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Summary.  In the processes under  consideration,  a particle of size L splits 
with exponential  rate L ~, 0<c~<  oo, and when it splits, it splits into two 
particles of size LV and L ( 1 - V )  where V is independent  of the past with 
d.f. F on (0, 1). Let  Z t be the number  of particles at t ime t and L~ the size of 
a r andomly  chosen particle. If  c~=0, it is well known  how the system 
evolves: e-tZt converges a.s. to an exponential  r.v. and - l o g L ~ t  
+Ctl/2X where X is a s tandard normal  t.v. Our  results for ~ > 0  are in 
sharp contrast.  In "Spli t t ing Intervals"  we showed that  t-i/~Zt converges 

1 
a.s. to a constant  K > 0 ,  and in this paper  we show - l o g L t = - l o g t + 0 ( 1 ) .  

We show that  the empirical d.f. of the rescaled lengths, Z7 ! ~I{tl/~Li<.}, 
converges a.s. to a non-degenerate  limit depending on F that  we explicitly 
describe. Our  results with e = 2/3 are relevant to po lymer  degradation.  

1. Introduction 

We consider a class of  M a r k o v  processes in which particles undergo binary 
splitting at a rate determined by their size. A particle of size L waits a mean  
L -~ exponential  t ime and then splits into two particles of size LV and size L(1 
- V ) .  V is independent  of  the past with a fixed distribution F on (0, 1) and 
0<c~<  oo. This process with c~=2/3 has been used as a model  for polymer  
degradat ion (Basedow, Ebert  and Ederer, 1978), so for this and future appli- 
cations it is of  interest to find the limiting behavior  of  the particle sizes. Let  Z t 
be the number  of particles at t ime t and L~ be the size of a particle picked at 
random. In "Split t ing Intervals",  we showed that  t-1/~Z~ converges almost  
surely to a constant  K > 0 ,  and in this paper, we will show that  tl/~Lt con- 
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verges weakly to a nondegenerate limit depending on F which we will ex- 
plicitly describe. 

This result is in sharp contrast to the situation when e =0. In this case the 
particles always split at rate one so the number  of particles is a binary Yule 
process and the logarithms of the particle sizes form a branching random walk. 
It is well known how the system evolves; e - ' Z  t converges almost surely to a 
mean one exponential, and if E ( log (V(1 -V) ) )2<o% there is a constant C so 
that ( t+logLt) /Ct  I/2 converges weakly to a standard normal  distribution, i.e. 
- l o g L t ~ t +  Ct l /2X  where X is a standard normal random variable. 

The difference between c~=0 and e > 0  is easy to explain. For  ~>0 ,  the 
logarithms of the particle sizes form a generalized branching random walk in 
which a particle at x =  - l o g L  splits at rate e-~X=U. The exponential decay of 
the splitting rate slows down the growth of - l o g L  t and since particles that get 
ahead divide much more slowly, the particles stay close together. We will show 

that they stay so close in fact that - l o g L t =  -t log t+0(1)  ! 

To see that this is true at least in one case, consider what happens starting 
with one particle of size one with ~ = 1  and F uniform on (0, 1). The total 
splitting rate is always one so splits occur at the times of a Poisson process 
and a little thought reveals that when Z t = n + l ,  the sizes have the same 
distribution as the spacings between the points in an lid sample of size n that is 
uniform on (0, 1). According to Blum (1955), if L(n) is the length of a randomly 
chosen spacing from the n + l  spaces determined by an iid uniform sample, 
then (n+ l )L (n )  converges weakly to the mean one exponential distribution. 
Since Zjt--+ 1 a.s., we see that tL t converges weakly to the mean one exponen- 
tial distribution. 

Blum's result is easy to prove. If 0 = T o < T~ < T2... are the arrival times in a 
rate one Poisson process, then it is well known that {T1/T,+I, 
T2/Zn+l  . . . . .  Tn/T,+ 1} has the same distribution as the order statistics from an 
iid sample of size n from the uniform distribution. By the strong law of large 
numbers, Tn+ ~/(n + 1) ~ 1 a.s., so it follows that 

1 n + l  
I - + e  - x  

n + l  
(n+l )  -- >x  

n n 

a .s .  

The above proof  is quick, but other cases, even with c~= 1, require drasti- 
cally different methods. The first steps in developing our proof  were taken in 
"Splitting Intervals", hereafter cal led SI, where we studied processes in which 
the unit interval undergoes subdivision according to the rules given above. 
From hereon we will work in the framework of SI. The initial particle is the 
interval [0, 1] which splits into subintervals. Z t is the number  of subintervals at 
t ime t and {Li: l<_i<_Zt} are the subinterval lengths at time t. When an 
interval of length L splits, it splits into a left interval of length LV and a right 
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interval of length L(1 - V). A moment's reflection shows that the distribution of 
the length of a randomly chosen interval L t is not changed if a coin is tossed 
to decide if, for each split, LV becomes the left subinterval or the right 
subinterval; i.e. the distribution of L t depends on F only through ff(x)=(F(x) 
+ 1 - F ( 1 - x - ) ) / 2 ,  the symmetrization of F about 1/2. For  simplicity and with 
no real loss of generality, we will assume F is initially symmetric about 1/2. 
We also assume that F has a non-zero Lebesgue component. We will also 
consider the interval splitting process splitting with a different distribution ,ft. 
Sometimes F is computed from F and sometimes not. ff is not assumed 
symmetric. The only assumption on ff is that it does not concentrate on a set 
of the form {e-Zn: n > l ,  2>0}.  Another distribution function we will use 
frequently is G(x) = 1 - if(e- x _). 

We are interested in the length of a randomly chosen interval, but first we 
will answer an easier question. What does a "tagged" interval look like? 
Specifically, what does the left interval look like? A little reflection will 
convince the reader that the left interval has a different distribution than a 
randomly chosen interval, so it is not clear we are moving in the right 
direction. However, we will find there is a relationship between the moments of 
the left interval and the moments of a randomly chosen interval. 

Let L, be the length of the left-most interval at time t when the splitting is 
generated by ft. The range of values { - l o g L t :  t > 0 } = { S o ,  $1, S 2 . . . .  } where 0 
=So<$1<$2... are the arrival times in a renewal process with P(S,+I 

S oo -S,<x)=G(x). Given { ,},=0, the holding times of - l o g L ,  at each S, are 
mean exp(eS,) exponential and independent. If {~'n},~176 is an independent 
sequence of mean one exponentials and M(y) = sup {n > 0: S, < - log y}, then 

/M(y) ) 
P(Lt<y)=P ~ ~ exp(,Sn) ~'~<t . 

\ n =  0 

Turning the sum around so the big terms come first, we obtain 

[M(y) ) 
P(Lt<Y)=P { ~ exp(-c~Tm(Y)) ~m<y~t 

\ m =  0 

where Tin(y)=--logy--SM(y)_,, and (~,~} is a new lid sequence of mean one 
exponentials. Renewal theory tells us if G has finite mean/~, then {To(y), Tl(y), 
T2(y ) . . . .  } converges weakly to {T O , T1, T2,... } as y - , 0 +  where 
O<To<TI<T2... is the stationary renewal process generated by G, i.e. 
{Tin}2= o has positive independent increments, T O has density function /~-1(1 
-G) and the remaining increments have distribution function G. Replacing y 
by xt-1/~ and letting t ~  o% we obtain 

(1) lim P(tl/~ Lt<x)=P(Y~ <x ~) 
t ~ o 0  

for 
Y~= ~ exp(-~T,,)r  

m=0 
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What  does this result for tl/~Lt say about  t~/~L~? Letting rfi(t, fi)=EL~, a 
simple computat ion shows that 

1 

~ ' ( t , / ~ )=  -~(t ,  9)+ ~ x~ rh(x ~t, 9) dF (x) 
0 

(0,/~) = 

Zt  

and if the splitting distribution is F, L(t, 9) = ~ L~ and re(t, fl)= EL(t,  9) then 
i = 1  

1 

m'(t, fl) = - m(t, 9) + ~ x~- i m(x ~ t, 9) 2x  dF(x) 
0 

~(o, 9)= 1 
x 

Since F is symmetric, x ~  2ydF(y )  defines a distribution function. If we let 
o 

/~ be this distribution function and observe that 

1 

g'(t) = - g(t) + ~ x~ g(x ~t) dF(x) 
0 

g ( O )  = 1 

has a unique solution, then we see 

(2) When tO(x) = i 2y dF(y), 
0 

~qt, 9 - 1 )  = re(t, 9). 

This equality, while extremely fortuitous, is not completely unprecedented. 
In the study of the voter model (Sudbury (1976), Kelly (1977), Sawyer (1979) 
and Bramson and Griffeath (1980)), a similar relationship exists between the 
size of the cluster at 0 e Z  d and the size of a randomly chosen cluster. In the 
voter model, one can deduce the distribution of a random cluster from the 
distribution of the cluster at 0, and in this paper  we will use (2) to compute the 
limiting distribution of L t from the limiting distribution of L t. 

There are a lot of details left to verify, but (2) makes the path to our result 
fairly clear. We will need to identify the limit of t~/~rfi(t, 9), so in Sect. 3 we will 
prove 

1 

(3) If ~ x ~ dP(x) < oo and 7 < 9, then 
0 

lim t~/~rfi(t, Y) exists and > 0  and 
t ~ o o  

lim t ~/~ rfi(t, 9) = EYf/~. 
t ~ o o  

To obtain an a.s. limit for L(t, 9), we will need an estimate for a(t, fl) 
= Var L(t, 9). In Sect. 4 we will show 

(4) a(t, 9) < C t2(1- ~)/~-~ 

as t ~ oo where C > 0 and 0 > 0 are constants depending on a and F. 
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From (2), (3), (4) and the Borel-Cantelli lemma, we can conclude that for 
f i > 0  

(5) 

(6) Theorem. For the e-splitting process with Z t intervals 
{Li: l <_i<_Zt} at time t, c~>0 and Y~ defined by (1), we have 

and 

lira t(~- l)/~ L(t, fl)= EY~ B- I)/~ a.s. 
t ~ a O  

Using (5) and the method of moments, we will obtain our main result. 

of lengths 

lim t - l isZt=EYe.  -1/~ a.s. 
t ~ c O  

lira 1 z=~ i 1 P(Y~/~edy) a.s. 
- -  l{r y E Y - 1 / ~  

t ~ o o  Z t i =  -- 0 

In Sect. 2 we will compute the moments of Y~. When the splitting is 
uniform, F ( x ) = x  and F (x )=x  2, we can recognize the moments of Y~ as those 
of a gamma distribution with parameter 2/~, 

1 
P(Yr - -  y2/~-le-Ydy.  

r (2/~)  

Substituting this result into (6), we obtain 

(7) Corollary. When the splitting is uniform, 

and 

lim t= 1/~Z~- F(1/c0 
~ ~ r (2 /~)  

a.s.  

lim 1 z, i 

It is interesting to note that this family of densities has been proposed, both 
on theoretical and empirical grounds, as the density function for the size 
distribution of crushed coal (Bennett 1936), and in that context is called 
Rosin's law of size distribution, c~ is called the Rosin number. Coal with a low 
Rosin number tends to crumble into powder and many small pieces when 
crushed, and coal with a high Rosin number crushes into pieces of roughly 
uniform size. (Note that the distribution in (7) approaches the uniform distribu- 
tion on (0,1) as c ~ o o  and see Pyke (1980) and Brennan (1986) for a related 
result.) 

2. Some Properties of Y~ 

The following notation holds throughout this section: G is a distribution 
function on .(0, ~ )  with finite mean /~ and with Laplace transform ~(2) 
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so 

= ~e-'~rdG(y). {Xi}~= I are iid with distribution function G, So=0 and S , = X  1 
0 

+ X~ + . . .  + X,. 0 < T O < T~ < T 2 < . . .  is a stationary renewal process generated 
by G, meaning {Tm}m~=O has independent increments, T o has density function 
/~-~ ( 1 -  G) and the remaining increments have distribution function G. We will 
now look in some detail at the properties of Y~ defined by 

Y~= ~ exp(-~Tm) ~,, 
m = O  

where {~,,}2=0 is an independent sequence of mean one exponential random 
variables. 

At first glance, this definition seems formidable for computation, but we 
can decompose 

(1) Y~ ~ exp( -~To)  Z ~ 

where T o and Z~ are independent and Z~ ~ ~, exp ( -  ctS,) ~,. In turn 
n = 0  

(2) Z~ =d exp ( -  ~X1) Z~+ ~o 

where the random variables on the right side are independent. Random vari- 
ables satisfying equations like (2) have been extensively studied. (See Vervaat 
(1979) for a survey, our problem is Example 3.8.) 

We can compute with (1) and (2) 

1 
(3) E Y ~ = ~  

and for k > 2, 

Proof From (2), 

SO 

EY~ - ( k -  1) ! kI:I l z  1 
~ j=~ 1-~( j~) '  

Ez~ = ~(~) EZ~ + 1 

EZ= = 1/(1 - ~(~)). 

This procedure can clearly be used to compute all the moments of Z~. Com- 
puting for k = 2, 3 and 4, we find the pattern, 

k 1 
k EZ~ = k I 1~ 

j=l 1 -~( j~)  

which we will verify by induction. From (2), 

EZ~ = E ((exp ( - aX 1) Z~ + ~o) k) = 
k 

j=o f . '  ~Ci~)Ez~. 

Solving for EZ~ and using the induction hypothesis, we obtain 
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k k! [ k-~ j ) 
EZ~-1-~(k~) j=~ ~=~ 1-j(i~) 

l 

k! 1 1 
- 1-~(kcQ ~ +  1 @  

= l _ ~ ( k c 0 1 _ ~ ( ~  ) 1 -= .= 1-~(ic~) " 

Repeating the last two manipulations k - 2  more times, we get 

k 1 
k I EZ~ = k. 1-[ 

j = l  1 - -  g ( J 0 0 "  

Since 

E(exp(-k~To)) =1 ~ e-k~'(1-G(y))dy= 1-~'(k~) 
o k ~  

we obtain from (1), 

EY~=E(exp(_kc~To))EZ~_(k_l) ! k-~ 1 
c~ j= 1-~(j~) '  

As a corollary of (3), we have 

k~ 
(4) EY~ <c~( 1 _ ~(C~))k 

SO it follows from Carleman's condition (Chung (1974), p. 98) that Y~ is de- 
termined by its moments. 

To deduce (1.7) from (1.6) in Sect. l, we needed to identify the distribution 
of Y~ when F ( x ) = x  2 and G ( x ) = l - P ( e - ~ ) = l - e  -2~. G is exponential with 
parameter 2 so/~= 1/2 and ~(2)=2/(2+2).  Substituting into (3), we have 

k- -1  k - -1  

EYf = I~ J [7[ 2/c~+j 
J=~ 1 2 j=o 

2 + j a  

which are the moments of a gamma distribution with parameter 2/e, i.e. 

1 
u(Y~edy)- r(2/c0 y2/~- 1 e-y dy. 

Our last result of this section is to obtain Y~ as the weak limit of a related 
collection of random variables. We let N(z)=sup{n>O:S,<z} and T,,(z)=z 
--SN~)_,,. (T,,(') is defined slightly differently in this section than in Sect. 1.) 
We define 

N(z) 

(5) Y~(z)= ~ exp(-~Tm(z)) ~ .  
rn=O 
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Denoting convergence in distribution as ~ ,  we have 

(6) Y~(z) ~ Y~ as z---, Go 

and for fl > 0, 
lira EY~(z)= EY~. 

z - -+  co 

Proof By (4), it suffices to show that the integer moments of Y~(z) converge to 

those of Y~. We let Rk(z )=EY~(z  ) for k > 0  and q~k(2)=Se-ZZRk(z)dz and 
observe that o 

(7) Y,(z) ~ e ~ + Y ~ ( z - X l ) I ( x l < = z  } 

where the three random variables on the right side are mutually independent, 
is a mean one exponential and X~ has distribution function G. 

Using induction, we will show for k__> 1 

(sa) 

(8b) 

(8c) 

z 

Rk(z ) = k e -  ~z R~_ ~ (z) + ~ Rk(z -- y) dG(y), 
o 

k! k-1 1 
I~k(2)~-,~"t-kO~ j=l~ 0 1 - -~ (2+ ja ) '  

lim Rk(Z)= E Y  ~. 
z - + c o  

Taking expectations on (7), we obtain the renewal equation 

z 

Rl  (z) = e - ~  + S RI  ( z -  Y) dG(y). 
o 

Taking the Laplace transform of this equation gives 

SO 

1 
r (,~) = ~-T~ + ~ (,~) ~(2) 

1 1 

Applying the renewal theorem (Feller (1971), p. 363), we obtain 

lim Rl(z) = 1A ~e-~Zdz=~=EY~. 
z-,co # o c~# 

Using (7) again, 

Rk(z) = E((e-  ~z ~ + Y~(z - X1) I~x ~ ~=z~) k) 

]=1 o 
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Applying the induction hypothesis, we have 

k ~ l  k !  
Rk(z ) = e-~(k-J)(R~(z) -- je  - ~  R~_ 1 (z)) + i Rk(Z--Y) dG(y) 

j = 0  ~ "  0 
z 

= k e - ~  R k_ 1 (z) + ~ Rk(z -- y) dG(y). 
0 

Taking the Laplace transform gives 

k t~ k _ 1 (2  -4- ~) 

q)k(2) = 1 -~(2) 

and applying the renewal theorem, 

k! k-1 1 
- 

2+kct j= 1-~(~.+jct) 

oo 

k ~e ~ R  k_x(z) dz=k^-~k_l(e) lim Rk(z ) = ~  o # 
z--* o~ 

( k - l ) !  knl 1 - E Y e .  
c~ ~=1 1-~O'cO 

3. The Left-most Interval f~t 

In this section we will analyze the left-most interval L t in the splitting process 
generated by F. We will show that t l /~Lt~Y~ 1/~ and find conditions on fl so 

1 
that t~/~EL~EY~/~ as t ~ o o .  Throughout this section, we assume 
- l o g  xdf i(x)< oe so that G(x)= 1 - F ( e  - x - )  has finite mean ft. 0 

The first result we prove is 

(1) t l /~Lt~Y~ 1/~ as t-*oo. 

Proof. The range of values { - l o g L t :  t > O } = { O = S o < S l < S 2 < . . .  } are the ar- 
rival times in a renewal process with P(S~+ 1 - Sn <--x) = G(x) = 1 - f i ( e  - x - ) .  

S o9 Given { n}~=o, the holding times of - l o g L  t at each S, are mean exp(c~S,) 
exponential and independent. If {~'~}~o is an independent sequence of mean 
one exponentials and M(y)=sup {n__> O: S, < - l o g  y}, then 

/M(y) 
P(gt < Y)= P tn~=oeXp (C~Sn) ~'n< t) �9 

Rearranging the sum so the big terms come first, we have 

/M(y) ) 
P ( L t < y ) = P  { ~ exp( -~Tm(- logy) )  ~,~<y~t 

\ m ~  0 

=P(Y~(-logy)<=y~ 0 

where {~m}2=0 is a new iid sequence of mean one exponentials and Tin(- ) and 
Y~(.) were defined in Sect. 2 (see (2.5)). From the equation above and (2.6), we 
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have 

We now turn our attention to finding conditions on /3 so that 
t~/~EL~--*EY~/~ as t--* oo. (2.6) almost says this is true for 9 > 0  and a proof for 
/3>0 can probably be obtained from (2.6). However, we shall use a different 
approach that will also work for 9<0 .  

Let T~ be the time of the first split, X the size of L~ after the first split and 
L l ( .  ) a copy of/,( .)  that is independent of T~ and X, then 

L~ a {1 for 0 < t < T  1 

= J~ L~ ( J ~ ( t -  Td) for T~ -< t. 

1 

If ~ x ~ dff(x) < oo, we can take expectations on both sides of this equation to 
0 

obtain an integral equation for r~(t,/~)=EL~. Differentiating the result, we get 

(2) 
1 

a ' ( t , /3)= -~(t, 9)+ j xa ~(x%/3)  aP(x) 
0 

~(0, 9 )=  t. 

We multiply both sides of (2) by e ~u and make the change of variables t 
= e  ~" and y = - l o g x .  Letting g(u)=eP"rh(e~U, fl) and h(u)=J"rfi'(e~U, fl), we 
obtain 

(3) g(u) = ~ g(u-  y) dG(y)- h(u) 
o 

which is equation (2.5) of SI. Following the argument given in that paper up to 
(2.9), we find for - oo < T<  oo 

(4) lim g(u)=/~-1 ~ g(T-s)(1 - ~ ( s ) ) d s - ~ - 1  ~ h(s)ds 
u ~ c o  0 T 

provided the right side is not oo -oo .  As s--,o% g ( T - s ) ~ C e - ~ i  (Here and 
below C denotes a positive constant whose value is unimportant and may 
change from line to line.) We have 

j e-~S(1-d(s))ds=p -~ j (1-e-p ' )dG(y)=~ -1 1 -  x~dF(x) <oo 
0 0 0 

so the first term on the right of (4) is finite. To take care of the second term, 
we observe 

1 

(5) ~'(t,  [3) = ~(t,  ~ +/~) J (xP - 1) af(x) .  
O 
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Proo f  Differentiating (2), we find 
1 

,~"(t, 8 ) =  - ~'(t, 8 ) +  j x ~+~ ~' (x  ~t, 8) dF(~) 
0 

1 

~'(o, 8)= S (x~- l) dr(x) 
0 

so (x ~  l) dF(x )  rh'(t, 8) and re(t, ~ + 8) both satisfy 

1 

h' (t) = - h ( t ) +  j x ~+ ~ h(x~t) dF(x )  
0 

h(O) = 1. 

Since this equation has a unique solution, (5) holds. 

If 8<0 ,  then rh'(t, 8 ) > 0  by (5). Since g(u)>0 in (4), ; h ( s ) d s =  +oo is not 
7' 

possible so lim tr 8) exists and > E Y ~ / ~ > O  by Fatou's lemma. 
t ~ o o  

If 8>0 ,  the situation is more difficult because (5) shows h(u)<0 and we 

need to show - ~  h ( s ) d s <  oo. We observe if 8 >0 ,  then rfi'(t, 8 ) < 0  and increas- 
ing by (5) so T 

tfi' (t, 8) t/2 >= rh (t, fi) - rh (t/2, 8) >-_ - tfi (t/2, fi) >= - 1 

(6) ]ni'(t, 8)[ < 2 t -  ~ rfi(t/2, 8) < 2 t -  ~. 

If 1 = { 8 > 0 :  lim t~/~rh(t, 8) exists} is not empty, then I is an interval. I is 
t ~ o o  

not empty for if 0 < 8 < a, then 

- h(s) d s = -  eeSrh'(e~S, f i ) d s < 2 5 e e S e  ~*ds<oo  
T T T 

by (6). We next suppose v = sup I < oe and let v < 8 < v + e. Since 0 < 8 -  ~ < v, 
tfi(t, 8 - ~ ) ~  Ct  (~-~/~. Applying (6), we see 

l~ ' ( t , /~-c0t  < ct-"/~. 

Replacing 8 by 8-c~ in (5) gives 
1 

,~'(t, 8 -  ~) = ~(t,  8) ~ (x ~-~- 1) dr(x) 
0 

SO 

and by (6) 

SO 

t~(t, fi) < Ct  -~/~ 

Ira'( t, 8)1 ~ C t - l J / a -  1 

- ~ h(s) ds<= C e~S e-(~+~)S d s <  oo 
T T 

which shows that v < oo is impossible. 
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1 

If 7 < f i < 0  with Sx~dF(x)<oo or f i>0 ,  then the set {t~/~Z, Pt: t > 0 }  is uni- 
0 

formly integrable  so we have established 

1 

(7) If ~ x ~ dF(x) < oo and 7 < fl, then 
0 

l im t~/~tfi(t, ~) exists and  > EYJ/~>O 
t---~ oo 

and 
lim t~/~ rfi(t, fi)= EYfl% 
t ~ o o  

4. The Length of a Randomly Chosen Interval 

In this section we de termine  the asympto t i c  dis t r ibut ion of a r andomly  chosen 
interval  f rom the c~-splitting process genera ted  by F. Z t is the n u m b e r  of 
intervals at t ime t and {Li: 1 < i<  Zt} are the interval  lengths. Fo r  fl > 0, we set 

Zt  

L(t, fl)= Y, L~. 
i = l  

If  T is the t ime of the first split and  X is the posi t ion of the first split point,  
then 

L(t, fi) e={1 for O<=t<T 
X ~ L I ( X ~ ( t - T ) ,  f l)+(1 -X)BL2( (1  -X)~( t  - r), fi) for r < t  

where Ll( . , f l )  and L2(.,fl) are independent ,  have the same dis tr ibut ion as 
L(. ,  fl) and are independent  of  T and X. 

Tak ing  expectat ions on bo th  sides of this equat ion,  we obta in  an integral  
equat ion  for m(t, f i )= EL(t, fl). Differentiat ing the result, we get 

1 

m' (t, fl) ----- -- m (t, fl) + ~ x fl-1 m (x ~ t, fl) 2 x dF (x) 
0 

re(O, fl)= 1. 

T h o u g h o u t  this section, we set F ( x ) = i 2 y d F ( y  ). F is a dis t r ibut ion function 
o 

since F is symmet r ic  abou t  1/2. With  this notat ion,  we have 

1 

(1) m'(t, ~) = - re(t, fl) + ~ x e - 1  m(x  ~ t, [3) d l~(x) 
0 

re(O, fi) = 1. 

C o m p a r i n g  (1) with (3.2), we see 

(2) re(t, f l )= rh(t, f i - 1 ) .  

1 

S x -  1 dF(x) = 2 so by (3.7), we can conclude 
0 
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(3) 

and 

(4) 

limt(~-l)/~m(t, fi)=EY)~-l)/~ for 3 > 0  
t ~ o O  

l im t-1/~m(t, O)= K >=EY~- I/~>O. 

At the end of this section, we will show 

Var  L(t, fi)=a(t, fi)<= Ct 2(~-1)/~-0 

as t ~ oo for 0 > 0 depending on c~ and F. For  each e > 0, 

{ L(t, fi) 1 >~)< a(t, fl) < 
P\lm~,f i)  =e2m2(t, fi)=Ct-~ 

If we let 2 0 >  1, then by the Borel-Cantel l i  1emma 

L(n ~, fi) 
l im 1 a.s. 
~ ~ m(n "~, fi) 

If fi > 1 and  n ~ < t < (n + 1)~% then since L(t, fi) is decreasing, 

L((n + 1) ~, fi) < L(t, fl) < L(n ~, fi) 
m(,C/~) =re(t, p)=m((~+ 1/;/~)" 

Since re(t, fi)~ Ct(l-~)/% l im m((n+ 1) ~, fi)/m(n x, f i )= 1, and we conclude 
n - - + ~  

l im L(t, fi) 1 a.s. 
,-, oo re(t, fi) 

If 0 < f i < l ,  L(t, fl) is increasing, and a similar a rgumen t  leads to the 
conclusion. We have  shown for fi > 0 
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same 

1 Zt 

denote  the empir ical  dis t r ibut ion function of the rescaled lengths. We have for 
/3>0 

oo 1 Zt 

lim S x~dHt(x) = l im - -  __~ (P/~LJ 
t ~  0 t~ao  Z t i= 

t(~- x~/~ L(t' fl)= K-1EY~(r l)/~ a.s. 
= t~oolim t -  1/~ Zt 

Since the m o m e n t s  of H~(.) converge a lmost  surely, the set {Ht(-)} is a lmost  
surely tight, and  if H ( - )  is any weak sequential  l imit poin t  of {Ht(.)} and f i>0 ,  

We next let 

(5) l im t(~-l~/~L(t, fl)=EY~ ~-1~/~ a.s. and 
t ~ o o  

l imt-1/~Z~=K>EY~-I/~>O a.s. 
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then 
co 

(6) ~ x p dH(x) = K - 1 E y ( ~ -  ,)/~ = ~ x~(xK)- i p(ycr 
0 0 

Lett ing f i ~ 0 +  in (6), we see that  K = l i m  t-I/~Z~=EY~-~/L The last step to 
establish ~-~ co 

i 1 P(Y~l/~dy) a.s. lim Ht(x ) = yEY~- 1/~ 
t ~ co 0 

that  the measure  on the right side of (6) is determined by its is to show 
moments .  

(7) 
co co 

Suppose ~ x~dH(x)= ~ x~(xK) -1P(Y~l/~dx) for f i>0 ,  then 
0 0 

-i H ( x ) -  (yK) -1 P(Y~l/~dy). 
0 

Proof Taking fl = n c~ where n > 0 is an integer, we have 

co 

S xn~dH(x)= S xn~( XK)-I  P(Y~ 1/~edx) 
0 0 

o~ oo 

S z" dH(z 1/~) = ~ z" z -  1/~ K - 1 P ( Y ~ d z )  
0 0 

<~z-1 /~K-1P(Y~edz )+K -1 z " P ( L e d z  ) 
0 1 

< 1 + K  -~ S znP(Y~edz)<AB"n[ 
0 

by (2.4). By Carleman's  condi t ion (Chung (1974), p. 98), it follows that 

o r  

H(zl/~): i Y- 1/~ K-  1 P(<edy) 
0 

H(x) = ~ y -  1/~ K-1  P(Y~edy) = (yK)- 1 p(y1/~edy). 
0 0 

Having completed  all the painless computat ions ,  our  last remaining task is 
to obtain the upper  bound  (4) for ~(t, f l ) = V a r L ( t ,  fl). A straightforward but  
somewhat  tedious computa t ion  gives 

1 

(8) a'(t, fl) = -- a(t, fi) + I x2~-1 a( x~ t, fi) dF(x ) -  2re(t, fi) m'(t, fl) 
0 

1 

+ ~ f(x ,  t) h(x, t) dF(x) 
0 
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for f (x, t )= xr m(x~t, 13)+(1 - x ) ~  m((1 - x)=t, 13)+re(t, 13) and h(x, t )= x~ m(x~t, fi) 
+(1 --x)e m((1 --x)~t, f l)--m(t,  fl). 

We need bounds  on the last two terms of (8). [re(t, fl)m'(t, fl)[~ Ct  (1 2p}/~ 
and 0 < f ( x ,  t )< Ct  (~-~)/~ as t--+ oe. C in the last bound  does not  depend on x. 

We next establish 
1 

(9) ~ ]h(x, t)] dF(x)  < Ct  (1-~}/~-~ 
0 

as t ~ oo for a 0 > 0 which depends on c~ and F. 

Proof  The a rgumen t  breaks  into the cases: re(t, 13) is increasing, 0 < 1 3 <  1, and 
m(t, 13) is decreasing, 13> 1. When  13= 1, re(t, 13)-1 and h(x, t )=0 .  The  case 13=0 
is L e m m a  2.5 of  SI and the p roof  of  that  result applies to 0 < 1 3 < 1  with 
virtually no change so we will concent ra te  on the case 13> 1 and sketch the 
differences when 0 < 13 < 1. 

We let 0 < z < x <  1 and X1, X2, X 3 ... be i.i.d, with dis tr ibut ion function ft. 
X o = 1, W~ = X 0 X 1 ... Xz and J = inf {i => 1" W/< z}. Start ing with 

1 

(10) re(t, 13)= ~ yP- l m(y~t, fl) d f f ( y ) - m ' ( t ,  13) 
0 

we iterate this equa t ion  J - 1  t imes to obta in  

) m(t, 13)=E(Wf  l m ( W f t ,  13))-E Wia-lm'(Wi~t,  13). 
t 0 

(For  more  details, see (2.13) and then the a rgumen t  leading to (2.7) of  SI). By 
(2) and (3.5), m'(t, fi) is negat ive and increasing so 

_m,(Wi~t,  13) <= C(Wi~t)(1-~)/~- 1 <= Cz  1 fl-c{ t(1-t;}/~- 1 (11) 

and 

) E W / f l -  1 = zfl - 1 
.= z 0 

E 

where S ~ = - l o g  W~. Renewal  theory  tells us that  
verified 

J- -  1 ) 

~, exp ((13 - 1)( - log z - Si) ) = z ls- i R(z)  
\ i = 0  

sup R ( z ) < o o  so we have 
O < z < l  

(12a) O <=m(t, f i ) -  E ( W f  -1 m ( W f  t, fl)) <= C z -~ t (1-~)/~- 1. 

Next,  we repeat  the above  procedure  with a new i.i.d, sequence )71, 2 2 ,  
2 s . . . .  Everyth ing is a s above  except 2 o = x ,  then (10) is replaced by 

1 
x p-  1 m(x~t, fi) = ~ (yx)P- i  m((yx)~t, fl) dF(y)  - x  ~- 1 m,(x~t, fl). 

0 

The last t e rm in (11) becomes  z a - l R ( z / x )  and (12a) remains  true with W s 
replaced by lPVy and re(t, 13) replaced by x r  13). C on the right side of 
(12a) does not depend on x in this case. 
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When f l < l  and e+f l=>l ,  m'(t, fi) is positive and non-increasing and we 
have 

(12b) 0 < E ( W f  -1 m ( W f  t, f l ) ) -  m(t, fi) < Cz  ~-1 

and when 0 < c ~ + f i <  1, m'(t, fi) is positive and increasing and 

(12c) O <=E(Wf -1 m(Wf t ,  f l ) ) -m( t ,  fi)< Czfl- l m'(t, fi) 

(12b, c) remain true when Wj is replaced by 17V 7 and re(t, fl) is replaced by 
x fl-1 m (x ~ t, fl). 

In SI, using a coupling of Ney  (1981), we showed that  the sequences Xo, 
Xi ,  X 2.. .  and )(0, J~a, )(2 ..- can be constructed on the same probabil i ty  
space along with a r andom variable z so that  

(13) W j  l{z<=_logz) d iTVj l(~<=_logz} 

and 
P(-c > - log z) < C x -  ~ z ~ 

for 0 < 7 < 1 depending on F. To  apply Ney's coupling, we use the assumption 
that F has a non-zero  Lebesgue component .  

For  fi > 1, we have 

Ix p-1 m(x~t, fl)--m(t, fl)l 

< E(m(t, fl) - W f  -1 m ( W f  t, fi)) + E(x  a-1 m(x~t, fi) - W f  1 re(Wit ,  fl)) 

+ ] E ( W f -  ~ m(Wf t ,  f l ) -  ITVf -1 re(Writ, fi))[ < Cz -~ t (j -B)/~-I 

"Jr-E(] Wf - i  m( Wf  t, fl) - 17Vf - I m( lTvf t, fl)] I(,> -logzI) 

< Cz-~t (a-~/~-  1 + E ( W f -  1 m(Wf t ,  fl)I~> -log~) 

+ E(17Vf -1 m(17Vft, fl) I{~> -,og~}) 

by (12a) and (13). re(t, fl) < Ct  (~-~/~ so x ~- 1 m(x~t, fl) < Ct(Z-~/~ independent  of 
x and 

E ( W f -  i re(W] t, fi) I/, > _ log z}) ~ C x - 7  Zy t ( i  - fl)/a 

by (13). A similar calculation holds for the VV term. We have 

ix a -  1 m(x~t ,  fi) - r e ( t ,  13)1 < C(z  -~ t (~-a)/~- 1 + x - '  z '  t r 

Replacing z by t -~  gives 

Ixa- ~ m(x~t, f l ) -m( t ,  P)I =< c ( t o ~ -  ~ + x -  , t - o , )  t"-a~/~ 

and 
1 1 

[h(x, t)[ dF(x) < 2 S x I x13-1 m(x~t, fi) - re(t, fl)[ dF(x) 
0 0 

< C(tP~- 1 +t-p~) Ct-~)/~ 

(9) is now established for fl > 1 by taking 0 < p < 1/c~. 



Splitting Intervals 125 

For  0 < / ~ <  1 and ~ + f l >  1, (12b) and a similar a rgument  lead to 

1 

Ih(x, t)l dF(x) < C(tP(1-e~ + t -~ 
0 

and (9) again is established by taking 0 < p < 1/e. 
For  0<c~+/~<  1, (12c) and a similar argument  lead to 

1 

Ih(x, t)j dF(x) < C(t ~ m' (t, fl) + t -p~+(I-~'/"). 
0 

As t--. o% m'(t, ~)~ Cr 1 -t3)/~-~ so (9) follows by taking 0 < p < 1. 
Returning to the analysis of (8), we have shown that  the last two terms in 

(8) are domina ted  by Ct 21~-~/~-~ as t ~ o e  and 0 < 0 < m i n  (1, l /e) depends on 
F and ~. There  are two cases to consider 0 < / ~ < 1  and 1</~. (For  /3=1, 
L(t, /~)- 1 and there is nothing to show.) 

For  0 < / ~ < 1 ,  we can find a positive function, B(.) ,  such that  B(t)> 
1 

- 2m(t, fi) m'(t, ~) + ~ f (x ,  t) h(x, t) dE(x), B'(t) > 0 and B(t),-, Ct 2(1 -/~)/~-0 as 
0 

t---> oo. By a simple compar ison  test a(t)<=w(t) if w(t) satisfies 

1 

(14) w'(t) = - w(t) + ~ x 2~- ' w(x ~ t) dF (x) + B(t) 
0 

with w(0 )>0  but  small enough so that  

1 

w'(0) = w(0) ~ (x 2~-1 - 1) d_P(x) + B'(0) > 0 
0 

w'(t) > 0  for if inf{t" w ' ( t )=0} = s <  oo, then 

1 

w"(s) = ~ x 2B+~- 1 w,(x~s) d-F(x) +B'(s) > 0  
0 

which is a contradict ion.  Replacing w'(t) by zero and making the substi tutions 
t=e  ~, y = - l o g x ,  g(u)=e(2~-l~"w(e ~u) and h(u)=dz~-l)UB(e ~u) in (14), we 
obtain 

oo 

g(u)__< ~ g(u-  y) dd(y) + h(u). 
0 

By the argument  developed in SI and used to analyze (3.3) of this paper, we 
have 

where 

(15) 

g(u) <__J(u) + H(u) 

lim d(u) =/2-1 S g ( T -  s)(1 - G(s)) ds < oo 
u--+ ~ 0 
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and 

H ( u ) ~ f i - l  i h ( s ) d s ~ C e  (1-~~ as u--,oo. 
r 

This shows that  w(e~")<Ce ~2-2~-~~ as u ~ o o  which in turn shows 
a(t) < Ct z(~ -~)/~-0 as t ~ oo. This completes  the p roof  for the case 0 <13 < 1. 

F o r  the case 1 <fi ,  we let B(t) and w(t) be as above  except that  B'(t)<O and 
B"(t) > 0. 

1 

and 

w'(O) = w(O) y (x 2t~-1 - 1) dF(x) + B(O) 

W'* (0) = w ' (O)  S ( x 2 f l + a -  1 - -  1) dF(x) + B'(o) 

so w ' ( 0 ) < 0  and  w ' ( 0 ) > 0  if w(0) is taken sufficiently large. Using the simple 
a rgumen t  by cont radic t ion  given above,  we conclude tha t  w'(t)<0 and w'(t)> 0 
for t > 0 .  By the same a rgumen t  that  led to (3.6), we have 

(16) - w'(t) = Iw'(t)[ < 2 t -  a w(t/2) < C t -  1. 

We next m a k e  the subst i tut ions t=e% y= - l o g x ,  g ( u ) = e  (2/~-1~" w(e~U), h(u) 
= e(2P- 1~. B(e~.) and k(u) = - e ~2~- a). w,(e~.) in (14) and obtain  

then 

oo 

g(u) = ~ g(u - y) dG(y) + h(u) + k(u) 
0 

g(u) = J(u) + H(u) + K(u) 

where J(u) and H(u) satisfy (15) and 

K(u)~fi-lie(2~-l)Slw'(e~S)lds as u ~ o o .  
7' 

We are done  if we can show 

(17) e(2p-a)slw'(e~)l<Ce(X-~~ as s--*oo. 

By (16), [w'(e~S)l<Ce-~S so (17) holds if l < f l  and ( 2 f i - 1 ) - c ~ < l - e 0 .  Thus,  
0~ 

(17) holds for l < f i _ _ < l + ~  ( 1 - 0 ) .  

If 1 < i l l  <fi2 and  w(', fli) and B(., fii), i = 1  and 2, denote  the corresponding 
functions satisfying (14), and if w(0, f i2)<w(0, fla) and B(t, fl2)<B(t, ill), then a 

test shows w(t, fi2) < w(t, fia) for t > 0. So if fi > 1 + ~  ( 1 -  0), then compar i son  
Z 

wt, 
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and 
Iw% P)l ~ c t  -2 

by (16). So (17) holds if f i > l + 2 ( 1 - 0  ) and (2f i -1)-2a<l-c~0.  Thus, (17) 
(z 

holds for 1 <fi< 1 +~ (2-0). Clearly (17) holds for fi> 1 by induction. 
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