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A manifestation of the Sagnac effect in a rotating photonic crystal that contains a microcavity with degenerate
modes is explored. It is shown that generally rotation can cause the resonance frequency to split into M dif-
ferent frequencies, where M is the order of the stationary-system mode degeneracy. The results are derived
using a new rotation-induced eigenvalue theory that holds for any two-dimensional or three-dimensional ro-
tating microcavity with mode degeneracy. Comparison with exact numerical simulations of the rotating system
is provided. Miniature optical gyroscopes are discussed. © 2006 Optical Society of America
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. INTRODUCTION
n a recent publication1 the effect of rotation on a photo-
ic crystal (PhC) containing a set of microcavities has
een studied analytically. The configuration consisted of a
oupled-cavity waveguide (CCW), known also as a
oupled-resonator optical waveguide (CROW), situated
long a circular path within an otherwise perfect crystal.
o our knowledge, novel manifestation of the Sagnac ef-
ect, expressed via a rotation-dependent dispersion equa-
ion, has been reported. This effect is shown to depend on
ew sets of parameters not previously reported or studied
s far as we know and is intimately related to the intri-
ate scattering–propagation phenomena associated with
ropagation in crystals and microcavities. Although the
pecific examples have been presented for PhC structures,
he general analysis, as well as the resulting dispersion
elation, holds for a general CCW structure.

From a somewhat broader point of view, the previously
eported results1 indicate that the added flexibility and
bility of PhCs to manipulate light may offer new insights
nto the basic understanding of the Sagnac effect and re-
eal new phenomena. From the practical point of view,
his can potentially lead to novel designs and to a new
eneration of optical gyroscopes.

To that end, the general purpose of the present work is
wofold. Our first goal is to further explore the effect of ro-
ation in PhC microcavities; we study cavities with mode
egeneracy and point out their potential for optical gyro-
copes. To the best of the authors’ knowledge, these min-
ature structures constitute the smallest optical gyro-
copes known so far. This study is based on extending the
avity perturbation theory of degenerate modes2 to rotat-
ng PhCs. The second goal is to use the Green’s function
heory for a rotating medium3 in order to validate nu-
erically our theoretical results.
We feel, however, that before turning to the theoretical

tudy, a brief description of the differences between our
0740-3224/06/010142-10/$15.00 © 2
ork and the classical analysis of the Sagnac effect is in
rder. The simplest and most familiar example of an op-
ical resonator with degenerate modes is the closed loop
r ring structure made out of a conventional (reciprocal)
aterial. Here, mode degeneracy is manifested by the

act that, for any of its resonant frequencies, the ring sup-
orts two modes propagating in opposite directions. If a
ing of radius R rotates at an angular velocity � around
n arbitrary axis normal to the ring plane, reciprocity
long the propagation path is lost; the degenerate reso-
ant frequency splits into two distinct frequencies ��1,2�

�0±��0R /nc corresponding to propagation in counter-
otation or corotation directions. This is nothing but the
lassical Sagnac effect.4 However, there are many cases of
ode degeneracy associated with microcavities in PhCs,

or which the manifestation of the Sagnac effect is some-
hat less obvious. An example is shown in Fig. 1. Con-

ider a two-dimensional PhC that consists of dielectric
ylinders of radius 0.6 �m and �r=8.41, situated on a hex-
gonal lattice with a lattice constant of a=4 �m. For TM
olarization, a microcavity with two degenerate modes at
resonant wavelength of �0=2�c /�0=8.79941 �m is cre-

ted by increasing the radius of a cylinder to 1.1 �m. The
egenerate modes’ electric field magnitude is shown in a
ogarithmic scale. Similar examples, but in TE polariza-
ion and slab geometry, are provided in the literature.5,6

hese modal fields cannot, in principle, be a priori pre-
ented as local plane waves or geometrical rays that
ropagate (and accumulate phase) along a well-defined
ath. Furthermore, in the general case the mode degen-
racy rank M can be larger than 2 (i.e., in the general case
he structure supports M�2 distinct modal fields at its
esonant frequency �0). Thus the classical formulation of
he Sagnac effect, which holds for only two distinct modes
nd requires a precise definition of the propagation path,
annot be directly applied.

As pointed out above, the first purpose of the present
006 Optical Society of America
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ork is to develop a general theory for the analysis of mi-
rocavities with mode degeneracy, under slow rotation
onditions. The basic methodology is to extend the cavity
erturbation theory of degenerate modes2 to rotating
hCs, in their rest (noninertial) frame. The result is a for-
ulation similar in structure to the classical cavity per-

urbation theory, in which the effect of rotation appears as
new perturbation operator. We solve our proposed equa-

ion and get closed-form expressions for the effect of rota-
ion on the degenerate resonances. The formulation holds
or a general cavity in a two- or three-dimensional con-
guration, and we show that in the specific case of a
imple closed loop it precisely predicts the classical Sag-
ac effect.4 In the more general case, we show that, under
otation, a resonance frequency �0 with mode degeneracy
f rank M�2 splits into M different resonances ��

�m����,
=1. . .M; the distance of each from �0 is proportional to

he rotation rate �. We explore the general properties of
hese resonances (e.g., symmetries and central location)
nd provide explicit expressions for the splitting magni-
ude. Thus, in the specific case illustrated by Fig. 1, our
eneral theory predicts a symmetrical splitting of the de-
enerate resonance into two distinct resonances
0±�����, where the splitting magnitude ����� is pro-
ortional to the system rotation rate �.
The structure of the paper is as follows. In Section 2,

e develop the general theory and explore the symmetry
roperties of the splitting effect. In Section 3, we show
hat for the case of a simple ring structure our general
heory reconstructs the classical Sagnac effect, and we
uggest the concept of an effective rotation radius for the
ore general cavity. In Sections 4 and 5, we provide spe-

ific examples of splitting of degenerate modes in rotating
hC microcavities for a two-dimensional TM case and for

ig. 1. (Color online) Electric field magnitudes on a decibel scale
f a doubly degenerate TM microcavity �M=2�, in a two-
imensional hexagonal photonic crystal (PhC). The crystal is
ade of dielectric cylinders, outlined by black circles. (a) E0

�1�. (b)

0
�2�. These modes are nonorthogonal, and E0

�2� is a � /3-rotated
eplica of E0

�1�. (c) The linear combination E0
�1��E0

�1�+E0
�2�. (d) The

inear combination E0
�2��E0

�1�−E0
�2�. These modes are orthogonal.
TE slab model and compare our theoretical predictions
ith exact numerical computations. In Section 6, we
resent some observations pertaining to the implementa-
ion of rotating crystals and microcavities as optical gyro-
copes. Concluding remarks are provided in Section 7.

. THEORY
et �r�r� be the (time-invariant) relative dielectric prop-
rty of a stationary medium, as measured in its (inertial)
est frame. We assume now that the medium rotates
lowly around the z axis at an angular radian velocity �:

� = ẑ�. �2.1�

he assumption of slow rotation implies that

(i) The angular velocity � and the PhC maximal dimen-
ion L satisfy ��L � �c. Therefore no relativistic effects
ake place.

(ii) Consistent with the slow velocity assumption, no
eometrical transformations or deformations take place.
hus, for example, the � operator is conserved: �=��. For

he very same reason, time is invariant in both systems:
= t�.

As stated before, in this work we would like to solve the
ropagation of optical signal in the rotating-medium rest
rame. According to a formal structure of electrodynamics,
ostulated in basic works7,8 that served as the starting
oint to classical studies of the Sagnac effect,9 the basic
hysical laws governing the electromagnetic fields are in-
ariant under any coordinate transformation, including a
oninertial one. The transformation to a rotating system

s manifested only by an appropriate change of the consti-
utive relations. Therefore, under the slow rotation as-
umption discussed above, the source-free Maxwell’s
quations in the rotating frame are given by7,8

� 	 E = i�B, � · B = 0, �2.2a�

� 	 H = − i�D, � · D = 0. �2.2b�

et the material properties at rest be given by �, �. Then
p to the first order in velocity the constitutive relations

n R take on the form7

D = �E − c−2� 	 r 	 H, �2.3a�

B = �H + c−2� 	 r 	 E. �2.3b�

n the above, c is the speed of light in vacuum, � is the
requency, and a time dependence exp�−i�t� is assumed
nd suppressed. This set of Maxwell’s equations has been
sed in the past as the starting point for studies of the
agnac effect in classic works on optical gyroscopes.9 We

ollow now the procedure outlined previously1 to derive a
ave equation governing the magnetic field. Substitute

he above constitutive relations into Maxwell’s equations
2.2a) and (2.2b). The result is

D 	 E = i��H, �2.4a�
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D 	 H = − i��E, �2.4b�

here D is the operator

D � � − ik��r�, k = �/c, ��r� = c−1� 	 r. �2.5�

e follow now the standard procedure of deriving the
ave equation for H, with D replacing �. The resulting

quation is D	 �1/�r�D	H=k2H. Collecting terms that
re first order only (with respect to the angular velocity)
nd rearranging, we end up with our proposed wave equa-
ion in the rotating-medium rest frame, governing the
agnetic field H��r�1:


H��r� = k2H��r� + ikL�H��r�. �2.6�

ere, 
 is the wave operator,


 � � 	
1

�r�r�
� 	 , �2.6a�

nd L� is the rotation-induced operator,

L�H = � 	
��r�

�r�r�
	 H +

��r�

�r�r�
	 � 	 H, �2.6b�

here ��r� is defined in Eqs. (2.5). In the development of
qs. (2.6) and (2.6b), only terms up to the first order in �
ere kept.1,7 Note that, when no rotation takes place, L�

anishes, and Eq. (2.6) reduces to the well-known
tationary-medium wave equation.

Suppose now that we deal with a dielectric structure
hat contains a cavity. Suppose further that, at rest ��
0�, this cavity resonates at frequency �0, at which
-order mode degeneracy is supported. Denote the de-

enerate modes by H0
�m��r�, m=1,2, . . .M. For these

odes, Eq. (2.6) can be rewritten as


H0
�m��r� = k0

2H0
�m��r�, k0 = �0/c, m = 1,2, . . . ,M.

�2.7�

From the mathematical point of view, our goal now is to
xpress the resonant frequency and resonant field under
otation �� ,H�� governed by Eq. (2.6), in terms of the
esonant frequency and modes of the system at rest
�0 ,H0

�m��. Toward this end, we define the inner product
etween two vector fields as the volume integration

�F,G� �� F · Ḡd3r, �2.8�

here the overline denotes the complex conjugate and
·G is the standard scalar product between the two vec-

ors F and G. Perform now an inner product of Eq. (2.7)
ith H�, and of Eq. (2.6) with each of the degenerate
odes H0

�m�. The result is the following set of equations:

�
H0
�m�,H�� = k0

2�H0
�m�,H��,

�
H�,H0
�m�� = k2�H�,H0

�m��

+ ik�L�H�,H0
�m��, �2.9�

hich hold for m=1, . . . ,M. By subtracting from the sec-
nd equation above the complex conjugate of the first one
nd using the fact that 
 is a self-adjoint operator, we ob-
ain

�k2 − k0
2��H�,H0

�m�� + ik�L�H�,H0
�m�� = 0, m = 1,2, . . . M.

�2.10�

t is well known that slow rotation may affect the phase
ccumulation rates and the resonant frequency, but its ef-
ect on the modes’ shape is completely negligible.9 Thus,
e express H� as a summation over the stationary
odes:

H��r� = �
n=1

M

anH0
�n��r�. �2.11�

ubstituting this back into Eq. (2.10), we obtain the ma-
rix equation

�k2 − k0
2��

n=1

M

anAmn = − ik�
n=1

M

an�L�H0
�n�,H0

�m��,

m = 1,2, . . . M, �2.12�

here

Amn = �H0
�n�,H0

�m��. �2.12a�

The inner-product terms in the right-hand side of Eq.
2.12) above incorporate the effect of rotation via the op-
rator L�. Similar expressions were obtained and simpli-
ed in a previous work on the subject.1 Using the same
rocedure, with the slight generalization that here the
odal fields H0

�n� are not assumed to be real (see Appendix
for details), we obtain the following simplified expres-

ion:

�L�H0
�n�,H0

�m�� = ic−1��0Bmn, �2.13�

here

Bmn = �0�ẑ 	 r,H̄0
�n� 	 E0

�m� + H0
�m� 	 Ē0

�n��. �2.13a�

Define now A and B as square M	M matrices with el-
ments Amn and Bmn, respectively. Since the degenerate
odes H0

�m� are linearly independent, A is nonsingular, so
ts inverse A−1 exists. Therefore Eq. (2.12) can be written
s the eigenvalue problem

�A−1Ba =
�2 − �0

2

��0
a, a = 	 a1

a2




aM

� , �2.14a�

here a is a column vector with the elements an. It is
lear that, at slow rotation, the splitting of �0 into differ-
nt resonances � is small. Thus we write

� = �0 + ��, �2.15a�

nd, up to first order in �� /�0, we can approximate ��2

�0
2�2�0���:

�2 − �0
2

��0
� 2

��

�0
. �2.15b�



a

G
�
e
t

F
v
E
t
p
d

A
I
I
a

a

H
t

a
m
i
p
o

u
o

T
b
r
b
i

t
s
H

B
T
e

t
e
t
c
c
S

w
i
t
c
s
i
s
g
R
=
i
i

w
w
	
e
p

a
H
a
a
q

t
H
n
o

t
l
t
n
t
t
c
t
t
t
(
m

B. Z. Steinberg and A. Boag Vol. 24, No. 1 /January 2007 /J. Opt. Soc. Am. B 145
The eigenvalue problem in Eq. (2.14a) can be rewritten
s

Ca =
��

�0�
a, C = �1/2�A−1B. �2.16�

enerally, the matrix C possesses M distinct eigenvalues
j, j=1, . . .M. As we shall see in Subsection 2.B.1, these
igenvalues are real. Therefore the last equation yields
he following M values of frequency splitting:

��j��� = ��0�j, j = 1, . . . ,M. �2.17�

urthermore, each eigenvalue �j corresponds to an eigen-
ector aj, whose elements �aj�n, n=1, . . .M, can be used in
q. (2.11) to approximate the jth splitted mode of the ro-

ating microcavity. Additional properties of the eigenvalue
roblem that will be useful in the analysis of Section 3 are
escribed below.

. Symmetries, Realness of the Eigenvalues, and
nterpretation of A−1B
t is easily verified that the matrices A and B are self-
djoint; namely, they possess the symmetry properties

Amn = Ānm, Bmn = B̄nm, �2.18a�

nd the diagonal elements of B are given by

Bmm = − 2�0�ẑ 	 r,Re S0
�m��. �2.18b�

ere S0
�m�=E0

�m�	H̄0
�m� is the Poynting vector of the cavi-

y’s mth mode.
Since the inverse of a self-adjoint operator is self-

djoint, it follows that A−1 is self-adjoint, too [see com-
ent after Eq. (2.13a)]. A product of self-adjoint operators

s a self-adjoint operator. Thus A−1B is self-adjoint and
ossesses pure real eigenvalues. This proves the realness
f the �j’s in Eq. (2.17).

It is instructive to examine more closely the integrand
mn associated with the elements Bmn. In cylindrical co-
rdinates, we have ẑ	r= �r � �̂. Then

Bmn = �0�
V

umnd3r

= �0�
V

�r��̂ · �H0
�n� 	 Ē0

�m� + H̄0
�m� 	 E0

�n��d3r.

�2.18c�

hus, up to a multiplicative factor, the operator A−1B can
e interpreted as an operator that extracts the effective
adius of the power rotation (along �̂), carried mutually
y the modes inside the cavity. This will be demonstrated
n the following subsections.

Finally, we note that a great deal of simplification in
he interpretation of the results and further physical in-
ights are gained if one uses an orthogonal and real set

0
�m�. This is discussed in the following.

. Using Orthogonal and Real Set H0
„m…

he degenerate modes H0
�m� satisfying Eq. (2.7) are lin-

arly independent. Furthermore, since they all possess
he same eigenvalue k0
2, any linear combination of degen-

rate modes is by itself a degenerate mode. It follows from
he above arguments that, without loss of generality, we
an always assume that the functions H0

�m�, m=1, . . . ,M,
onstitute an orthogonal set (i.e., we can apply the Gram–
chmidt procedure, if necessary). Therefore, we get

A = H0
�1�2I, �2.19�

here I is the identity matrix. Note that, in principle, ow-
ng to normalization we can have A=I, but the generic
erm H0

�1� is kept in order to avoid confusion with physi-
al units. In addition, since the operator in Eq. (2.7) is
elf-adjoint, the eigenvalue k0

2 is real, and the correspond-
ng degenerate modes H0

�m� can always be normalized
uch that they constitute pure real functions (if a
enerally complex H0

�m� constitutes a mode, so does
e H0

�m�.) Then E0
�m� must be pure imaginary ��	H0

�m�

−i�0�0�r�r�E0
�m��, making B pure imaginary with a van-

shing diagonal [see Eqs. (2.13a) and (2.18b)]. Therefore C
s of the form

C =
1

2H0
�1�2�

0 B12 B13 ¯ B1M

B̄12 0 B23 ¯ B2M

B̄13 B̄23 0 ¯ B3M




B̄1M B̄2M¯
0

� � i�,

�2.20�

here � is a real skew-symmetric matrix10 (a real matrix
hose elements satisfy mn=−nm and nn=0). Real M
M skew-symmetric matrices satisfy the following inter-

sting properties, listed together with their important im-
lications for our problem:

(i) If M is even, the eigenvalues are pure imaginary and
lways come in symmetric pairs around the origin: ±i�.
ence �, the eigenvalues of C, are real and symmetric
round the origin. This means that the degenerate modes
lways undergo a symmetrical split of their resonance fre-
uency.
(ii) If M is odd, the rule above still applies, except that

here is an additional eigenvalue at the origin: �=0.
ence, a degenerate mode whose resonant frequency does
ot change under rotation exists if the system possesses
dd-order degeneracy.

The above results may offer the following physical in-
erpretation. The rotating system possesses M modal so-
utions H��r� that are obtained eventually by the summa-
ion in Eq. (2.11), where the summation coefficients are
othing but the elements of the eigenvectors a of the ro-
ation operator [see Eqs. (2.16)]. Generally, this summa-
ion yields new modes H� that rotate around the cavity
enter and correspond effectively to azimuthal propaga-
ion within the cavity. The new modes that corotate (coun-
errotate) with � undergo a downward (upward) shift in
heir resonant frequency and correspond to the negative
positive) eigenvalues �. Furthermore, owing to the sym-
etry of the matrices involved, to every clockwise-
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otating new mode H� there corresponds a
ounterclockwise-rotating new mode with an identical
eld structure. Hence the symmetrical frequency splitting
esults. However, if M is odd, there exists one additional
ode corresponding to radial propagation (i.e., from the

avity center outward toward the cavity walls and back to
he center). Such propagation is not affected by rotation
up to first order in �), hence the zero eigenvalue of the
otation operator. Clearly, a conventional cavity (no mode
egeneracy) is a special case that corresponds to M=1
nd up to first order in � is not affected by rotation.
Another example of an odd-order degeneracy can be

rovided by a cavity in a three-dimensional crystal. If �
ẑ�, then a zero-eigenvalue mode corresponds to a field
scillating along the z axis and possessing azimuthal
ymmetry in the �x ,y� plane.

Comment. How general are the results discussed
bove? It should be emphasized that the only assumption
ade is the use of the orthogonal and real set for H0

�m�.
owever, since generally degenerate modes are linearly

ndependent, the passage from any arbitrary set of m de-
enerate modes of the system to a real and orthogonal set
s nothing but a change of basis. Such transformation
oes not affect the spectral properties of the matrices in-
olved. Therefore the conclusions discussed above, espe-
ially those pertaining to the location of eigenvalues and
heir interpretations, are of general validity and are not
estricted to a specific set of degenerate modes.

. Case of M=2
he properties of the eigenvalues �j and the correspond-

ng eigenvectors aj are seen most transparently for the
ase of the second-order degeneracy. This case is often en-
ountered in PhC (see, for example, Figs. 1(c), 1(d), and
). Here the degenerate orthogonal modes H0

1,2�r� can be
iewed as two dipoles with an angle of � /2 between their
olarizations.
With respect to the eigenvalues of Eq. (2.20) above for
=2, it can be shown by a straightforward algebraic cal-

ulation that

�1,2 = ±
�B12�

2H0
�1�2

, �2.21�

nd the corresponding eigenvectors a�1,2� satisfy

�a�1,2��1 = � i�a�1,2��2, �2.22�

here �aj�n is the nth element of the jth. eigenvector. This
esult is physically illuminating. It shows that the modal
elds H� of the rotating system are obtained by a super-
osition of H0

�1��r� and H0
�2��r� with a phase difference of

� /2. This superposition yields a rotating mode; the two
odes of the rotating system rotate clockwise and coun-

erclockwise, and each possesses a shift of its resonance
i.e., splitting) according to a generalized Sagnac effect.
his result is consistent with the physical interpretation
s discussed in Subsection 2.B.
. CLASSICAL SAGNAC EFFECT AND
FFECTIVE ROTATION RADIUS
he theory developed in the previous sections holds for a
eneral cavity that supports degenerate modes. It there-
ore should hold also for the simplest and most familiar
xample: the ring resonator. For large rings (rings of ra-
ius R large compared with the wavelength), the classical
agnac effect formula predicts the frequency splitting
�1,2�=�0±�0R / �nc�. We show that our theory recon-
tructs this classical expression.

For a large ring, the electric and magnetic fields of the
egenerate modes are most easily presented as clockwise
nd counterclockwise propagating local plane waves of
he following form:

E0
�1,2� = ẑ�H0 exp�±ik0nR��, �3.1a�

H0
�1,2� = ± �̂H0 exp�±ik0nR��, �3.1b�

here n=��r and �=��0 /�0�r. At this point it should be
oted that one can transform these fields into their real-
rthonormal counterparts as discussed in Subsection 2.B.
he result is two standing waves expressed as cosine and
ine functions. However, as emphasized before, the final
esults are independent of the specific form of the modal
et. Thus, for the present simple example we prefer to
eep the complex form. For a ring of width small com-
ared with its radius R, we can now approximate B11 by

B11 � �0R��̂,− �̂H̄0E0 − �̂H0Ē0� = − 2�0RH02�.

�3.2�

ikewise, B22=2�0R H02�, B12=B21=0, and A=I H02.
his yields

C =
R

nc�− 1 0

0 1� , �3.3�

or which �1,2= ±R / �nc�. Thus

��12 = �0��12 = ± �0�R/�nc�, �3.4�

hat is, as predicted, the classical Sagnac effect.4

Comment: The effective radius. The last result of-
ers the concept of an effective radius of rotation for the
ost general case of degenerate modes. The effective ro-

ation radius of the ith mode, possessing the eigenvalue
i, is given by

Ri
eff = ��i�nc. �3.5�

s we show in Section 4, this expression indeed yields the
adius of annular domain in the cavity that contributes
he most to the frequency splitting and is consistent with
he interpretation discussed in connection with Eq.
2.18c).

. EXAMPLE OF A ROTATING PHOTONIC
RYSTAL
he first structure under consideration is shown in Fig. 2.
t is a two-dimensional crystal consisting of 91 dielectric
ylinders of radius 0.6 �m and �r=8.41, with a hexagonal
attice with a lattice constant of a=4 �m. For the TM po-
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arization, this structure possesses a bandgap covering
he range between 7.5 and 10.5 �m. A microcavity with
egeneracy rank M=2 (i.e., supporting two degenerate
odes) at a resonant wavelength of �0=2�c /�0
8.79941 �m is created at the center by increasing the ra-
ius of the central cylinder to 1.1 �m. The degenerate
odes’ electric field magnitude is shown in Fig. 1.
Below we demonstrate the effect of rotation on the

tructure. We first calculate the mode splitting due to ro-
ation by using the theory developed here and then com-
are the results with those obtained by full numerical
imulation of the rotating crystal.

. Theoretical Prediction
he degenerate modal fields of the stationary structure,

0
�1,2�, H0

�1,2� shown in Fig. 1, were obtained numerically by
ur exciting the structure under study (Fig. 2) with inci-
ent plane waves of wavelength �0=2�c /�0=8.79941 �m
nd solving for the fields using a method-of-moments11-
ased approach—the multifilament algorithm.12,13 Owing
o the strong isolation of the microcavity, obtained by the
urrounding crystal, the fields within the cavity and in its
lose neighborhood constitute a good approximation of the
rue modal fields of the structure. These numerically ob-
ained stationary-system fields were substituted into the
heoretical expressions in Eqs. (2.12a) and (2.13a) in or-
er to compute the matrices A and B, and then the eigen-
alues �1,2 were calculated. The result is �0�1,2= ±0.229,
nd Fig. 3 shows the corresponding resonance splitting,
btained by our substituting this result into Eq. (2.17)
solid lines).

According to Eq. (3.5), the effective rotation radius of
he microcavity in the present example is 0.93 �m. It is
nstructive to check this number against a plot of the in-
egrand of B12 and B21 in the x ,y plane [see discussion af-
er Eq. (2.18c)]. The integrands u12 and u21 are shown in

elements of B. The mode functions shown in Figs. 1(c) and 1(d)
ig. 3. Splitting of the degenerate cavity resonance frequency
ue to rotation.
ig. 4. (Color online) The integrand in Eq. (2.18c) used to compute the
re used.
Fig. 2. PhC structure under study.
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ig. 4. As predicted, these functions are pure imaginary
nd are essentially concentrated along a circular path
hose radius is about 1 �m. This value is consistent with

he effective radius calculation using Eq. (3.5).

. Full Numerical Simulation of the Rotating System

. Algorithm Considerations
ur system consists of a high-Q resonator. Thus, direct

ime-domain approaches such as the finite-difference time
omain may suffer from slow convergence and enhanced
umerical dispersion effects. We note that, at the rest
rame of the rotating system, the optical signal possesses

pure time-harmonic nature. Thus, a good candidate for
numerical computation of the entire scenario is a

oment-method-based time-harmonic algorithm.11 A vital
ngredient of any such algorithm is the Green’s function
�r ,r�� of an appropriately defined background medium,
escribing the field at r due to a unit point source at r�.
or scattering from a stationary structure, the back-
round is most conveniently defined as a homogeneous
edium, and the corresponding G is well known. For

nalysis of scattering from a rotating structure, as seen in
he rotating-medium rest frame, the background-problem
reen’s function G��r ,r�� is the field in a rotating homo-
eneous medium in which both the source point at r� and
he observer at r rotate together with the medium at an
ngular velocity ẑ�. For two-dimensional problems,
��r ,r�� has been studied in detail in a recent work.3 It

an be expressed in cylindrical coordinates as

G� = I
i

4 �
m=−�

�

Jm�k0nm���Hm
�1��k0nm���exp�im�� − �1��

� I
i

4
H0

�1� exp�i
�

�
k0

2�yx� − xy��� , �4.1�

here I= i�� or I= i�� for TM or TE polarization, Hm
�1� is

he mth-order Hankel function of the first kind, Jm is the
th-order Bessel function, m= �1+2m� / ��n2��1/2, and

� ,��=max,min�� ,���. With this at hand, well-tested
egacy codes dealing traditionally with stationary scatter-
rs can be extended to hold also for rotating scatterers (at
heir rest frame), simply by one’s replacing the
tationary-medium Green’s function by G� and at no ad-
itional cost of algorithm complexity or programming. [It
s easily verified that in two-dimensional geometries rota-
ion does not affect boundary conditions at the dielectric
nterface3; this can be seen directly from the divergence-
ree conditions in Eqs. (2.2a) and (2.2b) by one’s applying
o it the fact that the structure is invariant along the ro-
ation axis ẑ.] With this approach, we have extended the
ultifilament method (used, for example, in Ref. 2 and

eferences therein) to apply to rotating crystals as well.

. Numerical Results
e used the rotating-medium algorithm to simulate the

ntire structure of Fig. 2 under rotation. The system was
xcited by an incident plane wave, and the field intensity
nside the cavity as a function of the excitation wave-
ength has been computed for various values of �. The ro-
ation frequency has been extremely exaggerated in order
o resolve the resonance splitting at a reasonable numeri-
al effort; we choose � /�0 of the order of 10−5. The results
re shown in Fig. 5. At rest �� /�0=0�, the intensity graph
eaks exactly at the resonance wavelength �0
8.79941 �m. Note that the resonance relative band-
idth ��� /�0� is about 10−4. This relatively low-Q reso-
ance �Q�104� is mainly due to the finite size of the crys-
al and to numerical inaccuracy. Thus, in simulating the
otating crystal, one has to choose rotation speeds suffi-
iently large to yield resonance splitting larger than Q−1

�� /�0 (in relative terms) in order to resolve the effect
umerically (see discussion regarding the practical impli-
ations of this issue in Section 6). This is the main reason
or choosing high rotation speeds. As can be seen from the
raph, as � increases, two peaks can be identified, each of
hich corresponds to a distinct resonance. The distance of
ach of these peaks from the resonance of the stationary
ystem—the splitting due to rotation—has been extracted
nd is displayed in Fig. 3 as a function of the normalized
otation rate � /�0 (circles). The figure also displays the
plitting as predicted by the analytical results (solid line).
s can be seen, there is a good agreement between the re-
ults.

. MODEL FOR ROTATING SLAB
HOTONIC CRYSTAL MICROCAVITY
he second structure under consideration is the slab pho-

onic crystal (PhC) microcavity discussed in several pre-
ious works5,6 and operating at the 1.55 �m range. An op-
ically thin slab made of InGaAsP (�r=3.4 at vacuum
avelength �v=1.55 �m), with a thickness of half mate-

ial wavelength, supports a fundamental TE mode whose
ffective index is approximately 2.64. To create a realistic
hC, the slab is patterned by a two-dimensional hexago-
al array of air holes, and a microcavity is created by fill-

ng up one of the air holes with the slab material (remov-
ng a hole). It has been shown5 that, for the range of
requencies that correspond to the fundamental TE mode
f the slab, this structure can be modeled quite accurately
y using a much simpler ideal two-dimensional model.
he simplified model consists of an ideal two-dimensional
rystal with the same air-hole geometry as that of the

ig. 5. Intensity of the field inside the rotating cavity versus ex-
itation wavelength, for various values of the angular velocity �.



s
e
n
s
i
b
r
m

4
i
w
�
T
r
t
c
S
a
r
t
S
i
t

6
T
o
g
w
c
s
s

l
m
l
i
t
n

i
d
e
t
4
a
p
b

q
i
t
t
i
r
w
r

w
h
o
u
o
s
H
b
m
q
t
c
c
Q
d
w
F
p
t
c
e
e
w
w

r
k
(
o
s
s
N
g
s
o
e
g
s
f

F
d

B. Z. Steinberg and A. Boag Vol. 24, No. 1 /January 2007 /J. Opt. Soc. Am. B 149
lab, embedded in a background medium possessing the
ffective property; �r=2.64. Thus, we consider a hexago-
al lattice of air holes of radius 0.14 �m and a lattice con-
tant of 0.475 �m, in a material with �r=2.64. A microcav-
ty is created by filling in one of the air holes by the
ackground material. For TE polarization, this cavity
esonates at �0=1.5548 �m, supporting two degenerate
odes (see Ref. 5 for details and for the modes’ shapes).
We have repeated the computations detailed in Section
for the present structure. The results are summarized

n Fig. 6. The stationary-system modal fields E0
�1,2�, H0

�1,2�

ere computed numerically, and then the eigenvalues
1,2 were calculated using the formulation in Section 2.
he result is �0�1,2= ±0.0522, and Fig. 6 shows the cor-
esponding resonance splitting, obtained by substituting
his result into Eq. (2.17) (solid lines). Next, full numeri-
al simulations of the rotating system, as discussed in
ubsection 4.B, were performed with extremely exagger-
ted rotation speeds for easy numerical extraction of the
esonance splitting (Q here is about 50 times smaller than
hat of the example in Subsection 4.B—see discussion in
ubsection 4.B.2). A computation similar to the one shown

n Fig. 5 but for the TE slab model was performed, and
he extracted maxima are shown in Fig. 6 by circles.

. IMPLEMENTATION CONSIDERATIONS
he aim of the present work is to carry out a detailed the-
retical study of the rotation-induced splitting of mode de-
eneracy in microcavities with sizes of the order of one
avelength. It is clear that its implementation to practi-

al optical gyroscopes constitutes a research subject by it-
elf. Nevertheless, the present study can provide some ob-
ervations.

First, it is important to recognize that, in general, the
ack of uniformity or stability of any gyroscope’s environ-

ental conditions is an important factor that eventually
imits its resolution. Therefore, it is clear that miniatur-
zation is potentially advantageous; hence the motivation
o minimize the gyroscope dimensions. In this respect,
ote that the geometry of the second example (discussed

ig. 6. Splitting of the degenerate cavity resonance frequency
ue to rotation, for the slab PhC (TE polarization).
n Section 5) is almost an order of magnitude smaller in
iameter than that of the first example (Section 4). How-
ver, its sensitivity to rotation, as implied by the magni-
ude of the eigenvalues �1,2, is smaller only by a factor of

(�0 �� � =0.229 and 0.0522 in the first and second ex-
mples, respectively). This observation suggests that, in
rinciple, structure optimization can be invoked to obtain
est performance in terms of sensitivity or dimensions.
The second point pertains to the detectability of the fre-

uency splitting. It is clear that a frequency splitting that
s smaller than the stationary-system bandwidth (where
he latter scales as Q−1) may be extremely difficult to de-
ect and to measure. In such cases, the corresponding cav-
ty excitation curve cannot be separated into two distinct
esonance peaks. Let �� be the cavity resonance band-
idth. Then a rough estimate of the smallest detectable

otation rate �min is given by [see Eq. (2.17)]

�min =
��

�0 maxj �j
�

1

Q maxj �j
, �6.1�

here in the second equality we used �� /�0�Q−1, which
olds for passive resonators. Thus, for practical designs,
ne should employ extremely high-Q microcavities; val-
es of Q�104 may suffice for a principle theoretical dem-
nstration (as done in this work), but they certainly fall
hort of what is needed for a practical implementation.
owever, intensive research efforts carried on currently
y many groups are aimed toward increasing the Q of
icrocavities.5,6,14,15 Recently,15 PhC microcavities with

uality factors of the order of 106 were fabricated, and
heoretical estimations indicating that values of Q ex-
eeding 2	107 are possible were reported. In a different
onfiguration, microcavities of the toroid structure with
=108 were fabricated.16 These resonators support mode

egeneracy and resonant splitting under rotation just as
ell and are amenable to the same study carried out here.
urthermore, all these achievements have been accom-
lished for passive microcavities. It is well known that
he presence of gain material and lasing may further in-
rease the quality factor (or decrease bandwidth) by sev-
ral orders of magnitude. Thus, while certainly not an
asy task, it is anticipated that the Q factors (or band-
idth) required for practical gyroscope implementations
ill eventually be achieved.
Finally, we note that the work in Ref. 1 studied theo-

etically the effect of rotation on a closed-loop CCW,
nown also as a coupled-resonator optical waveguide
CROW). It has been shown theoretically that a compact
ptical gyroscope can be designed on the basis of that
cheme. This work1 assumes that the microcavities con-
tituting the waveguide do not support mode degeneracy.
ew studies, however, show that the presence of mode de-
eneracy can be exploited to enhance the device
ensitivity17–19; it has been shown that CROWs consisting
f microcavities with mode degeneracy can exhibit
xponential-type sensitivity to rotation.18,19 A pivotal in-
redient in these new devices is the rotation-induced
plitting reported here. This subject is currently under
urther investigations.
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. CONCLUSION
theory for slowly rotating microcavities that support
ode degeneracy has been developed. It was shown that

otation induces splitting of the (stationary system) de-
enerate resonance frequency �0 to several frequencies,
nd a detailed theoretical study of this splitting effect has
een carried out. The proposed theory recovers the classi-
al Sagnac effect for the specific case of the large ring
esonator. Furthermore, it provides a systematic frame-
ork for cases in which where the classical expressions of

he Sagnac effect cannot be directly applied. In the most
eneral case, Mth-order degeneracy undergoes splitting
nto M different resonances, symmetrically distributed
round �0. The magnitude of the frequency splitting is
inearly dependent on the rotation speed �, with propor-
ionality factors given by the eigenvalues of the proposed
otation operator. The theory has been tested on specific
xamples of rotating photonic crystals’ microcavities, and
he splitting effect has been demonstrated. Implications
o practical optical gyroscopes were discussed.

PPENDIX A: THE Bmn COEFFICIENTS
e have the following identities [use ��	A� ·B=� · �A
B�+A · ��	B� and A · �B	C�= �A	B� ·C]:

�� 	
�

�r
	 H0

�n�� · H̄0
�m� = � · ���

�r
	 H0

�n�� 	 H̄0
�m��

+ ��

�r
	 H0

�n�� · �� 	 H̄0
�m��,

�A1a�

��

�r
	 � 	 H0

�n�� · H0
�m� = − ��

�r
	 H̄0

�m�� · �� 	 H0
�n��.

�A1b�

he inner products in Eq. (2.12) are nothing but volume
ntegrations (over arbitrarily large volume V) of the terms
bove. Using the Gauss theorem, we get for the contribu-
ion of the first term on the right-hand side of Eq. (A1a)

V

� · ���

�r
	 H0

�n�� 	 H̄0
�m��d3x

=�
S=�V

���

�r
	 H0

�n�� 	 H̄0
�m�� · ds → 0. �A2�

his is because the flux through the surface S=�V van-
shes as V becomes large (the functions H0

�n� are exponen-
ially decreasing). Therefore, the inner product terms
ventually comprise

�L�H0
�n�,H0

�m�� =� �

�r
	 H0

�n�,� 	 H0
�m��

−�� 	 H0
�n�,

�

�r
	 H0

�m�� . �A3�

sing again �A	B� ·C=A · �B	C�,
�L�H0
�n�,H0

�m�� =� �

�r
,H̄0

�n� 	 � 	 H0
�m��

−� �

�r
,H0

�m� 	 � 	 H̄0
�n�� . �A4�

ince �=��r�=�	r /c and �=�ẑ, the above result yields

L�H0
�n�,H0�m��

= c−1�� ẑ 	 r

�r
,H̄0

�n� 	 � 	 H0
�m� − H0

�m� 	 � 	 H̄0
�n�� .

�A5�

inally, we use �	H0
�m�=−i�0�0�r�r�E0

�m� to obtain

�L�H0
�n�,H0

�m�� = ic−1��0�0�ẑ 	 r,H̄0
�n� 	 E0

�m� + H0
�m� 	 Ē0

�n��.

�A6�
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eached by e-mail at steinber@eng.tau.ac.il.
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