. We describe
the security of the new applications, the issues we en-
countered in porting them to Proxos, as well as the per-
formance impact of moving to Proxos.
We will start by giving a high-level description of the
system architecture needed to run Proxos applications, as
well as a description of the Proxos routing language in
Section 2. Section 3 follows with an explanation of our
prototype, and gives details on modifications we made
to Xen and Linux, details on our Proxos implementa-
tion, and details on some example private OS functions
we have written. To show what applications one might
run on Proxos, we describe three representative applica-
tions we have ported to Proxos in Section 4, and eval-
uate the performance impact of Proxos against a vanilla
Xen/Linux system in Section 5. Finally, we finish with
related work in Section 6, and give our conclusions in
Section 7.

2 Overview

In this section, we describe the overall architecture of the
system, as well as a description of the security guarantees
our system provides. Then, we give a description of the
Proxos system call routing language.

2.1 System Architecture
The architecture of our system is illustrated in Figure 1.
The system consists of several VMs running on top of a
VMM that enforces memory isolation between the VMs
and allocates CPU execution time to the VMs. VMs can
make hypercalls to the underlying VMM to access re-
sources such as disks and other devices, or to signal or
create other VMs. A commodity OS VM runs a com-
modity OS that provides the facilities usually found in
a standard operating system, such as file system imple-
mentations, a network stack and a user interface. An
administrative VM (not shown in the diagram) contains
management tools used to create and manage other VMs.
Applications that want to be isolated from the commod-
ity OS are run inside their own private VM along with a
Proxos instance. We call such applications private ap-
plications. A set of methods inside the private VM im-
plement a private OS, whose purpose is to handle system
calls the private application does not trust the commodity
OS with.
Proxos handles all system calls made by the applica-
tion. Depending on the routing rules configured by the
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Figure 1: The Proxos System Architecture. Proxos handles all system calls the private application makes by routing
them to either the commodity OS or the private OS.

application developer, Proxos will route non-security-
sensitive system calls to the commodity OS via inter-VM
remote procedure calls (RPCs), and security-sensitive
system calls to methods in the private OS. Both Proxos
and the private OS are implemented as libraries that are
statically linked with the application. As a result, all sys-
tem calls are converted into subroutine calls to Proxos.
The application, along with Proxos and the private OS
run on the bare VMM. Since only one application runs
in each private VM, all code in a private VM runs in the
same protection domain.
To run a commodity application as a private applica-
tion, the developer first identifies which operating system
objects the application uses and that need to be protected
from a compromised commodity OS. With this knowl-
edge, the developer identifies the system calls that access
these objects and specifies that they are to be forwarded
to the private OS using the routing language described
in Section 2.3. The private OS methods can be imple-
mented especially for the application by the developer, or
even obtained from a library of generic private OS meth-
ods provided by a third-party. Section 3.3 describes some
private OS methods that we have implemented.
The developer may then have to perform application
source code modifications in order to compile it stati-
cally, and have it use the facilities that Proxos provides.
However, since Proxos exports the same system call in-
terface as the commodity OS, these changes are gener-
ally minor. For instance, we were able to port the Glibc
library (version 2.3.3) to Proxos with only 218 lines of
source code modifications. Next, the private application,
the private OS methods, the routing rules and Proxos are
all compiled into a single binary, which can be loaded
into an empty VM. The developer gives this binary im-
age to the VMM administrator, who registers the new pri-

vate application with the VMM using the administrative
VM. Because the private application binaries are stored
directly on the VMM, they are safe from tampering by
an adversary who has subverted the commodity OS.

To run a private application, a user on the commod-
ity OS invokes a host process, which requests the VMM
to instantiate a new VM containing the private applica-
tion. From this point on, the host process becomes the
embodiment of the private application on the commod-
ity OS. The commodity OS attributes any forwarded sys-
tem call it receives from the private application to the
host process that instantiated it. The commodity OS uses
the user ID of this host process to make decisions about
what operating system objects (such as files or sockets)
the application is allowed to access, and also attributes
resources used by the forwarded system calls to the host
process. In this way, the commodity OS ensures fairness
and security between requests made by private applica-
tions and requests made by applications running natively
on the commodity OS.

Through its host process, a private application can in-
teract with other applications running in the commodity
OS by using facilities provided by the commodity OS.
For example, by configuring Proxos to forward mknod
and open system calls to the commodity OS, a private
application can create a named pipe between it and a
commodity OS application. Then, by routing read and
write system calls to the commodity OS, it can com-
municate with the commodity OS application by making
those system calls on the named pipe. For a communica-
tion channel to be created, cooperation is required from
both applications, who must agree to communicate, and
from the commodity OS, who must agree to fulfill the
system call requests made by both applications.
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2.2 Security Guarantees

While the commodity OS may at some point become un-
der the complete control of an attacker, we assume that
the underlying VMM cannot be subverted and that it con-
tinues to enforce isolation between VMs. We also rely on
the application developer to properly specify what sen-
sitive components of the interface between the applica-
tion and the operating system must be protected from
the commodity OS. Based on these assumptions, our sys-
tem maintains the confidentiality and integrity of sensi-
tive private application data even in the face of a com-
promised commodity OS. The isolation property of the
VMM prevents the compromised OS from directly in-
terfering with the private application. The compromised
commodity OS can only tamper with system calls that
are routed to it by Proxos. However, since these sys-
tem calls were identified as non-security-critical by the
developer, the compromised OS should not be able to af-
fect the private application in any security-critical way.
We point out that if the routing rules are specified in-
correctly, or if a bug in the application causes it to send
sensitive data to an interface that the developer believes
should have only held non-sensitive data, then sensitive
data could be leaked to the commodity OS. In addition,
while the confidentiality and integrity of sensitive private
application data are maintained, a compromised OS can
impact the availability of a private application by not per-
forming the system calls that are forwarded to it.
So far, we have considered protecting the private ap-
plication from a potentially malicious OS. However, one
could envision the case of a buggy private application
that could negatively affect the commodity OS through
the system calls it forwards to the OS. However, our de-
sign restricts the capabilities of the private application
within the commodity OS to that of its host process.
Since the private application only has the rights of the
user who invoked it, our system does not weaken any ex-
isting mechanism that guarantees fairness among users
and processes running on the commodity OS.

2.3 The Proxos Routing Language

Proxos may route each invocation of a particular system
call differently depending on rules specified by the appli-
cation developer. For example, Proxos may route read
system calls differently depending on what file is being
read. We wish to provide a simple and intuitive way for
an application developer to partition the system call in-
terface. In principle, one could specify a routing rule
for each of the over 200 system calls that a commod-
ity OS like Linux provides, but this would be complex
and time consuming. Further, we do not believe it neces-
sary in most cases to have such fine-grained control over

system call routing. We organize system calls by the re-
sources they access and create a Proxos routing language
with which the developer can specify routes for those re-
sources. In this language, the operating system provides
six resource classes to an application: persistent storage
(disk), user interface, network, randomness, system time,
and memory. Peripheral devices such as printers, USB
devices, etc, are abstracted by the OS into file objects
and are thus part of the persistent storage category.
While it is possible to provide routing rules for all six
resources, we have found that this is unnecessary. An
application may choose to forward system requests to
the commodity OS for two reasons: either it wants to
use the resource as a communication channel with an-
other application, or it does not need the resource to be
trusted and thus wishes to include the resource outside
of its TCB. As a result, persistent storage, user inter-
face and the network are routed by Proxos because these
are resources that applications either use to communi-
cate, or may not need to trust. System time and ran-
domness are never routed because they cannot be used as
communication channels, and are provided by the under-
lying VMM without increasing the application’s TCB.
Finally, memory related system calls (such as brk and
mprotect) are used to indirectly manipulate page table
entries. However, a private application would never trust
a commodity OS with control of its page tables since
this would imply granting the commodity OS access to
the private application’s memory. Therefore, it does not
make sense to route memory-related system calls. All
non-routable system calls are directed to functions pro-
vided by Proxos.
Based on this model of operating system resources,
we have designed a simple language that allows the ap-
plication developer to specify which system calls will be
routed to the commodity OS, and which to the private
OS. Figure 2 shows a stripped-down example of a routing
specification in our language. Lines prefixed with a “#”
are comments. The Rules section consists of three decla-
rations, one for each of the routable resource classes. The
specifications for the disk and network resource classes
are a list of tuples, where each tuple describes the par-
ticular resource, and a table of function pointers used to
access the resource. In this case, the specification for
the user interface (UI) has “*” as a resource descrip-
tion because the application wants to route all three stan-
dard I/O streams (i.e. stdin, stdout, and stderr)
to the private OS. The example also specifies that ac-
cess to any file with name /etc/secrets should be
handled by methods in the private OS. The same is true
for system calls to any UNIX domain socket bound to
/tmp/socket and to any TCP socket with a peer IP
address of 192.100.0.4 on port 1337. By default, Proxos
will route all system calls to resources that do not match
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# Rules Section
# route accesses to /etc/secrets to private OS
DISK:("/etc/secrets", priv_fs)
# route accesses to UNIX domain socket bound
# to /tmp/socket and TCP socket bound to peer
# 192.100.0.4 port 1337 to private OS
NETWORK:("unix:/tmp/socket", priv_unix),

("tcp:192.100.0.4:1337", priv_tcp)
# route all accesses to stdin, stdout
# and stderr to private OS
UI: (*,priv_ui)

# Methods Section
# individual methods in the private OS
# that are bound to system calls
priv_fs = {

.open = priv_open,

.close = priv_close,

.read = priv_read,

.write = priv_write,

.lseek = priv_lseek
}

Figure 2: Routing Example. This example shows a sim-
ple set of routing rules that protects operations on a par-
ticular file, two network sockets, and the standard I/O
streams.

any rule to the commodity OS.
The Methods section defines which methods in the
private OS will handle system calls from the appli-
cation. When the application attempts to open the
file /etc/secrets, Proxos will call the priv open
method in the private OS to handle the request and re-
turn a file descriptor. All subsequent system call oper-
ations (such as close, read, write and lseek) on
the file descriptor associated with that file will also be
forwarded to the associated private OS method in the ta-
ble. On the other hand, any system call on the file that
is not in priv fs will be forwarded to the commod-
ity OS. Method tables for priv ui, priv unix and
priv tcp are not shown in the figure, but must also be
specified by the application developer.
Rather than specifying trust policies by partitioning
code, or by restricting abilities, specifying policies by
partitioning interfaces to resources results in a more com-
pact and intuitive policy description. Further, our speci-
fication language allows the application developer to use
the same names for resources as those in the source code,
making the routing rules easier to write and understand.

3 Prototype Implementation

There were several requirements that dictated which un-
derlying system we chose to implement our Proxos pro-
totype on. First, we needed a way of “hoisting” a com-
modity OS to a lower privilege level and inserting our
own privileged code beneath it. Second, the system had

to provide isolation between the private applications and
the commodity OS, but at the same time allow some con-
trolled communication between them. In light of these
requirements, we eventually settled on using the Xen
VMM [2] and Linux as our commodity OS for our exper-
imental substrate. However, we believe that the features
required by our system could be provided by any VMM
or microkernel.
In this section, we describe the three main components
we implemented in building our prototype. First, we de-
scribe our modifications to Xen and Linux to provide
support for starting private applications, and to forward
system calls between VMs. Second, we describe our
Proxos operating system proxy prototype, which routes
system calls to either the commodity Linux kernel or to
private OS methods. Finally, we describe some private
OS methods that we have implemented.

3.1 Modifications to the VMM and the
Commodity OS

Modifications made to Xen and the Linux kernel can be
categorized into three components: the start-up and shut-
down of private applications, a facility for forwarding
system calls between VMs, and a trusted path facility.
Since the Linux kernel and private applications do not
trust each other, the private application start-up process
must make several guarantees. First, the private applica-
tion must not be able to gain any privileges beyond those
of its host process. This implies that the Linux kernel
must always be able to attribute system calls routed to
it to the host process that initiated the private applica-
tion forwarding the system call. Second, a compromised
commodity OS should not be able to initialize a private
application in an unsafe state. Finally, the private ap-
plication should not be able to access any Linux kernel
memory that the kernel has not authorized it to.
The VMM administrator registers private applications
with the VMM via a configuration file. This file assigns a
name to each private application and sets start-up param-
eters for each private VM. Later, when the host process
starts a private application, it will use this name to indi-
cate to the VMM which private application to start. Fig-
ure 3 describes the private application start-up process
used in our prototype in detail.
In Step 1, private applications are started using the

pr execve system call that we added to the Linux ker-
nel. pr execve is the private application analog to the
execve system call and, like execve, takes the name
of the private application to be started as its argument.
pr execve causes the current process to become the
host process for the private application.
In Step 2, the Linux kernel allocates a shared buffer
that is used later for system call arguments forwarded to
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1. Host process makes
pr_execve(app_name)
system call.

pr_execve system call
2. Linux allocates a shared
communication buffer.

3. Linux passes the name of the
application and addr of the
buffer to the VMM, and starts
the private VM.

Private VM Creation
4. VMM creates the private
VM and passes the addr
of the buffer to the VM.

5. VMM associates the buffer
with the new VM ID. This
is used later in (9).

6. VMM returns VM ID back
to Linux.

Proxos/VM start-up
8. Proxos maps the buffer
into its address space
with a hypercall.

Host Process Linux Kernel VMM Private VM
(Running Proxos)

Hypercall return
7. Linux associates the new
VM ID with the PID of the
host process. Future system
calls from this VM ID will be
executed with this PID.

Mapping request hypercall
9. VMM checks that the
VM ID requesting the
mapping matches the
VM ID created in (4) and
saved in (5).

Figure 3: Private Application Start-up Sequence. The steps are arranged into columns with the titles at the top indicat-
ing what system component each step takes place in.

it from the private application. The kernel passes the ad-
dress of this buffer to the VMM in Step 3, and at the
same time signals the administrative VM to start a new
VM for the private application with a hypercall we intro-
duced. The administrative VM will only start the private
VM with parameters set by the system administrator, en-
suring that even a compromised Linux OS can only start
private applications from a known, safe state. Note that
a compromised Linux OS may start a private application
different from the one the host process requested and at-
tempt to get the user to use the wrong private application.
To detect this, Proxos relies on application level safe-
guards such as the trusted path used in our web browser
or cryptographic keys used in our SSH private server. We
will discuss both of these applications in Section 4.
In Steps 4 to 7, the VMM creates a new private VM
for the application, informs the Proxos in the private VM
of the location of the shared communication buffer, and
informs the Linux OS of the identity of the new VM (by
giving it a VM ID). Then, in Step 8, Proxos tries to map
the shared buffer into its address space via another hy-
percall. Originally a privileged hypercall, we modified
this hypercall so that private VMs may use it. However,
we also added an extra check to ensure that the VMmak-
ing the mapping request in Step 9 is the same as the one
to which the VMM originally passed the shared buffer

address in Step 4.
Private application shutdown is much simpler as there
are no security guarantees to be made. If the private
application initiates the shutdown, then it informs the
VMM via a standard hypercall. We extended this hy-
percall to notify the Linux kernel, so that the kernel may
terminate the host process accordingly. Even if the pri-
vate application has not terminated, the kernel may still
forcibly destroy the host process (by killing the process).
However, the kernel does not have the privileges to force
the private application to shutdown, so by killing the host
process, the kernel can only revoke the private applica-
tion’s ability to access commodity OS resources.
Another set of modifications allow private applications
to forward system calls to the Linux OS. The goal is to
reduce the latency of forwarded system calls by reducing
the number of domain crossings. Xen already provides a
facility that allows VMs to send events to each other. By
combining this with the shared buffer between the Linux
OS and the private application, we were able to add a
simple RPC mechanism to Xen. We then made modifica-
tions to the Linux kernel to allow it to efficiently execute
forwarded system calls. When the Linux kernel receives
the system call arguments, it determines the appropriate
host process to wake up by examining the source of the
RPC and comparing that to information it recorded in
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Step 7 of the start-up sequence. As the host process is
about to be scheduled, a trip into user-space can be saved
by placing the system call arguments in the appropriate
registers and transferring control directly to the system
call handler in the kernel. When the system call handler
completes, the kernel sends the return value back to the
private application via an RPC response message and re-
turns the host process to the queue it was in before the
forwarded system call arrived. As a result, our proto-
type handles forwarded system calls without any domain
crossings in the Linux OS.
Finally, we also needed the VMM to provide a trusted
path facility so that private applications can communi-
cate directly with the user without having to trust the
commodity Linux OS. This would prevent a compro-
mised Linux OS from masquerading as a private appli-
cation, as well as prevent a compromised Linux OS from
eavesdropping on communication between a user and
a private application. To support this, the VMM pro-
vides user interface facilities such as a console driver
and graphical window system. If the private applica-
tion wants to use these facilities, it routes system calls
on standard I/O streams (i.e. stdin, stdout and
stderr) to private OS methods, which will forward
the requests to the VMM console driver. Similarly, it
routes X window operations to private OS methods that
will translate them into the appropriate operations on the
VMM window system. The implementation of minimal
trusted window systems on secure kernelized systems
has been studied in the literature [9, 22]. Rather than re-
implement these in our prototype, we simply provided
an emulation of their functionality, but do not make any
effort to reduce the amount of code that is added to the
VMM. We did this by running an X server on Xen’s ad-
ministrative VM and using nested X servers to give each
VM its own separate X interface.
We found that modifying Xen and Linux to allow pri-
vate application start-up and shutdown, as well as for-
warded system calls, had very little impact on the size
of the Xen TCB. Many of the facilities needed were al-
ready present in the Xen VMM and we only had to make
these accessible to unprivileged VMs and add checks to
make sure they could not be abused. The only compo-
nent that increases the code base of the VMM signifi-
cantly is the graphical user interface. A significant por-
tion of this component can be implemented outside of the
trusted computing base of the VMM [9, 22], but explor-
ing the design of trusted window systems was not a goal
of our prototype.

3.2 The Proxos Prototype
Our prototype is derived from the Minimal OS example
that comes with the Xen 2.0 source code. Proxos runs

in a single address space and supports only one private
application. Our current implementation is also single-
threaded, although we plan to support threads in the fu-
ture. Apart from providing basic memory and page table
management, Proxos also contains: a block driver that
supports raw accesses to a private block device exported
by the VMM; and a console driver that provides direct
access to the Xen console. Our prototype does not pro-
vide a TCP/IP stack or a network driver. We found these
unnecessary as many security-sensitive applications al-
ready assume the network is not trustworthy and employ
cryptographic safeguards such as SSL to protect network
communications. This allows us to safely reuse the net-
work services of the commodity OS.
Proxos uses operating system abstractions to deter-
mine where to route system calls at run time. In the case
of Linux, the abstraction used by applications to access
resources is a file descriptor. Initially a file descriptor
is bound to a resource via a system call such as open
or socket. Subsequent operations on that resource are
then performed by naming the descriptor in the system
call.
The design of Proxos is very simple, and is similar
to the way virtual file system methods are implemented
in Linux. Routing rules for the application are con-
verted into lookup tables, which are then compiled into
the Proxos library and linked with the private applica-
tion. When descriptors are created, Proxos compares the
name of the resource they are being bound to with the
routing rules specified for the application. For example,
if a file descriptor is being created via an open system
call to a file, Proxos compares the name of the file being
opened with the list of tuples provided in the DISK re-
source class. If a match is found, Proxos uses methods
from the method table specified in the matching routing
rule to handle subsequent system calls on the descriptor.
Proxos provides a set of default methods which route un-
trusted system calls to the Linux OS. If a routing rule
specifies a private OS method to be called, Proxos trans-
fers control to the appropriate location in the private OS.
The private application uses file descriptors to name
objects in both the private OS and the commodity OS.
File descriptors in the commodity OS are allocated from
a name space independent of the one the private appli-
cation is using. Upon opening a new file in the com-
modity OS, Proxos may find that the commodity OS has
assigned a file descriptor number that the private applica-
tion is already using to name another object in the private
OS. As a result, Proxos translates between the file de-
scriptors used by the private application, and those used
in the commodity and private OSs.
Most routable system calls can be routed transpar-
ently to the Linux OS. However, the fork, execve and
select system calls have slightly different semantics.
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When forwarded, the fork system call will cause the
host process in the Linux OS to fork. The forwarded
fork creates concurrency on the Linux OS side, but the
application in the private VMwill still contain only a sin-
gle thread of execution, so parent and child code must be
executed sequentially. After the fork, the private appli-
cation specifies whether system calls it forwards to the
Linux OS should be executed by the parent process or
the child process. This is done by setting the target PID
flag in Proxos to indicate the process ID (PID) of the
process that should be the recipient of system calls for-
warded to the Linux OS. The value of this flag accompa-
nies every system call Proxos forwards to the Linux OS.
The Linux OS checks that the PID specified by the flag
belongs to either the host process, or a child of the host
process. These semantics imply that forwarding fork
system calls requires the developer to make any concur-
rent code sequential in the private application. To support
standard fork semantics, the underlying VMM needs
to be capable of duplicating the address space of the pri-
vate application (preferably using copy-on-write for effi-
ciency). While we did not support this in our prototype,
we note that others have proposed adding such function-
ality to Xen [24].
The semantics of forwarded execve system calls are
also slightly different. If the execve system call is
made without a fork, the host process will terminate and
a new program will take its place. If the new process is
not willing to host system calls forwarded to it, the pri-
vate application will be unable to forward system calls
to the Linux OS. More commonly, a recently forked pro-
cess will execute execve. In this case, the private ap-
plication will lose the ability to forward system calls to
the child, but retain the parent as the host process. More
details on how fork and execve are used in private
applications will be given in the description of our port
of the SSH server in Section 4.2.
Finally, select has a slightly different behavior un-
der Proxos than its Linux counterpart. select allows
applications to listen on several file descriptors simul-
taneously and notifies them when there is activity on
any of the descriptors. In Proxos, an application may
execute a single select on file descriptors from both
the commodity OS and the private OS. However, Proxos
forwards system calls by making synchronous inter-VM
RPCs. This limitation of our current prototype prevents
Proxos from routing select system calls to both OSs
simultaneously, so it serializes them and imposes a time-
out on each select call. Proxos will alternate between
which OS to execute select on first to ensure no file
descriptor is starved. The poll system call has the same
behavior as select in our system. The consequence of
this is that events on file descriptors that happen close to-
gether may not be delivered to the private application in

the same order that they occurred because Proxos may be
polling the other OS instance when the first event occurs.
However, we have not seen this to be an issue and, to the
best of our knowledge, Linux makes no such ordering
guarantees either.

3.3 Private OS Methods
In our prototype, we have implemented two example pri-
vate OS components: one that implements a private file
system, and one that implements a trusted path by for-
warding standard I/O streams and X window messages
to the VMM.
A private file system allows the private application ac-
cess to persistent storage that is protected from tamper-
ing by the Linux OS. We wanted to implement this by
adding as little code to the private VM as possible, as any
code we add increases the TCB of the application. Rather
than implement an entire file system, our private file sys-
tem outsources most of its functionality to the commod-
ity Linux OS through forwarded system calls, but main-
tains the secrecy of any information stored by encrypting
all data before writing it to the Linux file system [12].
To protect the data from tampering and replay, hashes
of all files stored on Linux by the private file system are
kept on a private block device available directly from the
underlying VMM. Doing this significantly simplifies the
file system implementation, as all that is needed are the
cryptographic functions, some code to manage file sys-
tem buffers, and block device drivers to store the file sys-
tem hashes. The drawback is that a compromised Linux
OS could potentially deny the private application access
to files that the private file system has saved. However,
our applications typically depend on the Linux OS for
other services as well, so no forward progress guarantees
are broken by this.
In our prototype, the private OS implements a trusted
path by routing operations on standard I/O streams and
the X server’s socket to the VMM. The private OS meth-
ods translate system calls on standard I/O streams to op-
erations on Xen’s console driver and route system calls
on the X server to the administrative VM. A host pro-
cess on the administrative VM then executes the routed
system calls on a socket connected to a nested X server
instance that is separate from the one that the commodity
Linux OS is using.

3.4 Discussion
With the exception of modifications to the Linux kernel,
all components implemented in our prototype will be part
of the application TCB. As a result, we placed a lot of
emphasis on keeping the impact on code size and com-
plexity small, especially with respect to the VMM. One

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association286



Component Lines of Code
VMM modifications 656
Linux modifications 4380
Proxos 7348
Private File System 1817
Trusted Path 1313

Table 1: Number of lines of code in each component in
our Proxos prototype. The VMM modifications do not
include the X server running in the administrative VM.

caveat is that Proxos does not need to support every sys-
tem call that Linux exports. For example, Proxos does
not support system administration calls, such as those to
control swap devices, or load and unload kernel mod-
ules, as private applications will not need to make such
requests. Out of the 289 system calls of the Linux 2.6.10
kernel, our Proxos prototype only needs to support (ei-
ther internally or by forwarding) 56 of them to run most
applications. However, we fully expect this proportion to
increase as Proxos matures. The size of the components
in our prototype are given in Table 1.

4 Applications

In this section, we describe three applications that we
have ported to Proxos. We selected applications that will
benefit from partially trusting a commodity OS, and il-
lustrate interesting issues that arose when porting them.
Our first application is a secure web browser that pro-
tects user information. Our second application is an SSH
server that protects system-critical information such as
passwords and host keys even if the commodity OS is
compromised, but still allows users who login to gain a
full shell on the commodity Linux OS. Our final appli-
cation is an SSL certificate service that we use with an
Apache web server to implement SSL transactions. In
this case, the private keys corresponding to the certificate
are protected.

4.1 Secure Web Browser
A serious threat to the security and privacy of users is
spyware, which is malicious software that is surrepti-
tiously installed on machines and monitors the web surf-
ing habits of users. While the goal of most spyware is
to collect usage data for marketing, spyware has been
shown to decrease the security of user system by record-
ing and transmitting confidential information that it has
collected [18, 20].
Spyware collects information by either monitoring
the user’s keystrokes, or by scraping files where web
browsers have recorded user information. We ported

Dillo [5], a simple graphical web browser, to Proxos and
configured the routing rules so that all user I/O is directed
to the trusted VMM user interface, thus creating a trusted
path, and all sensitive data that Dillo reads from disk or
writes to disk is directed to our private file system. No
other rules are specified, and thus other network opera-
tions such as HTTP requests are routed to the Linux OS
by default (for extra security, the user should use HTTPS
to encrypt traffic between the browser and the web server
to prevent any spyware on the Linux OS from observing
or tampering with it). Similarly, any documents or ex-
ecutables that the user downloads from the Internet are
saved to the Linux file system. In addition, any external
helper applications that Dillo invokes will be transpar-
ently created and executed on the Linux OS.
For the most part, no source code modifications were
required to port Dillo. The only necessary modifications
were due to Dillo’s use of graphical themes, which are
implemented as code that is dynamically loaded at run
time based on the theme the user selects. In our proto-
type, it is not safe to load code from the Linux OS, since
an adversary may have tampered with it. To support the
default theme, we removed the code that loads themes at
run time and statically linked the default theme into the
Dillo private application. In theory, code could be safely
loaded from the Linux OS if encrypted and accompanied
by a valid signature that the private application could ver-
ify, but our current prototype does not support this.

4.2 SSH Authentication Server
Often when attackers compromise a system, the system
administrator is not only forced to rebuild the entire sys-
tem from scratch to ensure that any malicious software
has been removed, but also to perform the arduous task of
tracking down every user and ensuring that they change
their passwords in case the attacker has been able to learn
some of the old passwords. Similarly, she must change
any cryptographic host keys, which the machine uses to
authenticate itself, and distribute new keys to all parties
that the machine interacts with. Being able to ensure the
secrecy of user passwords and the host keys of a system
after a security compromise would save the administrator
significant time and effort.
To demonstrate the utility of Proxos in protecting
the secrecy of sensitive data, we ported the OpenSSH
authentication server (version 3.9p1) to Proxos. The
OpenSSH server accesses several sensitive resources in-
cluding configuration files, the password file and the host
key file. We wrote routing rules to store the password
file, host key, and global configuration files on the private
file system. The SSH server also performs network oper-
ations, but no rules are specified for NETWORK resources
since OpenSSH is designed to function with an untrusted
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Figure 4: Comparison of the original SSH server and our
private SSH server.

network. Other than the routing rules, only two modifi-
cations involving the fork system call were required to
implement a private SSH server application. The archi-
tecture of our new private SSH server is shown alongside
the architecture of the original SSH server in Figure 4.
One modification arose because the SSH server requires
some concurrency to allow multiple users to authenticate
simultaneously. The native version of SSH handles this
by having a parent process listen on the SSH port, and
then spawning a child for every connection the parent
receives. Our private SSH server still has the listening
parent as a native Linux application, but implements the
children as private applications. When the listening par-
ent detects a new connection, it forks a child (on the
Linux OS), which then uses pr execve to instantiate
a private SSH server VM, and in doing so becomes the
host process for the new VM.
The private SSH server starts-up and reads the sensi-
tive data from the private file system, and then proceeds
with user authentication. If a user logs in using private
key authentication, the private SSH server will need to
access the public keys the user has placed in a file in
their home directory on the Linux OS. Proxos provides
access to the user’s keys without any extra configura-
tion – since the user’s key files do not match any routing
rules, requests to them will be forwarded to the Linux
OS by default. If the user authenticates successfully, the
native SSH server forks a child that will execute a com-
mand shell. Before the child starts the command shell,
the native SSH server creates a pipe between itself and
the command shell redirecting all input and output from
the shell to itself, so that it can encrypt any shell output
before sending it to the network, and decrypt any shell
input coming from the network. In our version, the pri-

vate SSH server changes the Proxos target PID flag to
point to the new child after the fork, and then executes
the child code, forwarding the system calls required to
set up the pipe and start the command shell. After this,
it changes the target PID flag back to the parent and ex-
ecutes the SSH server code. The shell will pipe all input
and output through the host process to the private SSH
server, which encrypts and decrypts data as appropriate
between the shell and the network.

4.3 SSL Certificate Service and Apache
Next, we explored the performance impact of Proxos on
Apache with SSL. As in the SSH server, the Apache
server relies on concurrency so we only ported the
crypto library portion of the OpenSSL library to
Proxos, and left the Apache web server on the Linux OS.
The crypto library uses confidential private keys stored
in the SSL certificate, which would be protected if the
web server was compromised. Our port uses Apache ver-
sion 2.0.52 and version 0.9.7g of the OpenSSL library.
To setup SSL sessions, Apache makes calls to the
OpenSSL library, which uses the OpenSSL “engine” in-
terface to invoke the crypto library. We modified the
engine interface to spawn a private application that will
use the private key of the server’s SSL certificate to sign
challenges during an SSL handshake. Unfortunately, this
operation is called on every HTTP request that uses SSL
(i.e. an HTTPS request), and would give very poor per-
formance because each request results in the instantiation
and shutdown of a private VM. To remove the frequent
instantiation and shutdown of the private VM, we modi-
fied Apache to spawn a process when it starts-up, which
will act as the host process for a single private SSL cer-
tificate application. Apache was also modified so that
a portion of the shared buffer between the host process
and the private application is mapped into the address
space of each Apache thread. To process an HTTPS
transaction, a thread enqueues the signing request on the
shared buffer, sends a signal to Proxos for processing and
sleeps until the request has been processed. Since mul-
tiple Apache threads will be accessing the shared buffer,
we also added the appropriate synchronization between
the threads to prevent races.

4.4 Discussion
The size of our routing rule descriptions, along with the
lines of code that were modified for each of the applica-
tions, as well as Glibc (version 2.3.3), is given in Table 2.
In porting these applications we found that what often
takes some time are modifications to application source
code that are required to support operations like fork
and execve in the private SSH server, or to statically
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Application Rules LOC Modified
Dillo 53 22
SSH Server 35 108
Apache & OpenSSL 28 667
Glibc 218

Table 2: Size of routing rules and number of LOC modi-
fied for each application.

link in dynamic code in Dillo. Apache required more ef-
fort since several threads could make challenge-signing
requests simultaneously, and this required careful arbi-
tration and synchronization to preserve performance. We
find these results encouraging – Proxos enables the ap-
plication developer to remove the entire commodity OS
kernel and privileged applications from the TCB of the
private application by modifying on the order of sev-
eral hundred lines of code in the application, and writing
around 50 lines of routing rules.

5 Performance Evaluation

The performance of VMMs versus native operating sys-
tems has been well studied in the literature [2, 3]. To as-
certain the overhead introduced by Proxos, we compare
the performance of our system against a system running
an unmodified Linux kernel executing on an unmodified
Xen VMM. We first use microbenchmarks to better un-
derstand the components that contribute to the cost of
making forwarded system calls from a private applica-
tion. Then we evaluate the performance of the SSH and
Apache/SSL Certificate applications described in Sec-
tion 4 on our system. All tests were performed on a
machine with a 3GHz Intel Pentium 4 processor, 1GB
of RAM, a 7200 RPM Serial-ATA disk with 8.9 ms seek
time, and a 100Mb Ethernet NIC. Our prototype is built
on Xen 2.0, with Fedora Core 3 Linux running a 2.6.10
kernel as the commodity OS, and its performance is com-
pared against vanilla versions of the same software. For
our runs, 768MB of RAMwere allocated to the commod-
ity OS, and the rest was used for Xen, the administrative
VM, and private applications.

5.1 Microbenchmarks
To analyze the overhead of a system call forwarded from
the private application to the Linux OS, we must first un-
derstand the individual components that make up a for-
warded system call. These costs are illustrated in Fig-
ure 5. In Step 1, Proxos sends an event to the Linux ker-
nel, notifying it of the forwarded system call, and then
yields the processor, causing a VMM context switch into
the Linux OS VM. In the Linux kernel, a virtual interrupt

Xen VMM

Linux OS VMPrivate VM

Private
Application

Proxos Linux Kernel
Interrupt
Handler

Host
Process TaskIdle Task

1

23

4

Figure 5: Breakdown of costs incurred in a forwarded
system call.

Benchmark Linux Proxos Overhead
NULL system call 0.37 12.88 12.51
fstat 0.57 14.28 13.71
stat 8.76 25.98 17.22
open & close 14.57 47.18 32.61
read 0.45 13.51 13.06
write 0.42 13.24 12.82

Table 3: Forwarded system call latencies on LMbench
microbenchmarks. All measurements are given in µs.

handler receives the event and enqueues the system call
request on the process descriptor of the host process. In
Step 2, we wait until the host process is scheduled. On
a lightly loaded system, this incurs only the cost of an-
other context switch within the Linux kernel, but may
take more time if the Linux kernel is heavily loaded.
After the Linux kernel executes the system call, it will
not yield the processor back to the VMM until either the
VMM scheduler decides to preempt the Linux OS VM,
or the kernel runs out of runnable processes and sched-
ules the idle task in Step 3. Finally, in Step 4, another
VM context switch occurs and Proxos can receive the
result of the system call. While this accounts for four
context switches, there is actually a fifth context switch
because Xen will schedule the administrative VM in ei-
ther Step 1 or Step 4.
We ran the system call latency benchmarks in the LM-
bench 2.5 microbenchmark suite [17] in a private VM
configured to forward all system calls to an idle Linux
OS VM, and summarize our results in Table 3. We also
used the context switch microbenchmark in LMbench
and measured the minimum cost of a context switch to
be 2.88µs on our machine. As a result, the expected five
context switches would take approximately 14µs, which
tracks well with the measured results. This cost is added
to every system call except for stat and open, whose
larger overhead can be explained by the fact that each
context switch changes virtual to physical page map-
pings, and causes a TLB flush. Since both stat and
open take a filename as an argument, the Linux kernel
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must make several queries to the buffer cache to find the
correct inode (LMbench ensures that the inodes required
to access the files are cached in memory), which will re-
sult in TLB misses. These misses do not occur when the
benchmarks are run directly on Linux because the kernel
never switches to another process, so no context switches
occur.

5.2 Application Benchmarks
We now evaluate the overhead imposed on our private
SSH server and SSL certificate service. Like our mi-
crobenchmarks, applications incur overhead when sys-
tem calls are routed to the commodity OS. To evaluate
the average overhead a forwarded system call experi-
ences, we used an SSH client to login to our private SSH
server over the loopback device and measured the time
taken to copy files ranging from 32MB to 256MB over
the SSH connection. Each file transfer was performed
five times on both the private SSH server and a native
SSH server running on Xen. The standard deviation
was less than 1.5% across our measurements. Figure 6
plots the average difference in time taken by the private
SSH server over the native SSH server to transfer a file,
against the number of forwarded system calls the private
SSH server made. We perform linear regression on the
average values and found a correlation of 0.92, indicat-
ing that the overhead is well correlated with the number
of system calls. We then estimate the start-up component
to be 0.72s and the per-system call cost to be 15.7µs. For
large files, where the cost of start-up has been amortized,
the private SSH server only takes 6.0% longer to transfer
the same file as the native SSH server. Note that since
this overhead is comparable to the variance in our mea-
surements, the estimated system call overhead should not
be taken too literally, and is merely a rough approxima-
tion.
We suspected that a large part of the start-up cost for
the private SSH server is due to VM creation. We con-
firmed this by measuring the time to start an empty pri-
vate VM, which is approximately 0.35s. Starting a Xen
VM requires the use of several user-space scripts in the
administrative VM, making it very expensive, and we
have not made any effort to optimize this operation. The
remaining 0.37s is the time the private SSH server uses
for initialization, which includes the time it takes to read
in sensitive data from the private file system. This opera-
tion requires several cryptographic operations to decrypt
the data and verify the authenticity of files stored on the
commodity OS file system.
To evaluate the performance impact of our private SSL
certificate application, we used Mindcraft’s Webstone
benchmark [25] extended with SSL. We configured the
benchmark with 150 SSL clients, which was enough to

Linear Regression:
y = 15.7*10-6x + 0.72
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Figure 6: SSH benchmark. We plot the overhead of the
private SSH server versus the number of system calls for-
warded to Linux.

fully load an Apache server on Xen. The same number of
clients was used to measure the amount of bandwidth our
Proxos-enabled web server could support. We expected
the Proxos-enabled web server to introduce low overhead
because HTTPS transactions mainly perform computa-
tion and make very few system calls. Our experiments
show that there is actually a slight increase in throughput
– 5.04Mb/s for the Proxos-enabled web server as com-
pared to the native web server’s throughput of 4.75Mb/s.
From this, we surmise that the overhead Proxos intro-
duces is very low and that the changes we made porting
the system likely perturbed the system in such a way as
to produce a slight performance gain.

6 Related Work

While isolating processes from operating system compo-
nents bears some similarities to multi-server microker-
nels [1, 11], Proxos is more similar in structure to Ex-
okernels [8] and the Denali kernel [26], with their stati-
cally linked, single user LibOSs. Where Proxos differs
from these systems is in its objective – while the goal of
the former systems is to give applications some ability
to customize OS management of their resources, Proxos
gives applications the ability to customize the trust rela-
tionship between applications and the OS kernel.
Various systems aim to limit the damage a compro-
mised application can cause. SELinux [16] allows the
administrator to set a fine-grainedmandatory access con-
trol policy for the system, thus limiting the privileges an
attacker would gain by hijacking an application. How-
ever, fine-grained control has its costs. SELinux poli-
cies are large and complex – the size of the default pol-
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icy set for the Fedora Core 3 Linux distribution has over
290,000 rules and consumes more than 7MB of kernel
memory. In contrast, our interface routing configurations
are typically around 50 lines long or less. In addition, be-
cause SELinux works by restricting the abilities of appli-
cations, its policy rules must define all the permitted be-
haviors of every application on the system. Since Proxos
operates by isolating security-sensitive applications from
the rest of the OS, Proxos policy rules only need to be de-
fined for the applications being protected. Asbestos [6],
Eros [21] and Singularity [13] also limit information flow
and privileges, but through mechanisms significantly dif-
ferent from Proxos. Asbestos uses process labels that are
updated dynamically, combining aspects of capabilities
and information flow policies. Eros is a pure capability-
based microkernel and Singularity only permits commu-
nication between processes through strongly typed and
formally verified channels. All of these paradigms re-
quire applications to be ported to fundamentally different
application interfaces. By keeping the same application
interface as a commodity OS, Proxos does not require
any extensive porting for existing applications. Further,
applications that do not require Proxos can remain in the
commodity OS and suffer no overhead.
Terra [10], Nizza [23] and Microsoft’s NGSCB [7]
are projects that propose new operating system models
to increase the security of applications. Terra provides
coarse-grained isolation by enclosing security-sensitive
applications along with their own operating system in
a “closed-box” VM. Applications may only communi-
cate with applications on other VMs via the network
interface. Similarly, NGSCB runs specialized “agents”
in a high-assurance OS called the Nexus, which is iso-
lated from a standard Windows OS by a VMM. In both
NGSCB and Terra, each OS must contain all the func-
tionality required by the application, even if the function-
ality does not have to be trusted by the application, while
Proxos can reuse untrusted functionality in the commod-
ity OS. On the other hand, Nizza, along with projects µ-
Sina [12] and Perseus [19], take a fine-grained approach
to minimize the amount of code in an application’s TCB.
They propose heavily modifying the application source
code to extract and port the security-sensitive compo-
nents of an application to a microkernel. The resulting
applications often have reduced functionality. In con-
trast, by partitioning trust along a commodity OS inter-
face, Proxos allows applications to retain the ability to
communicate with untrusted applications through stan-
dard OS facilities, which is lost in Terra. At the same
time, it avoids the effort to modify application source
code or the reduced application functionality that Nizza
entails.
Finally, nothing in this work is Xen-specific. While
many features of Xen made the prototype easier to build,

we believe that the Proxos infrastructure is applicable to
other hypervisor based VMM systems, such as VMware
ESX Server and Microsoft’s forthcoming Viridian.

7 Conclusions

Current commodity OSs export an interface that is too
permissive to privileged applications, allowing compro-
mised applications to gain control of the operating sys-
tem kernel and attack other applications. Proxos allows
applications to partition the interface between them and
the commodity OS kernel into trusted and untrusted com-
ponents by specifying system call routing rules. The
end result is that Proxos allows application developers to
protect applications from a compromised kernel without
having to make major source code modifications.
By building a Proxos prototype and porting several
representative applications, we have found that specify-
ing trust at the system call interface is a powerful and
simple way of isolating applications from the operating
system. Proxos routing rule specifications are short and
simple, and can be expressed in 10’s of lines of code.
Minor source code modifications are also required to
support applications, mainly due to the semantics of the
fork system call, and to remove any instances of dy-
namically loaded code that cannot be eliminated by static
linking. In cases such as our web server, where expensive
VM start-up and shutdown may become very frequent,
further modifications are necessary to preserve perfor-
mance. We expect that in most cases, a single gradu-
ate student who is familiar with an application can port
it to Proxos in a day or two. With a modest cost in en-
gineering time and a reasonable impact on application
performance, system call routing enables the developer
to protect the secrecy and integrity of applications from
a compromised operating system.
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