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SPLITTING RING OF A MONIC
SEPARABLE POLYNOMIAL

STUART SUI-SHENG W A N G

In this short note we prove that if S = R [x] = R [X]/(f(X))
is separable over R9 where f(X) is a monic polynomial over R,
then the embedding set up by Auslander and Goldman is the
same as the splitting ring of / over R constructed by Barnard.

Throughout, the terms "ring", "algebra", and "ring homomor-
phism" are to be interpreted as in the category of commutative rings with
identity. S is an algebra over the ring R, f{X) is a monic polynomial of
degree n over R,df is the discriminant of /,Zh Wt ( l ^ i ^ n ) are
indeterminates over R, G is the symmetric group on n symbols, and e{σ)
is the signature of the permutation σ.

Auslander and Goldman [1, Theorem A.7, p. 399] show that if 5 is
separable over R such that 5 is free of rank n as a module over R, then S
can be embedded into a Galois extension Ω of R with group G. Their Ω
is defined as follows: Let Γ = ® n S denote the n-fold tensor product of S
over R,E = ΛnS denote the n-th exterior power of S over
R, π: ®"S -> ΛnS be the natural (R-module) homomorphism, I be the
R-module conductor (ker TΓ): (®n5), (so / is an ideal of ® n S and is also
an i?-submodule of ker TΓ), and define Ω = ((g)nS)/I The group G acts
on (g)π5 by permuting the n factors. Since πσ(ξ)= e{σ)π(ξ) for
ξ E (g)nS and σ E G,kerτr is stable under the action of G, hence so is
/. Thus G acts on Ω, Since Λ n 5 «(g)nS/ker π is a freel? -module (of
rank 1), R Π ker TΓ = 0, so that R Π I = 0, and thus the restriction of the
map Γ-» Ω = Γ// to JR is injective, i.e., Ω contains R. For 1 < i ^ n, let
Pi- S —»(g)nS be the R-algebra homomorphism defined by Pi(s) =
l<g) (g)l<g)s(g)l<g) <g)l (the s occurring in the ί-th place). Then it
follows from the properties of the exterior algebra that for all s ES,

(*) Pi(s) + + pn (s) - trace*/* (s) E /

where s denotes the R -endomorphism of S defined by multiplication by
5. Assume furthermore S is separable over R, then t = traces/Λ is
nondegenerate ([1, Proposition A.4, p. 397]). It follows from (*) and the
non-degeneracy of t that the composite of the R -algebra homomor-
phisms 5—>Γ—»Ω gives an imbedding of S as an R -algebra into
Ω. Then it can be shown that Ω is a Galois extension of JR with group G
([1, line 14 of p. 400 to line 18 of p. 402]).

293



294 STUART SUI-SHENG WANG

On the other hand, Barnard [2, §5, pp. 285-289] constructs a splitting
ring Rf for a monic polynomial f(X) = Xn + an-λX

n~ι + + α0 of degree
n over i?. More specifically,

Rf = R[zl9 ;zn]

= R[Zn, ,Zn]/<e!+ an_ 1 ?e 2- an_2, , βn + (- l)""1^)

where ex (1 ̂  i ^ n) is the elementary symmetric polynomial of degree i
in the indeterminates Z ^ ,Zn. The ring JRr is characterized by the
following universal property: the polynomial / factors into the product of
n linear factors over Rf, f(X) = ΠΓ=i (X - z, ). And if A is an JR -algebra
over which / factors into the product of n linear factors, f(X) =
ΠΓ=i(X- αf), then there is an R -algebra homomorphism Rf-*A which
maps Z; to a, for i = 1 , , n. As usual, such an JR/ is unique up to
isomorphism. The ring JR, contains R, is a free R -module of rank n !
and G acts on Rf by permuting the z.'s. Moreover, JR; contains
R[x] = R[X]/(f(X)) as an R-subalgebra. It is also shown that Rf is a
Galois extension of JR with group G if and only if Π,^ (z, - z;) is a unit
in jR.

However, a moment's reflection will convince one that Π,yy (z, — z7)
is rf/ up to a sign. Recall df, the discriminant of /, is defined to be the
discriminant of the basis 1, x, , x""1 of R[x] with respect to R, i.e., the
determinant of the n x n matrix (traceΛ[X]/Λ(jtί~1Jc/~1)) l g j g n l g / g n .

For the remainder of the note, S will be R[x] = R[X]/(f(X)) and
will be assumed to be separable over R or equivalently [5] df is a unit
in R.

We will show that there is a φ: Ω-* i?/ which is both an 1? -algebra
and a G-module homomorphism. To establish this, let us first observe
that there is an R -algebra isomorphism

where for g(x)E 5 = R[x]9 Pi(g(x)) goes to the coset of g(Wt)
( l ^ ί ^ n ) . Here ph as before, denotes the ίth injection:
S—>0nS. On the other hand, there is another description of I. Put
Xi = JC1"1, ί = traceS/R, and let the n x n matrix (λi;) be the adjoint matrix
of(ί(xμcy)); let

y} = (AyiJC! + A/2JC2 + + λjnxn)dγ (1 g/ ^ n).

Then r(jcιy/)=δiy ( 1 ^ / , / ^ n ) [5]. By α(£) will be meant the (con-
travariant) skew-symmetrization of ξ, i.e., a(ξ) = ΣσEG€(σ)σ(ξ) if
^ E 0 n S . Then / is precisely the principal ideal generated by
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α(χi® (8>χ»)α(yi<8> (8>y»)-iΘ' ® i [h p. 401]. Let
sl9"'9snES; then α(si(g) ® sn) = det(pi(s; )). This may be verified
by expanding as an alternating sum of n ! terms; these terms are precisely
those in the sum Σ σ e σ€(σ)σ(si® ®s n) [1, p. 401]. Accordingly
α(*iΘ ®*») = detfo (*,-)) and α(yi® <8)y») = det(pί(y/)) =
d71det(pl (jc/ )) by taking det(λ i ;)= dnfι into account. Hence I is the
principal ideal generated by (det(pi(jc;)))

2 - df. If follows that the image
of / in R[Wl9 , Wn]9 under the aforementioned isomorphism (g)nS «

s/ίW,,)), is the principal ideal generated by
Note, however, it is well-known that detίWΓ1), a

so-called Vandermonde determinant of the sequence (Wί9 —9Wn)9 has
the value Ui>j(Wi - W}). Consequently, this map induces an
isomorphism

and therefore, since f(zλ) = 0, 9f(zn) = 0,df = (Jl^fa - z;))2, there is
an R -algebra homomorphism φ: Ω->Rf which takes the coset of Wf to
z, ( 1 ^ / ^ n ) . Obviously such an φ preserves the G-
action. Therefore Ω~Rf by [3, Theorem 3.4, p.12]. This establishes
our assertion.

REMARKS. (1) As a matter of fact, we have also proved the
following proposition: If 5 is separable over R, then the
surjective R-algebra homomorphism from R [wu - , wn] =
RiW,,- , Wn]/</(W0, -/(WU 4 - (Πi>;(W, - W})f) to Λ; =
Λ [zi , , z«] is an isomorphism. This is not necessarily true if S is not
separable over JR. For example, take R to be the field of real numbers
and f(X) = X2 + 2X + 1, then R[Wl9 W2]/(f(W1)J(W2),(W2- Wx)

2) has
dimension 3 over R while Rf has dimension 2 over R.

(2) Recently, Andy Magid has pointed out that the splitting ring
constructed by Barnard is the same as the "free splitting ring" con-
structed by Nagahara in [4, pp. 150-152].
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