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Splitting iteration methods

for non-Hermitian positive definite systems

of linear equations
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Abstract. For large sparse system of linear equations with a non-Hermitian positive

definite coefficient matrix, we review the recently developed Hermitian/skew-Hermitian

splitting (HSS) iteration, normal/skew-Hermitian splitting (NSS) iteration, positive-defi-

nite/skew-Hermitian splitting (PSS) iteration, and block triangular/skew-Hermitian split-

ting (BTSS) iteration. These methods converge unconditionally to the exact solution of

the linear system, with the upper bounds of their convergence factors being only depen-

dent on the spectrum of the Hermitian (or normal, or positive-definite) splitting matrix,

but independent of the spectrum of the skew-Hermitian splitting matrix as well as the

eigenvectors of all matrices involved.

Key words: non-Hermitian matrix, positive definite matrix, block triangular matrix,

Hermitian and skew-Hermitian splitting, normal/skew-Hermitian splitting, positive-

definite/skew-Hermitian splitting, splitting iteration method.

1. Introduction

We consider iterative solution of the large sparse system of linear equa-
tions

Ax = b, A ∈ C
n×n nonsingular and b ∈ C

n, (1)

where A ∈ C
n×n is a positive definite complex matrix, which may be either

Hermitian or non-Hermitian.
Iterative methods for system of linear equations (1) require efficient

splittings of the coefficient matrix A. Because A naturally possesses a
Hermitian/skew-Hermitian (HS) splitting [16, 28, 18, 20, 27, 19, 1]

A = H +S, (2)
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where

H =
1
2
(A+A∗) and S =

1
2
(A−A∗), (3)

Bai, Golub and Ng [7] has recently presented and studied an efficient itera-
tive method based on this particular matrix splitting for solving the system
of linear equations (1). Moreover, since the HS splitting (2)–(3) can be nat-
urally generalized to obtain the normal/skew-Hermitian (NS) splitting [8, 9]

A = N +S, (4)

where

N is a normal matrix and S is a skew-Hermitian matrix,

and the positive-definite/skew-Hermitian (PS) splitting [6]

A = P +S, (5)

where {
P is a positive definite matrix and
S is a skew-Hermitian matrix,

(6)

Bai, Golub and Ng [8, 9] and Bai, Golub, Lu and Yin [6] have further
extended the HSS iterative method to obtain the normal/skew-Hermitian
splitting (NSS) and the positive-definite/skew-Hermitian splitting (PSS) it-
erative methods, correspondingly, for solving the system of linear equa-
tions (1).

Theoretical analyses have shown that these methods converge uncondi-
tionally to the exact solution of the linear system, with the upper bounds
of their convergence factors being only dependent on the spectrum of the
Hermitian (or normal, or positive-definite) splitting matrix, but indepen-
dent of the spectrum of the skew-Hermitian splitting matrix as well as the
eigenvectors of all matrices involved. These new splitting iteration meth-
ods and their convergence property are reviewed in detail in the subsequent
sections.

2. The HSS iteration method

Based on the HS splitting (2)-(3), Bai, Golub and Ng presented in [7]
the following Hermitian/skew-Hermitian splitting iteration, or briefly, the
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HSS iteration, for solving the system of linear equations (1).

The HSS Iteration Method Given an initial guess x(0). For k = 0, 1,

2, . . . until {x(k)} converges, compute{
(αI + H)x(k+1/2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − H)x(k+1/2) + b,

where α is a given positive constant.

Evidently, each iterate of the HSS iteration alternates between the Her-
mitian part H and the skew-Hermitian part S of the matrix A, analogously
to the classical alternating direction implicit (ADI) iteration for solving par-
tial differential equations, see Peaceman and Rachford [25] and Douglas and
Rachford [17].

Note that we can reverse roles of the matrices H and S in the above HSS
iteration method so that we may first solve the system of linear equations
with coefficient matrix αI +S and then solve the system of linear equations
with coefficient matrix αI + H.

For the convergence property of the HSS iteration, we have the following
theorem.

Theorem 2.1 ([7]) Let A ∈ C
n×n be a positive definite matrix, H =

(1/2)(A+A∗) and S = (1/2)(A−A∗) be its Hermitian and skew-Hermitian
parts, and α be a positive constant. Then the iteration matrix M(α) of the
HSS iteration is given by

M(α) = (αI+S)−1(αI−H)(αI+H)−1(αI−S), (7)

and its spectral radius ρ(M(α)) is bounded by

σ(α) ≡ max
λi∈λ(H)

∣∣∣α − λi

α + λi

∣∣∣,
where λ(H) is the spectral set of the matrix H. Therefore, it holds that

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the HSS iteration converges to the unique solution x� ∈ C
n of the

system of linear equations (1).

Theorem 2.1 shows that the convergence speed of the HSS iteration is
bounded by σ(α), which only depends on the spectrum of the Hermitian
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part H, but does not depend on the spectrum of the skew-Hermitian part S,
of the coefficient matrix A, and neither on the eigenvectors of the matrices
H, S and A.

Now, if we introduce a vector norm |||x||| = ‖(αI+S)x‖2 (∀x ∈ C
n) and

represent the induced matrix norm by |||X||| = ‖(αI + S)X(αI + S)−1‖2

(∀X ∈ C
n×n), then from the proof of Theorem 2.1 we see that

|||M(α)||| = ‖(αI − H)(αI + H)−1(αI − S)(αI + S)−1‖2 ≤ σ(α),

and it follows that

|||x(k+1) − x�||| ≤ σ(α)|||x(k) − x�|||, k = 0, 1, 2, . . . .

Therefore, σ(α) is also an upper bound of the contraction factor of the HSS
iteration in the sense of the ||| · |||-norm.

We remark that if the lower and the upper bounds of the eigenvalues
of the Hermitian part H are known, then the optimal parameter α for σ(α)
(or the upper bound of ρ(M(α)) or |||M(α)|||) can be obtained. This fact
is precisely stated as the following corollary.

Corollary 2.1 ([7]) Let A ∈ C
n×n be a positive definite matrix, H =

(1/2)(A+A∗) and S = (1/2)(A−A∗) be its Hermitian and skew-Hermitian
parts, and γmin and γmax be the minimum and the maximum eigenvalues of
the matrix H, respectively, and α be a positive constant. Then

α� ≡ arg min
α

{
max

γmin≤λ≤γmax

∣∣∣α − λ

α + λ

∣∣∣} =
√

γminγmax,

and

σ(α�) =
√

γmax −√
γmin√

γmax +
√

γmin
=

√
κ(H) − 1√
κ(H) + 1

,

where κ(H) is the spectral condition number of H.

We emphasize that in Corollary 2.1 the optimal parameter α� only
minimizes the upper bound σ(α) of the spectral radius of the iteration
matrix, but does not minimize the spectral radius itself.

Corollary 2.1 shows that when the so-called optimal parameter α� is
employed, the upper bound of the convergence rate of the HSS iteration
is about the same as that of the conjugate gradient method, and it does
become the same when, in particular, the coefficient matrix A is Hermitian.
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It should be mentioned that when the coefficient matrix A is normal, we
have HS = SH and, therefore, ρ(M(α)) = |||M(α)||| = σ(α). The optimal
parameter α� then minimizes all of these three quantities. For further re-
sults about the optimal iteration parameter αopt of the HSS method which
minimizes the actual spectral radius ρ(M(α)) of the HSS iteration matrix
M(α), we refer to [12, 4]; for its in-depth convergence theory, we refer to
[15, 5, 11]; and for applications of the HSS technique to saddle-point prob-
lems, we refer to [10, 13, 2, 3, 14, 26]. See also [23] and [24] for other
applications.

3. The NSS iteration method

More generally, we can split the coefficient matrix A ∈ C
n×n into

A = N +So,

where N ∈ C
n×n is a normal matrix and So ∈ C

n×n a skew-Hermitian
matrix. Briefly, we call this splitting as a normal/skew-Hermitian (NS)
splitting of the matrix A.

Similarly to the HSS iteration method, we can define the normal/skew-
Hermitian splitting (NSS) iteration method as follows; see [8, 9].

The NSS Iteration Method Given an initial guess x(0) ∈ C
n. For k =

0, 1, 2, . . ., compute{
(αI + N)x(k+1/2) = (αI − So)x(k) + b,

(αI + So)x(k+1) = (αI − N)x(k+1/2) + b

until {x(k)} converges, where α is a given positive constant.

For the convergence property of the NSS iteration, we have the following
theorem.

Theorem 3.1 ([8, 9]) Let A ∈ C
n×n be a positive definite matrix, N ∈

C
n×n be a normal matrix and So ∈ C

n×n be a skew-Hermitian matrix such
that A = N + So, and α be a positive constant. Then the spectral radius
ρ(Mo(α)) of the iteration matrix Mo(α) of the NSS iteration is bounded by

σo(α) = max
λj∈λ(N)

|α − λj |
|α + λj | = max

γj+ıηj∈λ(N)

√
(α − γj)2 + η2

j

(α + γj)2 + η2
j

,
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where ı denotes the imaginary unit. Therefore, it holds that

ρ(Mo(α)) ≤ σo(α) < 1, ∀α > 0,

i.e., the NSS iteration converges to the exact solution x� ∈ C
n of the system

of linear equations (1). Moreover, if γmin and γmax, ηmin and ηmax are the
lower and the upper bounds of the real, the absolute values of the imaginary
parts of the eigenvalues of the matrix N , respectively, and Ω = [γmin, γmax]×
[ηmin, ηmax], then

α�≡arg min
α

{
max

(γ, η)∈Ω

√
(α − γ)2 + η2

(α + γ)2 + η2

}

=

{√
γminγmax − η2

max, for ηmax <
√

γminγmax,√
γ2

min + η2
max, for ηmax ≥ √

γminγmax

and

σo(α�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γmin + γmax − 2

√
γminγmax − η2

max

γmin + γmax + 2
√

γminγmax − η2
max

)1/2

,

for ηmax <
√

γminγmax,(√
γ2

min + η2
max − γmin√

γ2
min + η2

max + γmin

)1/2

,

for ηmax ≥ √
γminγmax.

Theorem 3.1 shows that the convergence speed of the NSS iteration is
bounded by σo(α), which depends on the spectrum of the normal matrix
N , but does not depend on the spectrum of the skew-Hermitian matrix So,
and neither on the eigenvectors of the matrices N , So and A.

Now, if we introduce a vector norm |||x||| = ‖(αI + So)x‖2 (∀x ∈ C
n)

and represent the induced matrix norm by |||X||| = ‖(αI + So)X(αI +
So)−1‖2 (∀X ∈ C

n×n), then we have

|||Mo(α)||| = ‖(αI − N)(αI + N)−1(αI − So)(αI + So)−1‖2

≤ σo(α),

and it follows that

|||x(k+1) − x�||| ≤ σo(α)|||x(k) − x�|||, k = 0, 1, 2, . . . ,
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where {x(k)} is the iteration sequence generated by the NSS method. There-
fore, σo(α) is also an upper bound of the contraction factor of the NSS
iteration in the sense of the ||| · |||-norm. Furthermore, if the lower and
the upper bounds γmin, ηmin and γmax, ηmax are known, then the optimal
parameter α� for σo(α) (or the upper bound of ρ(Mo(α)) or |||Mo(α)|||)
can be obtained. By employing this optimal parameter α�, we particularly
have

|||Mo(α�)||| ≤ σo(α�)

and

|||x(k+1) − x�||| ≤ σo(α�)|||x(k) − x�|||, k = 0, 1, 2, . . .

in light of Theorem 3.1.
We remark that when ηmax <

√
γminγmax, it holds that(

γmin + γmax − 2
√

γminγmax − η2
max

γmin + γmax + 2
√

γminγmax − η2
max

)1/2

≥
√

γmax −√
γmin√

γmax +
√

γmin
;

and when ηmax ≥ √
γminγmax, it holds that(√

γ2
min + η2

max − γmin√
γ2

min + η2
max + γmin

)1/2

≥
√

γmax −√
γmin√

γmax +
√

γmin
.

By Theorems 2.1 and 3.1, the above inequalities imply that among all NSS
iterations for solving the non-Hermitian positive definite linear system (1),
the optimal upper bound of the contraction factor of the HSS iteration is
the smallest. However, since the upper bound may be much overestimated,
and the actual convergence factor may be far from the corresponding upper
bound of the contraction factor, we could not assert that the HSS iteration is
the fastest among all NSS iterations for solving the non-Hermitian positive
definite linear system (1).

We remark that when the coefficient matrix A is normal, we have NSo =
SoN and, therefore, ρ(Mo(α)) = |||Mo(α)||| = σo(α). The optimal param-
eter α� then minimizes all of these three quantities. For applications of the
NSS technique to solve other practical problems, we refer to [22, 21].
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4. The PSS Iteration Method

By applying the technique of constructing HSS and NSS iterations to
the PS-splitting (5)-(6), we can establish the positive-definite and skew-
Hermitian splitting (PSS) iteration method for solving the positive definite
system of linear equations (1) as follows; see [6].

The PSS Iteration Method Given an initial guess x(0) ∈ C
n. For k =

0, 1, 2, . . . until {x(k)} converges, compute{
(αI + P )x(k+1/2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − P )x(k+1/2) + b,

where α is a given positive constant.

We easily see that when P ∈ C
n×n is normal or Hermitian, the above

PSS iteration method reduces to the NSS or the HSS iteration methods,
accordingly.

For the convergence property of the PSS iteration, we have the following
theorem.

Theorem 4.1 ([6]) Let A ∈ C
n×n be a positive definite matrix, M(α) be

the iteration matrix of the PSS iteration, and V (α) = (αI + P )−1(αI −
P ). Then the spectral radius ρ(M(α)) of M(α) is bounded by ‖V (α)‖2.
Therefore, it holds that

ρ(M(α)) ≤ ‖V (α)‖2 < 1, ∀α > 0,

i.e., the PSS iteration converges to the exact solution x� ∈ C
n of the system

of linear equations (1).

Theorem 4.1 shows that the PSS iteration method converges uncondi-
tionally to the exact solution of the positive definite system of linear equa-
tions (1). Moreover, the upper bound of its contraction factor is only de-
pendent on the spectrum of the positive definite part P , but is independent
of the spectrum of the skew-Hermitian part S as well as the eigenvectors of
the matrices P , S and A.

We should point out that two important problems need to be further
studied for the PSS iteration method. One is the choice of the skew-
Hermitian matrix S, or the splitting of the matrix A, and another is the
choice of the acceleration parameter α.

Theoretically, due to Theorem 4.1 we can choose S to be any skew-
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Hermitian matrix such that the matrix P = A − S is positive definite,
and α to be any positive constant. However, practically, besides the above
requirements we have to choose S to be the skew-Hermitian matrix such
that the linear systems with the coefficient matrices αI +P and αI +S can
be solved easily and effectively, and to choose the positive constant α such
that the PSS iteration converges very fast. Evidently, these two problems
may be very difficult and, usually, their solutions strongly depend on the
concrete structures and properties of the coefficient matrix A as well as the
splitting matrices P and S.

We will give two practical choices of the PS splitting in the following.
These two special kinds of PS splittings are very basic. Technical combina-
tions of them can yield variety and new positive-definite and skew-Hermitian
splittings and, hence, many practical PSS iteration methods.

Let D, L and U be the block diagonal, the strictly block lower trian-
gular and the strictly block upper triangular parts of the block matrix A =
(Ai,j) ∈ C

n×n, respectively. Then we have

A = (L + D + U∗) + (U − U∗) ≡ T1 + S1

= (L∗ + D + U) + (L − L∗) ≡ T2 + S2. (8)

Clearly, T1 and T2 are block lower triangular and block upper triangular
matrices, respectively, and both S1 and S2 are skew-Hermitian matrices.
We will call the two splittings in (8) as block triangular and skew-Hermitian
(BTS) splittings of the matrix A. We remark that these two splittings are
both PS splittings, because T� + T ∗

� = A + A∗ (	 = 1, 2) and A ∈ C
n×n is

positive definite.
If we make technical combinations of the BTS splitting with the HS or

the NS splitting, other interesting and practical cases of the PS splitting
can be obtained. For example,

A =
(
L +

1
2
(D + D∗) + U∗

)
+

(1
2
(D−D∗) + U −U∗

)
≡T3 + S3

=
(
L∗ +

1
2
(D + D∗) + U

)
+

(1
2
(D−D∗) + L−L∗

)
≡T4 + S4 (9)

are two BTS splittings, which come from combinations of BTS splittings of
the matrix A in (8) and HS splitting of the matrix D.

Now, with the choices

P = T�, S = S�, 	 = 1, 2, 3, 4,
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we can immediately define the corresponding block triangular and skew-
Hermitian splitting (BTSS) iteration methods for solving the positive def-
inite system of linear equations (1).

We note that for these four BTSS iteration methods, we only need
to solve block-triangular linear sub-systems, rather than to inverse shifted
positive-definite matrices as in the PSS iteration method or shifted Her-
mitian (normal) positive-definite matrices as in the HSS (NSS) iteration
method. Moreover, the block-triangular linear sub-systems can be solved
recursively through solutions of the systems of linear equations

(αI + Aj,j)xj = rj , j = 1, 2, . . . , m (10)

for the BTSS iteration methods associated with the splittings in (8), and(
αI +

1
2
(Aj,j + A∗

j,j)
)
xj = rj , j = 1, 2, . . . , m (11)

for those associated with the splittings in (9). Because the splitting matrices
T� (	 = 1, 2, 3, 4) are positive definite, the block sub-matrices Aj,j (j =
1, 2, . . . , m) are also positive definite, in particular, (1/2)(Aj,j + A∗

j,j) (j =
1, 2, . . . , m) are all Hermitian positive definite matrices. Therefore, we
may employ another BTSS iteration to solve the linear sub-systems (10)
and the conjugate gradient iteration to solve the linear sub-systems (11) if
necessary. In addition, the matrices T�, 	 = 1, 2, 3, 4, may be much more
sparse than the matrices H and N in HSS and NSS methods. For instance,
when the matrix A is an upper Hessenberg matrix, T� and S�, 	 = 1, 2, 3, 4,
in the BTSS (or TSS) splittings are still very sparse, but H, S, and N , S̃o

in the HS and the NS splittings may be very dense. Therefore, the BTSS
iteration methods may save computing costs considerably more than both
HSS and NSS iteration methods. Another advantage of the BTSS iteration
methods is that they can be used to solve both Hermitian and strongly
non-Hermitian positive definite system of linear equations more effectively
than both HSS and NSS iteration methods. For example, consider the non-
Hermitian positive definite system of linear equations

(αI + Ŝ)z = r

arising from HSS, NSS and TSS iteration methods, where Ŝ ∈ C
n×n is a

skew-Hermitian matrix, α is a positive constant, and r ∈ C
n is a given

right-hand-side vector. Both HSS and NSS iteration methods can not be
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used to solve it, however, the BTSS iteration method may solve it very
efficiently. This shows that the BTSS iteration methods have a considerably
large application area.

When D, L and U are the pointwise diagonal, the pointwise strictly
lower triangular and the pointwise strictly upper triangular parts of the
matrix A, we particularly call the BTS splitting as triangular and skew-
Hermitian (TS) splitting and the BTSS iteration method as triangular and
skew-Hermitian splitting (TSS) iteration method.

We remark that both BTSS and TSS iteration methods are, in general,
different from the HSS and the NSS iteration methods. Only when D is
Hermitian (normal) and L + U∗ = 0, the BTSS and the TSS methods give
the same scheme as the HSS (NSS) method.

5. Several Examples Leading to the Splittings

In this section, we give two practical examples that can naturally lead
to HS, NS and PS splittings. In fact, there are many such examples in the
areas of scientific computing and engineering applications.

Example 5.1 Consider the system of linear equations (1) with the com-
plex coefficient matrix

A = G + ıW,

where G, W ∈ R
n×n are real matrices.

Linear systems of this form may arise from electromagnetics and chem-
istry computations.

We consider the splitting

A = M + K, with M = G and K = ıW. (12)

When G is symmetric positive definite and W is symmetric, the splitting
(12) gives an HS splitting of the matrix A, with H := M and S := K; when
G is normal positive definite and W is symmetric, the splitting (12) gives
an NS splitting of the matrix A, with N := M and S := K; and when G is
positive definite and W is symmetric, the splitting (12) gives a PS splitting
of the matrix A, with P := M and S := K.
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Example 5.2 Consider the system of linear equations (1) with the block
two-by-two coefficient matrix

A =
(

G E

−E∗ C

)
,

where G ∈ R
p×p, C ∈ R

q×q and E ∈ R
p×q, with p and q positive integers

satisfying p ≥ q and n = p + q.

Linear systems of this saddle-point form may arise from Stokes prob-
lem, mixed finite element method of partial differential equations, structural
analysis, electrical networks, image processing, etc.

We consider the splitting

A = M + K, with M =
(

G 0
0 C

)
and K =

(
0 E

−E∗ 0

)
. (13)

When G and C are symmetric positive definite, the splitting (13) gives an
HS splitting of the matrix A, with H := M and S := K; when G and
C are normal positive definite, the splitting (13) gives an NS splitting of
the matrix A, with N := M and S := K; and when G and C are positive
definite, the splitting (13) gives a PS splitting of the matrix A, with P := M

and S := K.

6. Concluding Remarks

The HSS, NSS, BTSS and PSS methods are effective iterative solvers
for solving large sparse non-Hermitian positive definite system of linear
equations, especially, when good preconditioners and optimal iteration pa-
rameters are easily available; see, e.g., [10, 2, 3, 15, 4, 5]. Also, they can
naturally lead to high-quality preconditioners for Krylov subspace methods
such as GMRES and BiCGSTAB for solving this kind of linear systems;
see, e.g., [6, 13, 24, 26]. The iteration parameter α considerably affects the
effectiveness of the corresponding iteration schemes, although its practical
and optimal choice is a challenging task from the viewpoint of both the-
ory and application. In addition, the convergence theory of these iteration
schemes for singular and positive semidefinite linear systems is an important
problem that deserves further in-depth study.
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