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1. INTRODUCTION

In a recent publication’® the effect of rotation on a photo-
nic crystal (PhC) containing a set of microcavities has
been studied analytically. The configuration consisted of a
coupled-cavity waveguide (CCW), known also as a
coupled-resonator optical waveguide (CROW), situated
along a circular path within an otherwise perfect crystal.
To our knowledge, novel manifestation of the Sagnac ef-
fect, expressed via a rotation-dependent dispersion equa-
tion, has been reported. This effect is shown to depend on
new sets of parameters not previously reported or studied
as far as we know and is intimately related to the intri-
cate scattering—propagation phenomena associated with
propagation in crystals and microcavities. Although the
specific examples have been presented for PhC structures,
the general analysis, as well as the resulting dispersion
relation, holds for a general CCW structure.

From a somewhat broader point of view, the previously
reported results! indicate that the added flexibility and
ability of PhCs to manipulate light may offer new insights
into the basic understanding of the Sagnac effect and re-
veal new phenomena. From the practical point of view,
this can potentially lead to novel designs and to a new
generation of optical gyroscopes.

To that end, the general purpose of the present work is
twofold. Our first goal is to further explore the effect of ro-
tation in PhC microcavities; we study cavities with mode
degeneracy and point out their potential for optical gyro-
scopes. To the best of the authors’ knowledge, these min-
iature structures constitute the smallest optical gyro-
scopes known so far. This study is based on extending the
cavity perturbation theory of degenerate modes? to rotat-
ing PhCs. The second goal is to use the Green’s function
theory for a rotating medium?® in order to validate nu-
merically our theoretical results.

We feel, however, that before turning to the theoretical
study, a brief description of the differences between our
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work and the classical analysis of the Sagnac effect is in
order. The simplest and most familiar example of an op-
tical resonator with degenerate modes is the closed loop
or ring structure made out of a conventional (reciprocal)
material. Here, mode degeneracy is manifested by the
fact that, for any of its resonant frequencies, the ring sup-
ports two modes propagating in opposite directions. If a
ring of radius R rotates at an angular velocity () around
an arbitrary axis normal to the ring plane, reciprocity
along the propagation path is lost; the degenerate reso-
nant frequency splits into two distinct frequencies w>?
=woxQwgoR/nc corresponding to propagation in counter-
rotation or corotation directions. This is nothing but the
classical Sagnac effect.* However, there are many cases of
mode degeneracy associated with microcavities in PhCs,
for which the manifestation of the Sagnac effect is some-
what less obvious. An example is shown in Fig. 1. Con-
sider a two-dimensional PhC that consists of dielectric
cylinders of radius 0.6 um and €.=8.41, situated on a hex-
agonal lattice with a lattice constant of a=4 um. For TM
polarization, a microcavity with two degenerate modes at
a resonant wavelength of N\g=2mc/wy=8.79941 um is cre-
ated by increasing the radius of a cylinder to 1.1 um. The
degenerate modes’ electric field magnitude is shown in a
logarithmic scale. Similar examples, but in TE polariza-
tion and slab geometry, are provided in the literature.>%
These modal fields cannot, in principle, be a priori pre-
sented as local plane waves or geometrical rays that
propagate (and accumulate phase) along a well-defined
path. Furthermore, in the general case the mode degen-
eracy rank M can be larger than 2 (i.e., in the general case
the structure supports M =2 distinct modal fields at its
resonant frequency wg). Thus the classical formulation of
the Sagnac effect, which holds for only two distinct modes
and requires a precise definition of the propagation path,
cannot be directly applied.

As pointed out above, the first purpose of the present
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Fig. 1. (Color online) Electric field magnitudes on a decibel scale
of a doubly degenerate TM microcavity (M=2), in a two-
dimensional hexagonal photonic crystal (PhC). The crystal is

made of dielectric cylinders, outlined by black circles. (a) EE)D. (b)
E(OZ). These modes are nonorthogonal, and EE)Z) is a m/3-rotated
replica of Ef)ll. (c¢) The linear combination EB”»%E}}HEE?), (d) The

linear combination E(02)»—>E£)1>—EBZ). These modes are orthogonal.

work is to develop a general theory for the analysis of mi-
crocavities with mode degeneracy, under slow rotation
conditions. The basic methodology is to extend the cavity
perturbation theory of degenerate modes?® to rotating
PhCs, in their rest (noninertial) frame. The result is a for-
mulation similar in structure to the classical cavity per-
turbation theory, in which the effect of rotation appears as
a new perturbation operator. We solve our proposed equa-
tion and get closed-form expressions for the effect of rota-
tion on the degenerate resonances. The formulation holds
for a general cavity in a two- or three-dimensional con-
figuration, and we show that in the specific case of a
simple closed loop it precisely predicts the classical Sag-
nac effect.? In the more general case, we show that, under
rotation, a resonance frequency w, with mode degeneracy
of rank M =2 splits into M different resonances wg")(ﬂ),
m=1...M; the distance of each from wq is proportional to
the rotation rate (). We explore the general properties of
these resonances (e.g., symmetries and central location)
and provide explicit expressions for the splitting magni-
tude. Thus, in the specific case illustrated by Fig. 1, our
general theory predicts a symmetrical splitting of the de-
generate resonance into two distinct resonances
woxdw(()), where the splitting magnitude dw(Q)) is pro-
portional to the system rotation rate ().

The structure of the paper is as follows. In Section 2,
we develop the general theory and explore the symmetry
properties of the splitting effect. In Section 3, we show
that for the case of a simple ring structure our general
theory reconstructs the classical Sagnac effect, and we
suggest the concept of an effective rotation radius for the
more general cavity. In Sections 4 and 5, we provide spe-
cific examples of splitting of degenerate modes in rotating
PhC microcavities for a two-dimensional TM case and for
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a TE slab model and compare our theoretical predictions
with exact numerical computations. In Section 6, we
present some observations pertaining to the implementa-
tion of rotating crystals and microcavities as optical gyro-
scopes. Concluding remarks are provided in Section 7.

2. THEORY

Let €.(r) be the (time-invariant) relative dielectric prop-
erty of a stationary medium, as measured in its (inertial)
rest frame. We assume now that the medium rotates
slowly around the z axis at an angular radian velocity ():

Q=20. (2.1)
The assumption of slow rotation implies that

(i) The angular velocity () and the PhC maximal dimen-
sion L satisfy |QL|<c. Therefore no relativistic effects
take place.

(i1) Consistent with the slow velocity assumption, no
geometrical transformations or deformations take place.
Thus, for example, the V operator is conserved: V=V'. For
the very same reason, time is invariant in both systems:
t=t'.

As stated before, in this work we would like to solve the
propagation of optical signal in the rotating-medium rest
frame. According to a formal structure of electrodynamics,
postulated in basic works™® that served as the starting
point to classical studies of the Sagnac effect,’ the basic
physical laws governing the electromagnetic fields are in-
variant under any coordinate transformation, including a
noninertial one. The transformation to a rotating system
is manifested only by an appropriate change of the consti-
tutive relations. Therefore, under the slow rotation as-
sumption discussed above, the source-free Maxwell’s
equations in the rotating frame are given by"®

VXE=iowB, V-B=0, (2.2a)

VXH=-iwD, V-D=0. (2.2b)
Let the material properties at rest be given by ¢, u. Then
up to the first order in velocity the constitutive relations
in R take on the form’

D=eE-c2QxrxH, (2.3a)

B=pH+c?QxrxE. (2.3b)
In the above, c is the speed of light in vacuum, w is the
frequency, and a time dependence exp(-iwt) is assumed
and suppressed. This set of Maxwell’s equations has been
used in the past as the starting point for studies of the
Sagnac effect in classic works on optical gyroscopes.9 We
follow now the procedure outlined previously® to derive a
wave equation governing the magnetic field. Substitute
the above constitutive relations into Maxwell’s equations
(2.2a) and (2.2b). The result is

DXE=iouH, (2.4a)
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DX H=-iweE, (2.4b)

where D is the operator
D=V-ikB(r), k=wl, Br)=c'QxXr. (2.5)

We follow now the standard procedure of deriving the
wave equation for H, with D replacing V. The resulting
equation is DX (1/¢,)D X H=k?H. Collecting terms that
are first order only (with respect to the angular velocity)
and rearranging, we end up with our proposed wave equa-
tion in the rotating-medium rest frame, governing the
magnetic field H Q(r)lz

OH\(r) = B2H(r) + ikLoH o (r). (2.6)

Here, O is the wave operator,

0=V X

e,(r)v X, (2.6a)

and L, is the rotation-induced operator,

Br) Br)
X H +
€.(r) €.(r)

LoH=V X XV XH, (2.6b)

where B(r) is defined in Egs. (2.5). In the development of
Eqgs. (2.6) and (2.6b), only terms up to the first order in 8
were kept."" Note that, when no rotation takes place, Lq
vanishes, and Eq. (2.6) reduces to the well-known
stationary-medium wave equation.

Suppose now that we deal with a dielectric structure
that contains a cavity. Suppose further that, at rest ()
=0), this cavity resonates at frequency wg, at which
M-order mode degeneracy is supported. Denote the de-
generate modes by Hg")(r), m=1,2,...M. For these
modes, Eq. (2.6) can be rewritten as

OH(r) = kZH(r), ko=wylc, m=1,2,...,M.
2.7)

From the mathematical point of view, our goal now is to
express the resonant frequency and resonant field under
rotation (w,H) governed by Eq. (2.6), in terms of the
resonant frequency and modes of the system at rest
(wo,Hg")). Toward this end, we define the inner product
between two vector fields as the volume integration

(F,G)= f F-Gd°r, (2.8)

where the overline denotes the complex conjugate and
F-G is the standard scalar product between the two vec-
tors F and G. Perform now an inner product of Eq. (2.7)
with H,, and of Eq. (2.6) with each of the degenerate

modes H g"). The result is the following set of equations:

(OHY",H) = kX H, H),

(0H o, Hy™) = k*(H o, H]")
+ ik<Lsszz,H§)m)>, (2.9)

which hold for m=1,...,M. By subtracting from the sec-
ond equation above the complex conjugate of the first one
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and using the fact that O is a self-adjoint operator, we ob-
tain

(B2 - kA (H 0, H) + ik(LoHo  Hy =0, m=1,2,...M.
(2.10)

It is well known that slow rotation may affect the phase
accumulation rates and the resonant frequency, but its ef-
fect on the modes’ shape is completely negligible.9 Thus,
we express Hy as a summation over the stationary
modes:

M
Hy(r)= > a,H{(r).

n=1

(2.11)

Substituting this back into Eq. (2.10), we obtain the ma-
trix equation

M M
(k2 - k) D, @Ay, = — ik D, a,(LoHY H™),
n=1 n=1
m=1,2,...M, (2.12)
where
A= (HD HM). (2.12a)

The inner-product terms in the right-hand side of Eq.
(2.12) above incorporate the effect of rotation via the op-
erator L. Similar expressions were obtained and simpli-
fied in a previous work on the subject.’ Using the same
procedure, with the slight generalization that here the
modal fields H B”) are not assumed to be real (see Appendix
A for details), we obtain the following simplified expres-
sion:

(LoHE H™) = ic ™' QwoB,ny, (2.13)

where
By = €2 X r,HY X EJV + HV X E{Y). (2.13a)

Define now A and B as square M X M matrices with el-
ements A,,, and B,,,, respectively. Since the degenerate
modes Hg”) are linearly independent, A is nonsingular, so
its inverse A~! exists. Therefore Eq. (2.12) can be written
as the eigenvalue problem

a;
wZ ol w%
QA 'Ba = a, a=||, (2.14a)
(l)(t)o :
Ay

where a is a column vector with the elements a,. It is
clear that, at slow rotation, the splitting of w, into differ-
ent resonances o is small. Thus we write

(2.15a)

®=wy+ dw,
and, up to first order in dw/w,y, we can approximate (w?
- wa = 2wy w):
o - wg ow

~2—.

ww g

(2.15b)
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The eigenvalue problem in Eq. (2.14a) can be rewritten
as

Sw
Ca = @ C=(1/2) A7 'B. (2.16)

wo

Generally, the matrix C possesses M distinct eigenvalues
Aj, j=1,...M. As we shall see in Subsection 2.B.1, these
eigenvalues are real. Therefore the last equation yields

the following M values of frequency splitting:
00, (Q) =QwoA;, j=1,...,M. (2.17)

Furthermore, each eigenvalue A; corresponds to an eigen-
vector &/, whose elements (&/),,, n=1,...M, can be used in
Eq. (2.11) to approximate the jth splitted mode of the ro-
tating microcavity. Additional properties of the eigenvalue
problem that will be useful in the analysis of Section 3 are
described below.

A. Symmetries, Realness of the Eigenvalues, and
Interpretation of A™'B

It is easily verified that the matrices A and B are self-
adjoint; namely, they possess the symmetry properties

AmrL =Anm’ an = Enmﬁ (2‘18a)
and the diagonal elements of B are given by
By = — 262 X 1, Re S{™). (2.18b)

Here S{™=E{"” x H/™ is the Poynting vector of the cavi-
ty’s mth mode.

Since the inverse of a self-adjoint operator is self-
adjoint, it follows that A1 is self-adjoint, too [see com-
ment after Eq. (2.13a)]. A product of self-adjoint operators
is a self-adjoint operator. Thus A~!B is self-adjoint and
possesses pure real eigenvalues. This proves the realness
of the A/s in Eq. (2.17).

It is instructive to examine more closely the integrand
U, associated with the elements B,,,. In cylindrical co-

ordinates, we have 2 X r=|r|¢. Then

B, = Eof Uy d®r
v

= € f Irl- (HY x E{” + HY X E{")d®r.
14

(2.18c¢)

Thus, up to a multiplicative factor, the operator A"'B can
be interpreted as an operator that extracts the effective
radius of the power rotation (along ), carried mutually
by the modes inside the cavity. This will be demonstrated
in the following subsections.

Finally, we note that a great deal of simplification in
the interpretation of the results and further physical in-
sights are gained if one uses an orthogonal and real set
Hg"). This is discussed in the following.

B. Using Orthogonal and Real Set Hgm)
The degenerate modes Hg”) satisfying Eq. (2.7) are lin-
early independent. Furthermore, since they all possess
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the same eigenvalue k2, any linear combination of degen-
erate modes is by itself @ degenerate mode. It follows from
the above arguments that, without loss of generality, we
can always assume that the functions H(m), m=1,...,M,
constitute an orthogonal set (i.e., we can apply the Gram—
Schmidt procedure, if necessary). Therefore, we get

A=|H|, (2.19)

where I is the identity matrix. Note that, in principle, ow-
ing to normalization we can have A=I, but the generic
term |H{"| is kept in order to avoid confusion with physi-
cal units. In addition, since the operator in Eq. (2.7) is
self-adjoint, the eigenvalue k% is real, and the correspond-
ing degenerate modes Hg") can always be normalized
such that they constitute pure real functions (if a
generally complex Hg") constitutes a mode, so does
ReHg").) Then Eg") must be pure imaginary [V XHE)'")
=—iwoeoer(r)Ef)m)], making B pure imaginary with a van-
ishing diagonal [see Egs. (2.13a) and (2.18b)]. Therefore C
is of the form

0 BIZ B13 BlM
1 BIZ 0 B23 BZM
C=——| B B 0 Bsy | =il',
o) - “
EIM B2M"' 0
(2.20)

where I' is a real skew-symmetric matrix'’ (a real matrix
whose elements satisfy v,,,=-v,, and v,,=0). Real M
X M skew-symmetric matrices satisfy the following inter-
esting properties, listed together with their important im-
plications for our problem:

(i) If M is even, the eigenvalues are pure imaginary and
always come in symmetric pairs around the origin: +iA.
Hence A, the eigenvalues of C, are real and symmetric
around the origin. This means that the degenerate modes
always undergo a symmetrical split of their resonance fre-
quency.

(i1) If M is odd, the rule above still applies, except that
there is an additional eigenvalue at the origin: A=0.
Hence, a degenerate mode whose resonant frequency does
not change under rotation exists if the system possesses
odd-order degeneracy.

The above results may offer the following physical in-
terpretation. The rotating system possesses M modal so-
lutions H(r) that are obtained eventually by the summa-
tion in Eq. (2.11), where the summation coefficients are
nothing but the elements of the eigenvectors a of the ro-
tation operator [see Eqs. (2.16)]. Generally, this summa-
tion yields new modes H that rotate around the cavity
center and correspond effectively to azimuthal propaga-
tion within the cavity. The new modes that corotate (coun-
terrotate) with () undergo a downward (upward) shift in
their resonant frequency and correspond to the negative
(positive) eigenvalues A. Furthermore, owing to the sym-
metry of the matrices involved, to every clockwise-
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rotating new mode H, there corresponds a
counterclockwise-rotating new mode with an identical
field structure. Hence the symmetrical frequency splitting
results. However, if M is odd, there exists one additional
mode corresponding to radial propagation (i.e., from the
cavity center outward toward the cavity walls and back to
the center). Such propagation is not affected by rotation
(up to first order in Q), hence the zero eigenvalue of the
rotation operator. Clearly, a conventional cavity (no mode
degeneracy) is a special case that corresponds to M=1
and up to first order in () is not affected by rotation.

Another example of an odd-order degeneracy can be
provided by a cavity in a three-dimensional crystal. If Q
=zQ), then a zero-eigenvalue mode corresponds to a field
oscillating along the z axis and possessing azimuthal
symmetry in the (x,y) plane.

Comment. How general are the results discussed
above? It should be emphasized that the only assumption
made is the use of the orthogonal and real set for Hf)m).
However, since generally degenerate modes are linearly
independent, the passage from any arbitrary set of m de-
generate modes of the system to a real and orthogonal set
is nothing but a change of basis. Such transformation
does not affect the spectral properties of the matrices in-
volved. Therefore the conclusions discussed above, espe-
cially those pertaining to the location of eigenvalues and
their interpretations, are of general validity and are not
restricted to a specific set of degenerate modes.

C. Case of M=2
The properties of the eigenvalues A; and the correspond-
ing eigenvectors @/ are seen most transparently for the
case of the second-order degeneracy. This case is often en-
countered in PhC (see, for example, Figs. 1(c), 1(d), and
6). Here the degenerate orthogonal modes H(l)’z(r) can be
viewed as two dipoles with an angle of 7/2 between their
polarizations.

With respect to the eigenvalues of Eq. (2.20) above for
M=2, it can be shown by a straightforward algebraic cal-
culation that

A B1s] @2.21)
=x—, .
YT ol
and the corresponding eigenvectors a>? satisfy
(@11 = Fi(at?),, (2.22)

where (@), is the nth element of the jth. eigenvector. This
result is physically illuminating. It shows that the modal
fields H(, of the rotating system are obtained by a super-
position of Hgl)(r) and ng)(r) with a phase difference of
+7/2. This superposition yields a rotating mode; the two
modes of the rotating system rotate clockwise and coun-
terclockwise, and each possesses a shift of its resonance
(i.e., splitting) according to a generalized Sagnac effect.
This result is consistent with the physical interpretation
as discussed in Subsection 2.B.
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3. CLASSICAL SAGNAC EFFECT AND
EFFECTIVE ROTATION RADIUS

The theory developed in the previous sections holds for a
general cavity that supports degenerate modes. It there-
fore should hold also for the simplest and most familiar
example: the ring resonator. For large rings (rings of ra-
dius R large compared with the wavelength), the classical
Sagnac effect formula predicts the frequency splitting
w12 =wytwyR/(nc). We show that our theory recon-
structs this classical expression.

For a large ring, the electric and magnetic fields of the
degenerate modes are most easily presented as clockwise
and counterclockwise propagating local plane waves of
the following form:

E? = 29H, exp(xikonR ¢), (3.1a)

ng) = = pH, exp(xikonR ), (3.1b)

where n=1e, and 7=1\uo/ €€, At this point it should be
noted that one can transform these fields into their real-
orthonormal counterparts as discussed in Subsection 2.B.
The result is two standing waves expressed as cosine and
sine functions. However, as emphasized before, the final
results are independent of the specific form of the modal
set. Thus, for the present simple example we prefer to
keep the complex form. For a ring of width small com-
pared with its radius R, we can now approximate B1; by

Bi1 =~ R($,~ pHEq - ¢H,E) = - 2&,R|H|* 7.

(3.2)
Likewise, Bog=2¢,R|H|?>7, B13=Bs1=0, and A=I|H,|*.
This yields
R{-1 o0
250 59
for which Ay 9==R/(nc). Thus
Sw1g = wgQA 5= = wyQR/(nc), (3.4)

that is, as predicted, the classical Sagnac effect.*

Comment: The effective radius. The last result of-
fers the concept of an effective radius of rotation for the
most general case of degenerate modes. The effective ro-
tation radius of the ith mode, possessing the eigenvalue
A;, is given by

R =|A/nc. (3.5)

As we show in Section 4, this expression indeed yields the
radius of annular domain in the cavity that contributes
the most to the frequency splitting and is consistent with
the interpretation discussed in connection with Eq.
(2.18c).

4. EXAMPLE OF A ROTATING PHOTONIC
CRYSTAL

The first structure under consideration is shown in Fig. 2.
It is a two-dimensional crystal consisting of 91 dielectric
cylinders of radius 0.6 um and €.=8.41, with a hexagonal
lattice with a lattice constant of a=4 um. For the TM po-
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Fig. 2. PhC structure under study.
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larization, this structure possesses a bandgap covering
the range between 7.5 and 10.5 um. A microcavity with
degeneracy rank M=2 (i.e., supporting two degenerate
modes) at a resonant wavelength of M\Ng=2mc/wg
=8.79941 um is created at the center by increasing the ra-
dius of the central cylinder to 1.1 um. The degenerate
modes’ electric field magnitude is shown in Fig. 1.

Below we demonstrate the effect of rotation on the
structure. We first calculate the mode splitting due to ro-
tation by using the theory developed here and then com-
pare the results with those obtained by full numerical
simulation of the rotating crystal.

A. Theoretical Prediction

The degenerate modal fields of the stationary structure,
Egl’z), H, 81’2) shown in Fig. 1, were obtained numerically by
our exciting the structure under study (Fig. 2) with inci-
dent plane waves of wavelength \y=27¢/wy=8.79941 um
and solving for the fields using a method-of-moments!!-
based approach—the multifilament algori‘chm.u’13 Owing
to the strong isolation of the microcavity, obtained by the
surrounding crystal, the fields within the cavity and in its
close neighborhood constitute a good approximation of the
true modal fields of the structure. These numerically ob-
tained stationary-system fields were substituted into the
theoretical expressions in Eqgs. (2.12a) and (2.13a) in or-
der to compute the matrices A and B, and then the eigen-
values A, o were calculated. The result is wyA 9= +0.229,
and Fig. 3 shows the corresponding resonance splitting,
obtained by our substituting this result into Eq. (2.17)
(solid lines).

According to Eq. (3.5), the effective rotation radius of
the microcavity in the present example is 0.93 um. It is
instructive to check this number against a plot of the in-
tegrand of By, and By in the x,y plane [see discussion af-
ter Eq. (2.18¢)]. The integrands w9 and u9; are shown in

30

0
° -10
-20
-30
0 5
um

Fig. 4. (Color online) The integrand in Eq. (2.18¢) used to compute the elements of B. The mode functions shown in Figs. 1(c) and 1(d)

are used.
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Fig. 4. As predicted, these functions are pure imaginary
and are essentially concentrated along a circular path
whose radius is about 1 um. This value is consistent with
the effective radius calculation using Eq. (3.5).

B. Full Numerical Simulation of the Rotating System

1. Algorithm Considerations

Our system consists of a high-@ resonator. Thus, direct
time-domain approaches such as the finite-difference time
domain may suffer from slow convergence and enhanced
numerical dispersion effects. We note that, at the rest
frame of the rotating system, the optical signal possesses
a pure time-harmonic nature. Thus, a good candidate for
a numerical computation of the entire scenario is a
moment-method-based time-harmonic algorithm.11 Avital
ingredient of any such algorithm is the Green’s function
G(r,r’) of an appropriately defined background medium,
describing the field at r due to a unit point source at r’.
For scattering from a stationary structure, the back-
ground is most conveniently defined as a homogeneous
medium, and the corresponding G is well known. For
analysis of scattering from a rotating structure, as seen in
the rotating-medium rest frame, the background-problem
Green’s function G(r,r’) is the field in a rotating homo-
geneous medium in which both the source point at r’ and
the observer at r rotate together with the medium at an
angular velocity 2(). For two-dimensional problems,
GQ(r,r') has been studied in detail in a recent work.® It
can be expressed in cylindrical coordinates as

©

i
G° =17 > Tnlkon ymp)HY (Rgny,,p-)explim (6 - 6Y)]

i Q
=~ IZHg“ exp|:i—k(2)(yx’ —xy’):| , (4.1)
w

where I=iwu or I=iwe for TM or TE polarization, HE,IL) is
the mth-order Hankel function of the first kind, ¢/,, is the
mth-order Bessel function, v,,=[1+2mQ/(wn?)]"?, and
p~,p<=max,min(p,p’). With this at hand, well-tested
legacy codes dealing traditionally with stationary scatter-
ers can be extended to hold also for rotating scatterers (at
their rest frame), simply by one’s replacing the
stationary-medium Green’s function by G® and at no ad-
ditional cost of algorithm complexity or programming. [It
is easily verified that in two-dimensional geometries rota-
tion does not affect boundary conditions at the dielectric
interface?’; this can be seen directly from the divergence-
free conditions in Egs. (2.2a) and (2.2b) by one’s applying
to it the fact that the structure is invariant along the ro-
tation axis 2.] With this approach, we have extended the
multifilament method (used, for example, in Ref. 2 and
references therein) to apply to rotating crystals as well.

2. Numerical Results

We used the rotating-medium algorithm to simulate the
entire structure of Fig. 2 under rotation. The system was
excited by an incident plane wave, and the field intensity
inside the cavity as a function of the excitation wave-
length has been computed for various values of (). The ro-
tation frequency has been extremely exaggerated in order
to resolve the resonance splitting at a reasonable numeri-
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cal effort; we choose (/g of the order of 10-°. The results
are shown in Fig. 5. At rest ((/wy=0), the intensity graph
peaks exactly at the resonance wavelength )\
=8.79941 um. Note that the resonance relative band-
width (AN/)\g) is about 10~%. This relatively low-@ reso-
nance (@ =~ 10%) is mainly due to the finite size of the crys-
tal and to numerical inaccuracy. Thus, in simulating the
rotating crystal, one has to choose rotation speeds suffi-
ciently large to yield resonance splitting larger than @~!
=AN/\g (in relative terms) in order to resolve the effect
numerically (see discussion regarding the practical impli-
cations of this issue in Section 6). This is the main reason
for choosing high rotation speeds. As can be seen from the
graph, as () increases, two peaks can be identified, each of
which corresponds to a distinct resonance. The distance of
each of these peaks from the resonance of the stationary
system—the splitting due to rotation—has been extracted
and is displayed in Fig. 3 as a function of the normalized
rotation rate )/ w, (circles). The figure also displays the
splitting as predicted by the analytical results (solid line).
As can be seen, there is a good agreement between the re-
sults.

5. MODEL FOR ROTATING SLAB
PHOTONIC CRYSTAL MICROCAVITY

The second structure under consideration is the slab pho-
tonic crystal (PhC) microcavity discussed in several pre-
vious works®® and operating at the 1.55 um range. An op-
tically thin slab made of InGaAsP (e.,=3.4 at vacuum
wavelength \,=1.55 um), with a thickness of half mate-
rial wavelength, supports a fundamental TE mode whose
effective index is approximately 2.64. To create a realistic
PhC, the slab is patterned by a two-dimensional hexago-
nal array of air holes, and a microcavity is created by fill-
ing up one of the air holes with the slab material (remov-
ing a hole). It has been shown® that, for the range of
frequencies that correspond to the fundamental TE mode
of the slab, this structure can be modeled quite accurately
by using a much simpler ideal two-dimensional model.
The simplified model consists of an ideal two-dimensional
crystal with the same air-hole geometry as that of the
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Fig. 5. Intensity of the field inside the rotating cavity versus ex-
citation wavelength, for various values of the angular velocity ().
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slab, embedded in a background medium possessing the
effective property; €.=2.64. Thus, we consider a hexago-
nal lattice of air holes of radius 0.14 um and a lattice con-
stant of 0.475 um, in a material with €,=2.64. A microcav-
ity is created by filling in one of the air holes by the
background material. For TE polarization, this cavity
resonates at A\y=1.5548 um, supporting two degenerate
modes (see Ref. 5 for details and for the modes’ shapes).

We have repeated the computations detailed in Section
4 for the present structure. The results are summarized
in Fig. 6. The stationary-system modal fields Egm), Hf)l’2)
were computed numerically, and then the eigenvalues
A4 9 were calculated using the formulation in Section 2.
The result is wyA; 3=+0.0522, and Fig. 6 shows the cor-
responding resonance splitting, obtained by substituting
this result into Eq. (2.17) (solid lines). Next, full numeri-
cal simulations of the rotating system, as discussed in
Subsection 4.B, were performed with extremely exagger-
ated rotation speeds for easy numerical extraction of the
resonance splitting (@ here is about 50 times smaller than
that of the example in Subsection 4.B—see discussion in
Subsection 4.B.2). A computation similar to the one shown
in Fig. 5 but for the TE slab model was performed, and
the extracted maxima are shown in Fig. 6 by circles.

6. IMPLEMENTATION CONSIDERATIONS

The aim of the present work is to carry out a detailed the-
oretical study of the rotation-induced splitting of mode de-
generacy in microcavities with sizes of the order of one
wavelength. It is clear that its implementation to practi-
cal optical gyroscopes constitutes a research subject by it-
self. Nevertheless, the present study can provide some ob-
servations.

First, it is important to recognize that, in general, the
lack of uniformity or stability of any gyroscope’s environ-
mental conditions is an important factor that eventually
limits its resolution. Therefore, it is clear that miniatur-
ization is potentially advantageous; hence the motivation
to minimize the gyroscope dimensions. In this respect,
note that the geometry of the second example (discussed
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Fig. 6. Splitting of the degenerate cavity resonance frequency
due to rotation, for the slab PhC (TE polarization).
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in Section 5) is almost an order of magnitude smaller in
diameter than that of the first example (Section 4). How-
ever, its sensitivity to rotation, as implied by the magni-
tude of the eigenvalues A; 5, is smaller only by a factor of
4 (wg|A]=0.229 and 0.0522 in the first and second ex-
amples, respectively). This observation suggests that, in
principle, structure optimization can be invoked to obtain
best performance in terms of sensitivity or dimensions.

The second point pertains to the detectability of the fre-
quency splitting. It is clear that a frequency splitting that
is smaller than the stationary-system bandwidth (where
the latter scales as @1) may be extremely difficult to de-
tect and to measure. In such cases, the corresponding cav-
ity excitation curve cannot be separated into two distinct
resonance peaks. Let Aw be the cavity resonance band-
width. Then a rough estimate of the smallest detectable
rotation rate (), is given by [see Eq. (2.17)]

Aw 1
Qpin =

~ ; (6.1)
(O man A] Q man A]

where in the second equality we used Aw/wy=~@Q !, which
holds for passive resonators. Thus, for practical designs,
one should employ extremely high-@ microcavities; val-
ues of @~ 10* may suffice for a principle theoretical dem-
onstration (as done in this work), but they certainly fall
short of what is needed for a practical implementation.
However, intensive research efforts carried on currently
by many groups are aimed toward increasing the @ of
microcavities.>61415 Recen‘cly,15 PhC microcavities with
quality factors of the order of 10% were fabricated, and
theoretical estimations indicating that values of @ ex-
ceeding 2 X 107 are possible were reported. In a different
configuration, microcavities of the toroid structure with
Q=108 were fabricated.'® These resonators support mode
degeneracy and resonant splitting under rotation just as
well and are amenable to the same study carried out here.
Furthermore, all these achievements have been accom-
plished for passive microcavities. It is well known that
the presence of gain material and lasing may further in-
crease the quality factor (or decrease bandwidth) by sev-
eral orders of magnitude. Thus, while certainly not an
easy task, it is anticipated that the @ factors (or band-
width) required for practical gyroscope implementations
will eventually be achieved.

Finally, we note that the work in Ref. 1 studied theo-
retically the effect of rotation on a closed-loop CCW,
known also as a coupled-resonator optical waveguide
(CROW). It has been shown theoretically that a compact
optical gyroscope can be designed on the basis of that
scheme. This work! assumes that the microcavities con-
stituting the waveguide do not support mode degeneracy.
New studies, however, show that the presence of mode de-
generacy can be exploited to enhance the device
sensitivity’*; it has been shown that CROWs consisting
of microcavities with mode degeneracy can exhibit
exponential-type sensitivity to rotation.'®19 A pivotal in-
gredient in these new devices is the rotation-induced
splitting reported here. This subject is currently under
further investigations.
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7. CONCLUSION

A theory for slowly rotating microcavities that support
mode degeneracy has been developed. It was shown that
rotation induces splitting of the (stationary system) de-
generate resonance frequency w, to several frequencies,
and a detailed theoretical study of this splitting effect has
been carried out. The proposed theory recovers the classi-
cal Sagnac effect for the specific case of the large ring
resonator. Furthermore, it provides a systematic frame-
work for cases in which where the classical expressions of
the Sagnac effect cannot be directly applied. In the most
general case, Mth-order degeneracy undergoes splitting
into M different resonances, symmetrically distributed
around wy. The magnitude of the frequency splitting is
linearly dependent on the rotation speed (), with propor-
tionality factors given by the eigenvalues of the proposed
rotation operator. The theory has been tested on specific
examples of rotating photonic crystals’ microcavities, and
the splitting effect has been demonstrated. Implications
to practical optical gyroscopes were discussed.

APPENDIX A: THE B,,, COEFFICIENTS

We have the following identities [use (VXA)-B=V-(A
XB)+A-(VXB) and A-(BXC)=(AXB)-Cl.

B _ B _
<V><—><Hf)”) CHM =V || — xHP | x HY

€ €

€

B (n) iy (m)
+| — X Hy |- (VXH"),

(Ala)

B () (m) B 7 4] (n)
—XVXH" | -HV=-|—XHy"|-(VXH).

€,

T r

(Alb)

The inner products in Eq. (2.12) are nothing but volume
integrations (over arbitrarily large volume V) of the terms
above. Using the Gauss theorem, we get for the contribu-
tion of the first term on the right-hand side of Eq. (Ala)

f V. {(/_} X Hg")) X flgm)}d%c
v €
B (n) iy(m)
= — X HyV | xHy" | -ds — 0. (A2)
S=dV &

This is because the flux through the surface S=6V van-
ishes as V becomes large (the functions ng) are exponen-
tially decreasing). Therefore, the inner product terms
eventually comprise

B
(LoHPY H™y ={ — X H,V x H{™

€

(n) E (m)
VXHy,—XHJ" ). (A3)

7

Using again (AXB)-C=A-(BXC),
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P 740 (m)
— Hy’ X VX H"

€r

(LoH{Y HM) =

B _
- —HMXVXHP ). (A4

€r

Since B=B(r)=Q Xr/c and Q=0Z, the above result yields
(LoH{", Ho(m))

ZXr

=c10 AP XV X HYY - HYW X V X HYY

€

(A5)
Finally, we use V XHE)m)=—iwoeoer(r)EBm) to obtain

(LoHP HY™) =ic ' Qugept X rHY X By + Hy" X EJV).
(AB)

B. Z. Steinberg, the corresponding author, can be
reached by e-mail at steinber@eng.tau.ac.il.
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