
20 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Splitting the Difference: The Historical
Necessity of Synthesis in
Software Engineering

STUART SHAPIRO

For the last quarter of a century, software technologists have worked to ad-
dress the “software crisis” identified in the 1960s. Their efforts have focused
on a number of different areas, but have often been marked by the search
for singular “best” solutions. However, the fundamental nature of software—
involving basic and poorly understood problem-solving processes combined
with unprecedented and multifaceted complexity—weighs heavily against
the utility of singular approaches. Examination of the discourse of software
technologists in a number of key professional and trade journals over the
last 25 years illuminates various disputes central to the development of
software engineering and highlights the necessity of a more pluralistic mind-
set revolving around synthesis and trade-offs.

Introduction
y the end of the 1960s, it was becoming obvious to the com-

puting community that software was a big problem and

growing bigger. While the cost of hardware steadily declined even

as hardware performance steadily increased, software seemed

headed in the opposite direction. Large software projects were

consistently late, over budget, and full of defects. Today, the com-

plaints remain much the same. This is not to deny that the current

situation represents a drastic improvement over the state of affairs

that prompted the North Atlantic Treaty Organization (NATO)

software engineering conferences of the late 1960s. What were

problems then are still problems now, but they tend to be (but not

always) relatively less frequent and less disastrous, especially in

the context of the vastly expanded size and ambitions of much

contemporary software. Indeed, Andrew Friedman has argued that

while software was previously the key stumbling block for sys-

tems development, the focus has now shifted to user needs.
1

While Friedman is right to call attention to the current emphasis

on user needs, though, his periodization based on successive bot-

tlenecks is a little too tidy and belies the complexity and hetero-

geneity of the issues and arguments that have surrounded systems

development from the early days to the present.

Events of the late 1960s enhanced comprehension of the

breadth and depth of the problems plaguing software development

while only hinting at solutions. Still, the growing recognition that

a collection of interrelated problems existed, together with an

awareness of the importance of process, constituted a turning

point in the history of software technology. The “software crisis”

provided a context for the development of software technology in

the 1970s and beyond.

From the 1960s onward, many of the ailments plaguing software

could be traced to one principal cause—complexity engendered by

software’s abstract nature and by the fact that it constitutes a digital

(discrete state) system based on mathematical logic rather than an

analog system based on continuous functions. This latter character-

istic not only increases the complexity of software artifacts but also

severely vitiates the usefulness of traditional engineering techniques

oriented toward analog systems.
2
 Although computer hardware,

most notably integrated circuits, also involves great complexity (due

to both scale and state factors), this tends to be highly patterned

complexity that is much more amenable to the use of automated

tools. Software, in contrast, is characterized by what Fred Brooks

has labelled “arbitrary complexity.”
3

The complexity associated with software technology, however,

is not that straightforward. Instead, it involves numerous facets

and dimensions. Complexity’s various contexts include algo-

rithmic efficiency, the structure of procedures and data, and the

psychological effort of problem comprehension, translation, and

system design. Those contexts have manifested themselves in

issues concerning structured programming, software metrics,

program verification, formal methods generally, programming

languages, the software life cycle, and programming environ-

ments. No solution aimed at a single area could provide the de-

gree of relief many were seeking. Moreover, agreeing on singular

approaches with respect to any of these issues also frequently

proved difficult in the face of incommensurable philosophies and

inescapable trade-offs. Recognition of the futility of technical

singularity in any realm of software technology was slow in

dawning.

The basic nature of software vis-à-vis hardware complicates

matters in this respect. Hardware, in computing and in general,

1058-6180/97/$10.00 µ 1997 IEEE

B

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 21

refers to something solid, inflexible, and not easily altered.

Software is soft precisely because its descriptors—ephemeral,

flexible, malleable—contrast with those of hardware. They

make software an excellent source of leverage—the power to

act effectively. The ability to fashion a means of problem solu-

tion adapted to the specifics of a problem constitutes leverage of

a high order. Obviously, software by itself, while maximizing

flexibility, is of limited utility since it then amounts to only a set

of instructions on how to accomplish a certain task. While such

codification is useful, it fails to supply the leverage that results

when it is combined with mechanization. Similarly, a special-

purpose machine with no capacity for variation is of little use

outside its narrow area of application. Hardware and software

have a synergistic effect on problem solution. The former

mechanizes narrowly but deeply, the latter mechanizes broadly

but shallowly. Together, they are capable of exerting a high

degree of leverage on problems.

The trade-off between breadth and depth also pertains to soft-

ware per se. Programming languages, application programs, tools,

methods, and environments (including cultural factors) all em-

body it. The essence of the tension is the degree to which any

given piece of software technology “fits” the circumstances sur-

rounding its use. To the extent that the piece of technology is cir-

cumstance-specific, it incorporates knowledge and characteristics

that help it function more effectively, affording the user greater

problem-solving leverage under those particular conditions. How-

ever, the corollary to this property is that the technology becomes

correspondingly less suitable for use in other situations, depend-

ing on how far they deviate from the original target situation. If

the original circumstances are narrowly defined, problematic de-

viation occurs relatively rapidly, while if the circumstances are

more broadly defined, deviation is less rapid. However, by the

same token, software technology suitable for a wide range of

circumstances will afford less leverage by way of highly particu-

lar knowledge embodied within the technology. This, then, is the

essential tension within software in all its aspects: the trade-off

between specificity and generality. It underlies software technol-

ogy in all its manifestations.

The powerful desire for dramatic singular solutions therefore

hindered rather than helped software technologists. Difficulties

were exacerbated by the exaggerated and sweeping claims that

often accompanied particular techniques, claims that frequently

generated an equal and opposite reaction. The problems plaguing

software technology were usually fuzzy, variable, and multifac-

eted, and thus rarely proved amenable to any one approach; in-

stead, they demanded hybrid and adaptive solutions. Messy re-

sponses, though, were less than satisfying to those who sought

sweeping breakthroughs. Effective action required a spirit of

pragmatic accommodation, a kind of technical pluralism that was

not always evident.

What follows is not intended to be a comprehensive history of

software engineering since the engineering appellation was first

formally used. Rather, it is an attempt to capture the flavor of

some of the key concerns and arguments as they have manifested

themselves in the discourse contained within some of the most

influential professional and trade literature. These sources serve

as a primary forum in which the issues of the day are raised and

debated. Clearly, though, this poses a couple of methodological

problems.

The first methodological problem is the unavoidable one of

source self-selection. Those individuals who submit articles or

write letters are by definition moved to do so by a variety of mo-

tivations, ranging from the pursuit of tenure to passionately held

views on a certain topic. However, this does not automatically

render their views unrepresentative. Moreover, while a number of

names appear on a regular basis, a larger number appear on a

much more ad hoc basis. In other words, while a body of elites is

clearly in evidence, so, too, is wide participation from the rest of

the computing and software communities.

The powerful desire for dramatic

singular solutions therefore

hindered rather than helped

software technologists.

The second methodological difficulty arises out of the circum-

scribed geographic range of the sources. This reflects several

practical limitations, including language barriers and time con-

straints. It most certainly should not be taken as implying the

insignificance of work done outside the United States and Great

Britain. Two factors, though, in the one case explain and in the

other case mitigate this bias. With respect to the former, the

United States has long been and continues to be the acknowledged

world leader in software technology. In terms of the latter, many

of the publications surveyed circulate widely outside their country

of origin and routinely carry articles, news, and correspondence

from around the world. Therefore, building this study on the par-

ticular literature employed seems eminently justifiable.

With the exception of the following section discussing the

NATO software engineering conferences, the organization of this

essay is thematic but chronological for each theme. The first

theme focuses on the central role of complexity in software tech-

nology and its manifestation in design and measurement strate-

gies. This will be followed by discussion of the debate over pro-

gram verification, leading into an examination of the formal

methods movement more generally. Issues arising out of pro-

gramming languages, life cycle models, and programming envi-

ronments will then be discussed. All of this will highlight the

problem of making choices in a pluralistic technological world, a

topic that will be addressed toward the end. While this work does

not assume expertise in software engineering on the part of the

reader, some basic appreciation of software technology would

undoubtedly prove helpful in making sense of it.

Setting the Stage: The NATO Conferences
The NATO software engineering conferences of 1968 and 1969

set an agenda and a context that even today continue to make their

presence felt.
4
 In the fall of 1967, the NATO Science Committee

had established a Study Group on Computer Science to assess the

field. The attention of the study group was drawn to the problems

endemic in the area of software. Around the end of 1967, it rec-

ommended that a working conference be held on software engi-

neering. The conference report noted that “the phrase ‘software

engineering’ was deliberately chosen as being provocative, in

implying the need for software manufacture to be based on the

types of theoretical foundations and practical disciplines that are

traditional in the established branches of engineering.”
5
 Interna-

Splitting the Difference

22 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

tional experts from a wide variety of backgrounds gathered in

Garmisch, Germany, in October 1968 to consider problems in the

design, production, and maintenance of software.

Although the participants agreed that problems existed,

opinions varied on the seriousness of the “software crisis” and

the extent of the problems. Typical of the exchanges was the

one between Ken Kolence of Boole and Babbage Inc. and

Douglas Ross from the Massachusetts Institute of Technology

(MIT). Kolence did not like the use of the word crisis. “It’s a

very emotional word. The basic problem is that certain classes

of systems are placing demands on us which are beyond our

capabilities and our theories and methods of design and produc-

tion at this time. There are many areas where there is no such

thing as a crisis....”
5,p.121

 Ross responded that “it makes no dif-

ference if my legs, arms, brain and digestive tract are in fine

working condition if I am at the moment suffering from a heart

attack. I am still very much in a crisis.”
5,p.121

 Most, however,

could agree with E.E. David of Bell Laboratories that

“production of large software has become a scare item for man-

agement. By reputation it is often an unprofitable morass, costly

and unending.”
5,p.67

With regard to the underlying causes of the crisis, at least some

of the participants appreciated the ephemeral nature of the me-

dium and the difficulties it created. David noted that with respect

to problems of scale,

the uninitiated sometimes assume that the word “scale” re-

fers entirely to the size of code. . . . This dimension is in-

deed a contributory factor to the magnitude of the problems,

but there are others. One of increasing importance is the

number of different, non-identical situations which the

software must fit. Such demands complicate the tasks of

software design and implementation, since an individually

programmed system for each case is impractical.
5,pp.68-69

Moreover, he noted, “there is no theory which enables us to cal-

culate limits on the size, performance, or complexity of software.

There is, in many instances, no way even to specify in a logically

tight way what the software product is supposed to do or how it is

supposed to do it.”
5,p.69

 On the subject of design criteria, J.W.

Smith observed that there was

a tendency that designers use fuzzy terms, like “elegant” or

“powerful” or “flexible.” Designers do not describe how the

design works, or the way it may be used, or the way it

would operate. What is lacking is discipline, which is

caused by people falling back on fuzzy concepts. . . . Also

designers don’t seem to realize what mental processes they

go through when they design. Later, they can neither ex-

plain, nor justify, nor even rationalize, the processes they

used to build a particular system.
5,p.38

Heterogeneity, fuzziness, lack of discipline, lack of theory—such

complaints persist to this day.

Because problem solving is such a basic activity and because

complexity is such a fundamental phenomenon, attempts to ad-

dress these dilemmas tended to produce conceptually broad no-

tions. Peter Naur suggested that “software designers are in a

similar position to architects and civil engineers, particularly those

concerned with the design of large heterogeneous constructions,

such as towns and industrial plants. It therefore seems natural that

we should turn to these subjects for ideas about how to attack the

design problem.”
5,p.35

 More concretely, H.R. Gillette of Control

Data suggested that the three fundamental design concepts of

modularity, specification, and generality were essential to a

maintainable system.
5,pp.39-40

 IBM’s Brian Randell suggested that

“there are two distinct approaches to the problem of deciding in

what order to make design decisions,” top-down and bottom-up.
6

Professor Stanley Gill contended, however, that “in practice nei-

ther approach is ever adopted completely; design proceeds from

the top and bottom, to meet somewhere in between, though the

height of the meeting point varies with circumstances.”
7
 In other

words, one’s approach to software design had to be flexible rather

than doctrinaire. Effectiveness required combining perspectives.

A year later, a follow-up conference on software engineering

techniques took place in Rome under NATO auspices. The editors

of the conference report observed, however:

The resulting conference bore little resemblance to its

predecessor. The sense of urgency in the face of common

problems was not as apparent as at Garmisch. Instead, a

lack of communication between different sections of the

participants became a dominant feature. Eventually, the

seriousness of this communication gap, and the realization

that it was but a reflection of the situation in the real

world, caused the gap itself to become a major topic of

discussion. Just as the realization of the full magnitude of

the software crisis was the main outcome of the meeting at

Garmisch, the realization of the significance and extent of

the communication gap is the most important outcome of

the Rome conference.
8

This perceived gap was generally regarded as one between theory

and practice, i.e., between computer science and software engi-

neering. I.P. Sharp opined that theory and practice translated into

architecture and engineering and that design was the key activity.

“Within that framework programmers or engineers must create

something. No engineer or programmer, no programming tools,

are going to help us, or help the software business, to make up for

a lousy design.”
8,p.12

 R.M. Needham of the Cambridge University

Mathematical Laboratory and J.D. Aron of IBM argued that

“much theoretical work appears to be invalid because it ignores

parameters that exist in practice.”
9
 Reality, they seemed to feel,

was a messy and complex business, and that messiness and com-

plexity could not simply be wished away. They had to be dealt

with.

The NATO conferences set the stage for many of the debates of

the next decade: language generality versus specificity, testing

versus verification, practice versus theory. But they also high-

lighted the problem of complexity and the pivotal activity of de-

sign. In short, the NATO meetings revealed and sparked concern

not only for the structure of programs but also for the structure of

programming.

Coming to Grips:
Getting a Handle on Complexity
Central to the software development process, both literally in

terms of the life cycle and figuratively in terms of profile, soft-

ware design drew much of the attention in the years immedi-

ately following the NATO software engineering conferences.

The problem of complexity was particularly evident in the proc-

ess of design and so generated much thought as to how to con-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 23

trol it. That thought devolved on the community as techniques

of modularity, abstraction, management, and measurement.

Much of it was soon ensconced in the appealing term structure.

While some hailed the advent of the structure revolution, how-

ever, others rebelled against the notion that these concepts and

techniques constituted a breakthrough that would transport

software development into a new world untroubled by the diffi-

culties of the past.

Many of the key design concepts of the period sprang from the

elemental notion of modularity. In a 1971 article in Communica-

tions of the ACM (the principal journal of the Association for

Computing Machinery, ACM), Niklaus Wirth described stepwise

refinement, a process of software development in which a design

is gradually decomposed in successively greater detail until fully

expressed in the implementation (programming) language. Step-

wise refinement constituted a basic, practical approach to the

problem of minimizing program complexity. It aimed to

“decompose decisions as much as possible, to untangle aspects

which are only seemingly interdependent, and to defer those deci-

sions which concern details of representation as long as possi-

ble.”
10

 In more concrete terms, stepwise refinement implied

modular design. But while the notion of modularity had long been

bandied about, its effective application was another matter. A

1971 letter to Datamation (a leading data processing trade jour-

nal) complained that many supposedly modular programs were

little better than the monolithic ones they replaced. Practitioners

needed criteria for modular design.
11

This was no sooner said than done, as David Parnas explored

that very topic in the pages of Communications the following

year. Parnas argued that segments or modules should convey the

minimum amount of information required to enable other parts of

the program to use them properly. Parnas’s point was that how a

module accomplished its function was irrelevant to the modules

that invoked it. Information beyond the relationship between

module input and output served only to complicate matters and

tempt the programmer to play with details better left alone. Par-

nas’s technique was quickly labeled “information hiding.”
12

 The

salutary aspect of such a strategy was inherent in the label. If the

problem was one of excessive complexity, which in practical

terms meant too much information for an individual to manage

intellectually, then the obvious solution was somehow to reduce

the amount of information that had to be considered at any given

time. Parnas followed up on this in another article later that year.

He cited the benefits of modular programming as managerial

(reduced communication requirements between module develop-

ers), flexibility (changes in one module need not necessitate

changes in others), and comprehensibility (the system could be

studied one module at a time).
13

The next year, 1973, Glenford Myers tackled the subject of

criteria to guide program decomposition. He suggested that the

objective was to minimize module coupling (interdependence

between modules) and to maximize module strength

(intradependence within modules). Correct modularization, he

asserted, would lead to increased reliability, decreased develop-

ment costs, increased extensibility, increased project control, and

off-the-shelf parts, with a large measure of these benefits resulting

from a reduction in complexity.
14

 In a paper two years later in

1975, Frank DeRemer and Hans Kron of the University of Cali-

fornia at Santa Cruz expanded the meaning of the distinction be-

tween intramodule and intermodule complexity. They argued that

“structuring a large collection of modules to form a ‘system’ is an

essentially distinct and different intellectual activity from that of

constructing the individual modules. That is, we distinguish pro-

gramming-in-the-large from programming-in-the-small.”
15

 The

authors’ principal point was the necessity of a separate module

interconnection language. In the years to follow, however, this

distinction would often be invoked to distinguish software engi-

neering from mere programming.

But while the notion of modularity had

long been bandied about, its effective

application was another matter.

If benefits could be gained from treating modules as functional

abstractions, which was the basic goal of information hiding,

perhaps there were also advantages to treating data structures in a

similar manner. A 1975 article by Barbara Liskov (MIT) and Ste-

phen Zilles (IBM) in IEEE Transactions on Software Engineering

(started that year by the Computer Society of the Institute of

Electrical and Electronics Engineers, IEEE) explored techniques

for specifying data abstractions—groups of related operations that

act on a class of objects (a data type) and provide the only means

of manipulating the objects.
16

 In other words, just as information

hiding permits modules to be used only in certain well-defined

ways, data abstraction allows only certain well-defined operations

on data structures. Most early efforts regarding data abstraction

focused on achieving it in more traditional procedural languages.

John Guttag, in a 1977 Communications article, described an

algebraic technique for the specification of abstract data types.

But while such techniques “should present no problem to those

with formal training in computer science,” he cautioned, “most

people involved in the production of software have no such train-

ing. The extent to which the techniques described . . . are gener-

ally applicable is thus somewhat open to conjecture.”
17

Object-oriented programming took both data abstraction and

information hiding to extremes. Originating with the Simula pro-

gramming language Kristen Nygaard and Ole-Johan Dahl devel-

oped in Norway in the 1960s and typified by the Smalltalk system

developed at Xerox during the 1970s, object-oriented program-

ming revolved around objects that embodied a data type and the

operations applicable to it. Rather than acting directly on its uni-

verse of objects, a program (as well as the objects) dispatched

messages that each object interpreted and acted on in accordance

with its internal rules. This was data abstraction in the extreme,

because in theory the program did not require any knowledge

whatsoever of the implementation specifics of the objects; it did

not even need to know whether there were any objects. Object-

oriented enthusiasts, though, contended that the approach was

different not simply in degree but also in kind. In contrast to tra-

ditional methods, “rather than factoring our system into modules

that denote operations, we instead structure our system around the

objects that exist in our model of reality.”
18

 This led to “the claim

that the thinking process inherent in OOD [object-oriented design]

is more ‘natural’ than that of SD [structured development], i.e., in

building an abstract model of reality it is more natural to think in

terms of objects than in terms of functions.”
19

 On the other hand,

Splitting the Difference

24 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

there is very little that one can say with much confidence

about a “most natural” way that people think about the re-

alities of their universe. Thus, to say that the object model

is a more natural way to think involves a rather sizeable

leap of faith. Undoubtedly, the truth of the matter is that

both paradigms are “natural,” and that the proper synthe-

sis of the two, in relation to a particular problem, is what

should be striven for. . . . The task ahead is to move the

debate to a higher level—not arguing about which is more

“natural”—but exploring how we best take advantage of

both approaches.
19,p.47

In the mid-1980s, in fact, several proposals were made to com-

bine object-oriented and conventional procedural techniques. In a

1984 article in IEEE Software (started that year by the IEEE

Computer Society), Brad Cox proposed adding object-oriented

concepts “on top” of conventional programming languages.

“Hybrid languages just add a new power tool to the programmer’s

kit, a tool that can be picked up when it fits the task at hand or set

aside when conventional techniques are sufficient.”
20

 In the same

vein, the authors of an article in Computer (the principal journal

of the IEEE Computer Society) the following year suggested that

“just as a combination of top-down and bottom-up development is

appropriate to many applications, a combination of functional

[Fortran-like] and object-oriented design might well be most ap-

propriate.”
21

 Likewise, a 1989 article described how to integrate

the object-oriented approach with structured development.
22

 Such

proposals reinforced the notion that synthesis might prove more

beneficial than revolution. Rather than treat distinct approaches or

concepts as universal dogma, a more pragmatic approach might

entail employing a combination of techniques as circumstances

warranted.

The object-oriented approach also put in high relief the issue of

domain-specific knowledge. As consultant Patrick Loy noted, the

principal problem for this approach was finding the objects, i.e.,

identifying the relevant objects in the problem domain that must

then be defined along with their properties within the soft-

ware.
19,p.45

 This often required fairly deep knowledge of the ap-

plication domain. After all, even if object-oriented programming

was exceptionally effective at modeling the “real world,” the real

world is a complex place, and what should be construed as an

object for programming purposes is often not obvious. Writing in

Communications in 1987, Russell Abbott emphasized the crucial

role of domain knowledge in software development.
23

 The fol-

lowing year, a report on a study of 17 large software development

projects noted that

the deep application-specific knowledge required to suc-

cessfully build most large, complex systems was thinly

spread through many software development staffs. Although

individual staff members understood different components

of the application, the deep integration of various knowl-

edge domains required to integrate the design of a large,

complex system was a scarcer attribute.
24

The importance of domain-specific knowledge was also recog-

nized at the 1989 International Conference on Software Engi-

neering. Victor Basili of the University of Maryland argued for

application-specific research in academia, while Bill Curtis of the

Microelectronics and Computer Technology Corporation (known

as MCC) made a case for developing domain specializations in

software engineering.
25

 Application domain has repeatedly been

seen as one of the principal contexts of which software technolo-

gists must be cognizant. It is one of the key areas in which the

tension betweeen specificity and generality plays itself out.

In any case, the important point was that in the mid-1970s,

many concepts that applied to procedures or functions could also

apply to data. Around the mid-1970s, Michael Jackson, one of the

European structured programming disciples, developed an ap-

proach that centered around the data rather than the operations.

Jackson’s method produced a program whose structure corre-

sponded to the data structure of the problem.
26

 This was also the

premise behind a method Jean Warnier devised around the same

time.
27

 Ken Orr developed a variation of Warnier’s technique a

few years later that became known as the Warnier–Orr approach.

A 1978 article in Software Engineering Notes (the publication of

SIGSOFT—the ACM Special Interest Group on Software Engi-

neering) concluded that “the data-structured/process oriented

approach is the one that has the best prospects for system and

program design in the future.”

The term structured had quickly assumed the status of an icon,

representing salvation in the eyes of some and just one more du-

bious quick fix in the eyes of others. The arrival of the structured

programming “revolution” was heralded in a collection of Data-

mation articles at the end of 1973. James Donaldson of Control

Data indicated that the name of the game was complexity man-

agement. “A technique known as structured programming has

been developed which offers improvements in both program

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 25

complexity and program clarity.”
29

 The following year, a seminal

article by Stevens, Myers, and Constantine in the IBM Systems

Journal brought together many of the basic tenets and attached a

slightly different but revealing label to them—structured design.
30

Many articles and books on structured programming, structured

design, and structured analysis followed, but they were essentially

variations on a theme. That theme consisted of concepts that Si-

mon has suggested are fundamental, universal principles of de-

sign—hierarchical decomposition and modularity. It is hardly

surprising that so many seized on “structured” as the adjective of

choice. Design, from Simon’s viewpoint, consists of exercises in

divining the structure of a problem and systematically structuring

an appropriate solution.
31

Another aspect of the structure “revolution” addressed the task

of carrying out the design process in an efficient and controllable

fashion. In other words, this aspect concerned management of the

process. One management strategy in particular became closely

associated with structured programming. As IBM’s F. Terry Baker

and Harlan Mills discussed in the 1973 Datamation collection, the

chief programmer team approach, while “made possible by recent

technical advances in programming, . . . also incorporates a fun-

damental change in managerial framework which includes re-

structuring the work of programming into specialized jobs, de-

fining relationships among specialists, developing new tools to

permit these specialists to interface effectively with a developing,

visible project....”
32,p.61

 By placing a single master programmer in

charge of design, providing appropriate support in terms of tools

and personnel, and employing structured programming tech-

niques, the chief programmer team approach could supposedly

result not only in an “entirely new technical standard for design

quality” but also in a “true professional discipline with a recog-

nized, standard methodology.”
32

 (Such arguments illustrate the

function that “techniques” play in the process of professionaliza-

tion.) This focus on group structure and dynamics was not alto-

gether new; Gerald Weinberg had taken the same perspective in

The Psychology of Computer Programming in 1971.
33

 But

whereas Weinberg had emphasized decision by consensus, Baker

and Mills saw advantages in a more authoritarian style. As evi-

dence, the authors pointed to the development of an information

bank for the New York Times, a project characterized by high pro-

ductivity and very low error rates. Questions were raised, how-

ever, concerning the extent to which the circumstances surround-

ing the project were in fact typical. Moreover, it seems the system

eventually proved unsatisfactory and was replaced some years

later by a less ambitious system.
34

 (It should be noted, though,

that in recounting the project, Mills presented it as an unqualified

success, making its ultimate outcome unclear.)

Given the fanfare with which structured programming (or

whatever other activity one cared to attach) was introduced, a

substantial amount of skepticism was virtually guaranteed to greet

it. Fred Gruenberger’s reaction was typical:

So now it’s structured programming and chief programmer

teams that will clear up all the troubles and make master pro-

grammers of all us clods. Pardon me while I yawn; I’ve been

here so many times. . . . Every single advance in software . . .

has been introduced with exactly the same claims. Each such

advance (and the totality of structured programming may well

be one) adds to our bag of tricks. And none of them contrib-

utes very much to the real underlying problem, which is clear

thinking in the area of problem solving.
35

Likewise, Dick Butterworth of General Electric cautioned that

“SP [Structured Programming] is no panacea—it really consists of

a formal notation for orderly thinking—an attribute not commonly

inherent in programmers nor any other type.”
36

 John Fletcher of

Lawrence Livermore Laboratory was more scathing. He acidly

suggested that the labeling as revolutionary of the ideas underly-

ing structured programming was “clear commentary on the sad

state into which the practice of programming has fallen in many

quarters and in which it apparently will remain.”
37

 Fletcher appar-

ently felt the concepts falling under the structured programming

rubric consisted of long-standing fundamentals rather than reve-

latory innovations.

The term structured [programming] had

quickly assumed the status of an icon,

representing salvation in the eyes of

some and just one more dubious

quick fix in the eyes of others.

Experiences with structured programming, if not earth-

shattering, were nevertheless reasonably positive. A session on

experiences and accomplishments with SP at the 1974 Lake Ar-

rowhead Workshop on Structured Programming produced the

conclusion that programs were generally more reliable, under-

standable, and maintainable.
38

 James Elshoff of General Motors

compared sets of actual production programs to ascertain the ef-

fect of structured techniques and found the SP programs much

more comprehensible.
39

 Nevertheless, a 1976 book review in

Computer observed that the “ideas underlying the subject

[structured programming] have been intensively debated for al-

most a decade. . . . Yet there has been little sign of any real con-

sensus emerging from this debate. On the contrary, it often seems

that discussions of the merits of structured programming are be-

coming more acrimonious as time goes by.”
40

Much of the caustic commentary over structured programming

did not constitute rejection of its basic tenets. As several individuals

noted, no one was in favor of unstructured programs. Rather, the

argument concerned relative value. Many practitioners objected to

perceived attempts to deify a set of useful but less than omnipotent

techniques. Many sought not to discredit structured programming

but simply to bring it and its overly zealous advocates back down to

earth. Paul Abrahams of the Courant Institute indicted the sociology

of structured programming rather than its content. “There are two

baleful aspects of this sociology: the elevation of good heuristics

into bad dogma, and the creation of the illusion that difficult prob-

lems are easy.”
41

 In a similar vein, Daniel Berry of the University of

California at Los Angeles (UCLA) declared that it “seems prepos-

terous to me (and to others) that the programs described in the pub-

lished descriptions of structured programming were developed as

cleanly as described in the papers....”
42

 A decade later, Parnas and

Paul Clements made a similar charge regarding the rationality of

design processes generally:

Splitting the Difference

26 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

The picture of the software designer deriving his design in a

rational, error-free way from a statement of requirements is

quite unrealistic. No system has ever been developed in that

way, and probably none ever will. Even the small program

developments shown in textbooks and papers are unreal.

They have been revised and polished until the author has

shown us what he wishes he had done, not what actually did

happen.
43

Numerous practitioners took such arguments a step further, con-

tending that the benefits of design techniques and software engi-

neering in general were principally in the state of mind they pro-

duced. In his software keynote address at COMPCON (the IEEE

Computer Conference) in 1975, William McKeeman of the Univer-

sity of California at Santa Cruz “described structured programming

as a problem-solving process—‘a human activity that needs to be

structured....’”
44

 Peter Denning contended that the “whole point of

‘structured programming’ is to set up mental patterns according to

which we write programs from the beginning using the prescribed

forms. The whole point is to establish ordered and disciplined

thinking leading to clearly structured programs.”
45

 C. Wrandle

Barth of the Goddard Space Flight Center observed that

“catastrophes can be constructed from the top down. A chief pro-

grammer team can still design a horse as a camel. The real lessons

of software engineering are much more in the realm of attitude,

approach, and emphasis than on techniques and rules.”
46

 Honey-

well’s David Frost suggested more explicitly a psychological ration-

ale for structured programming, relating the concept of chunking to

programming. (Chunking refers to the process in which humans

store information in their memories by structuring or coding it.)

“What all this boils down to is that psychology provides a powerful

argument for modularity in systems design. But it is also a powerful

argument for the hierarchical design process called top-down de-

composition, as well as for hierarchical program structures, because

chunking results in essentially hierarchical structures in the mind.”
47

A 1976 Datamation article by Lawrence Peters and Leonard Tripp

of Boeing placed such views in still larger perspective. They char-

acterized software design as a “wicked problem,” i.e., one that

changes during resolution and for which it is not always clear how

to proceed. Specific techniques could ease but not remove the es-

sential difficulty of the design process.
48

 Peters and Tripp made the

point even more explicitly in the pages of Datamation the following

year. “Software design methods merely assist in solving routine

aspects of a problem. Using a methodology only reveals the critical

issues in a design effort and gives us more time to address them. . . .

[D]esigning is problem solving—a fundamental, personal issue.”
49

Indeed, Dennis Geller in a 1979 letter to Software Engineering

Notes suggested that modularity and top-down be viewed “as un-

derlying principles which reflect our understanding of our own psy-

chological and organizational limitations, rather than as

‘methodologies....’”
50

 In other words, such concepts constituted

fundamental problem-solving strategies precisely because they ad-

dressed basic human limitations in dealing with complexity.

Dealing with limitations in a realistic manner was certainly the

thrust of the landmark 1975 book The Mythical Man-Month, in

which Brooks analyzed his experience as manager of the OS/360

project that developed the operating system for IBM’s famous

System/360 computers. Writing in an engaging and accessible

style, Brooks addressed issues involving such things as the dy-

namics of programming teams, scaling up, design principles, and

estimation. The results were revealing insights into, for example,

the overheads inherent in large organizations, the difficulty of

producing coherent designs, and the virtual impossibility of get-

ting a software product right the first time. His epilogue concisely

sums up his analysis:

The tar pit of software engineering will continue to be

sticky for a long time to come. One can expect the human

race to continue attempting systems just within or just be-

yond our reach; and software systems are perhaps the most

intricate and complex of man’s handiworks. The manage-

ment of this complex craft will demand our best use of new

languages and systems, our best adaptation of proven engi-

neering management methods, liberal doses of common

sense, and a God-given humility to recognize our fallibility

and limitations [emphasis added].
51

Observations of this sort, however, seemed unlikely harbingers of

a new age.

A new age, though, was exactly what many practitioners

sought and believed would result from formalized mathematical

attacks on the programming problem. One of the principal carriers

of this torch was Mills. (It should be noted that while formal

mathematics in programming was most prominently associated

with particular advocates—including Mills, Edsger Dijkstra, and

C.A.R. Hoare—who were often mentioned in the same breath,

they were certainly not all of one mind. Dijkstra, for example,

disassociated himself from what he considered the “empty but

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 27

impressive slogans” of Mills regarding structured program-

ming.
52

) In a 1975 Communications article, Mills presented a

mathematical model of structured programming to “simplify and

describe programming objects and processes. It is applied mathe-

matics in the classic tradition, providing greater human capability

through abstraction, analysis, and interpretation in application to

computer programming.” Such efforts would supposedly trans-

form programming from “an instinctive, intuitive process to a

more systematic, constructive process that can be taught and

shared by intelligent people in a professional activity.”
53

 Writing

the following year in IEEE Transactions on Software Engineer-

ing, he lamented the “legacy of heuristic thinking in software

development” while lauding the “powerful tools in mathematics

for expressing and validating logical design on a rigorous ba-

sis.”
54

 He was particularly taken with Dijkstra’s constructive ap-

proach to program correctness (in which a program and its proof

are developed concurrently) as articulated in A Discipline of Pro-

gramming, which came out that same year.
55

 A rigorous, formal

approach of this type stood in contrast to a mere “attitude.”

While debate swirled around structured programming in gen-

eral, the goto statement continued to serve as lightning rod. Goto

statements unconditionally transfer program execution to some

other instruction out of sequence. In the late 1960s, Dijkstra had

called attention to the deleterious and unnecessary complexity

their use engendered; avoidance of goto statements quickly be-

came one of the most prominent mantras of the structured pro-

gramming movement. The goto drew so much attention, in fact,

that sometimes it seemed as if practitioners were incapable of

seeing the forest for the trees. The flap over the goto was in full

display at the 1972 ACM National Conference, with several nota-

bles taking sides.
56

 In a 1974 piece, Donald Knuth argued that it

was indeed possible to write well-structured programs with goto

statements. He advocated limited, disciplined use, however.
57

 In a

1976 article in SIGPLAN Notices (the publication of the ACM’s

Special Interest Group on Programming Languages), Richard

DeMillo, S. Eisenstat, and Richard Lipton set out to determine

formally whether structured control mechanisms could efficiently

simulate programs using the goto construct. They developed for-

mulas indicating that a significant loss of efficiency occurred,

which manifested itself either in increased program size or in

slower execution.
58

 Ronald Jeffries responded that his firm’s re-

written code did not suffer in such a fashion and asserted that “we

need approaches to design which, in the hands of ordinary mor-

tals, yield programs that work. The techniques of ‘structured pro-

gramming’ seem to help us meet those goals.”
59

 Jeffries obviously

found theoretical debates over the goto of less concern than find-

ing design techniques of practical value. SofTech’s William Ro-

senfeld also suggested that the authors “seem to have missed the

point of the structured programming debate. It is not the objective

of structured programming to improve the efficiency of control

structures but rather to improve program readability. . . . Too

much time is spent making programs efficient and not enough

time is spent making them useful and correct.”
60

Indeed, a 1975 Communications article by Henry Ledgard and

Michael Marcotty suggested that the whole debate over control

structures was getting out of hand. Nevertheless,

while it may be argued that the control structure issue has

been entirely overworked, the debates and polarized opin-

ions remain. On the one side we have the well-known views

of Dijkstra and Mills, who have advocated the strict use of

the if-then-else and while-do control structures and their

variants. On the other side, we have the views of Knuth,

who has recently presented interesting arguments on the

utility of the goto.
61

The authors remained convinced that the basic structures Dijkstra

advocated—sequence, selection, and repetition—were sufficient

for the practicing programmer.
61,p.638

 A 1978 Workshop on the

Science of Design also concluded that efficiency was no longer

king. “No matter how elegant proving and testing techniques are,

they cannot replace design correctness. . . . In this regard, design

constraints that result in better testability and better verification

even though the hardware may be used less efficiently should be

encouraged.”
62

 In other words, good software implied more than

efficient software.

“We need approaches to design which,

in the hands of ordinary mortals, yield

programs that work.”

Over the course of the 1970s, attributes other than efficiency

began to dominate concern over software characteristics. Effi-

ciency remained a legitimate concern, but it could no longer be

the only concern. The vast increases in complexity necessitated a

more complex value structure. A fast but incomprehensible pro-

gram was no bargain; errors and maintenance difficulties rendered

speedy execution far less advantageous. Tools such as structured

techniques were means toward satisfying the demands of the new

value structure, but difficulties arose in evaluating the results of

their application. Like so much else in the developing software

field, software metrics quickly settled into the motherhood and

apple pie category. Everyone agreed on the importance of proper-

ties such as clarity, reliability, and maintainability for software

quality but nobody was sure how to measure them. While effi-

ciency lent itself to relatively straightforward measurement in

terms of execution times, more nebulous criteria proved less

obliging. Traditional measurement methods that concentrated on

statistical analyses of defects and breakdowns were clearly inade-

quate for a medium in which many problems originated in speci-

fication and design rather than physical deterioration. The concept

of a physical breakdown is a non sequitur in the realm of soft-

ware. Of concern, rather, is how to determine, for instance, which

design is less complex than another and thus likely to be less

flawed and more maintainable. By 1978, consultant Tom Gilb

could still complain in the pages of Software Engineering Notes

that “quality goals are like the weather; everybody talks about

them, but nobody quantifies them.”
63

In this sphere also, many found the allure of the “hard” sci-

ences irresistible. Kolence argued in Datamation in 1971 that

“performance measurement is inextricably linked to the study of

the natural laws governing the behavior of software in situ,” an

area he dubbed software physics.
64

 Around the same time,

Maurice Halstead of Purdue University began experimenting with

formulas relating structural properties of programs (e.g., numbers

of operators and operands) to coding time and expected error

counts. Halstead laid out his findings and arguments in 1977 in

Elements of Software Science.
65

 The year before, Thomas

McCabe of the National Security Agency, whose work is often

Splitting the Difference

28 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

mentioned in the same breath as Halstead’s, described in IEEE

Transactions on Software Engineering a measure of program

complexity he termed the cyclomatic number.
66

 The cyclomatic

number was a function of the number of potential logical execu-

tion paths through a structured program. But even here the sheer

complexity of the object forced a compromise. The impracticabil-

ity of attempting to calculate the total number of paths led to a

definition based on “basic paths,” which when combined would

generate every possible path. A 1977 article in SIGPLAN Notices

by Glenford Myers of IBM provided evidence of the utility of the

cyclomatic metric. In Myers’s opinion, “McCabe’s proposal

seems to be . . . one of the most intuitively satisfying, simplistic,

and easy-to-apply complexity measures.”
67

 Myers noted that the

cyclomatic metric confirmed the subjective judgments of B. Ker-

nighan and P. Plauger in The Elements of Programming Style

(1974) as to the relative complexity of various control structures.

Measuring software complexity, however, turned out to be a

complex business in and of itself. Myers had puzzled over the

existence of structured programs that registered a greater com-

plexity than their unstructured equivalents. In 1978, Elshoff and

Marcotty attempted, also in SIGPLAN Notices, to explain such

apparent aberrations. They suggested that things were even more

complicated than they appeared, “Cyclomatic complexity is only

one component in the measurement of the overall complexity of a

program. A reduction in one measure of complexity will often

result in an increase in another aspect of complexity.”
68

 In other

words, the very phenomenon of software complexity was com-

plex, manifesting itself in a variety of interrelated ways. The real

world would not even accommodate a straightforward notion of

complexity. Therefore, Elshoff and Marcotty concluded, “the use

of [an] empirically determined bound for complexity as a pro-

gramming guideline . . . seems to be reasonable. On the other

hand, the use of the cyclomatic complexity for the direct compari-

son of programs . . . is fraught with danger.”
68,p.39

 That one of the

best software metrics available was not useful as a basis for pro-

gram comparison reflected the individualistic nature of programs,

which was in turn a reflection of the malleability of the software

medium. A 1977 Datamation essay voiced a similar theme, ques-

tioning “the wisdom of attempting to discover universal measures

for problems which are, perhaps inherently and certainly practi-

cally, local in character.”
69

The malleability of the medium was even more explicitly rec-

ognized in a 1978 piece in Transactions. Edward Chen of Travel-

ers Insurance argued that complexity metrics generally ignored

the fact that “there exist, in general, multiple solutions, and the

programming process can be envisaged as a combination of both

analysis and synthesis processes aimed at identifying the most

desirable solution among a large number of feasible alterna-

tives.”
70

 In other words, the problem was not simply the com-

plexity of the resulting artifact, but the inherent complexity in-

volved in the design of the artifact. One derived benefits from a

design of relatively low complexity, but arriving at that design

was a complex matter itself. Several General Electric scientists

put forward a similar view the following year. Differentiating

between the computational complexity of the algorithm and the

psychological complexity of the programming process, they con-

cluded that “assessing the psychological complexity of software

appears to require more than a simple count of operators, oper-

ands, and basic control paths. If the ability of complexity metrics

to predict programmer performance is to be improved, then met-

rics must also incorporate measures of phenomena related by

psychological principles to the memory, information processing,

and problem solving capacities of programmers.”
71

 The apparent

necessity of such measures suggests the importance of funda-

mental cognitive processes and strategies in dealing with soft-

ware. Nevertheless, N.F. Schneidewind and H.-M. Hoffmann

concluded that same year that “for similar programming environ-

ments and assuming a stable programming personnel situation,

structure would have a significant effect on the number of errors

made and labor time required to find and correct the errors. . . . It

would be worthwhile to use complexity measures as a program

design control to discourage complex programs and as a guide for

allocating testing resources.”
72

 They also suggested that while no

single measure of program complexity had proven “best” in their

experiment, the cyclomatic metric appeared most practical due to

its relative ease of computation.

The notion that no single metric qualified as “best” received

reinforcement in the 1980s. A 1982 Computer article that dis-

cussed the relationship of complexity metrics to software main-

tenance observed that while measures based on program size

worked well in differentiating programs of widely varying sizes

with respect to maintenance costs, measures dealing with data

structure, data flow, and flow of control were needed to rank

programs of similar size. "The hybrid approach to measuring

software complexity is clearly the most sensible approach,"

concluded the authors. “Software complexity is caused by so

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 29

many different factors that measuring only one of them cannot

help but give unreliable results for a general case.”
73

 American

Bell’s William Evangelist voiced a similar view in SIGPLAN

Notices the following year, suggesting the need to “represent

software complexity as a combination of quantities derived

from both static and dynamic program properties.” He also

noted, however, the sticky problem of “precise identification of

those quantities of importance and the relative weight each

should have.”
74

 Indeed, an analysis of several metrics, including

those of Halstead and McCabe, by a team at the University of

Maryland using an experimental database produced the conclu-

sion that “none of the metrics examined seem to manifest a

satisfactory explanation of effort spent developing software or

the errors incurred during that process.”
75

 A 1988 critique of

cyclomatic complexity in the Software Engineering Journal (a

joint publication of the British Computer Society [BCS] and the

Institution of Electrical Engineers) went even further, suggest-

ing that “it is arguable that the search for a general complexity

metric based upon program properties is a futile task. Given the

vast range of programmers, programming environments, pro-

gramming languages and programming tasks, to unify them into

the scope of a single complexity metric is an awesome task.”
76

However, while many technologists seemed to agree with such

sentiments in principle, J. Paul Myers, Jr., of Trinity University

complained in 1992 that “new metrics are introduced nonethe-

less as ‘all-purpose’ measures of software complexity.”
77

An IEEE Software article later that year attempted to finesse

the problem by using factor analysis to aggregate individual

complexity metrics into one overall complexity value. Many of

the more than 100 existing metrics, the authors contended,

“measure many of the same things. Our research leads us to

believe that existing metrics probably measure no more than

four or five distinct types of complexity. Assuming this is true,

the best metric would represent as much variance in these un-

derlying complexity domains as possible.”
78

 They therefore

proposed a metric called “relative complexity,” the product of

mapping individual complexity metrics into independent com-

plexity domains—control, size, modularity, information content,

and data structure—the resulting weighted values (relative sig-

nificance for that program) of which were then converted into a

single complexity score for each program module. In a sense,

though, such a scheme begged the question, since in order to

make sense out of any given relative complexity, the score

would have to be unpacked to give the scores in the different

complexity domains. Moreover, it did not address the issue of

whether particular metrics might prove more or less suitable for

given settings. While the metrics in one complexity domain

might all be measuring the same type of complexity, some could

prove more meaningful than others depending on circumstances

such as application type and the particulars of the development

environment. These more meaningful metrics would then be

diluted by the presence of less appropriate ones. Indeed, writing

in IEEE Software in 1988, Basili had criticized the tendency of

organizations to employ metrics that “are bottom-up and based

blindly on models and metrics in the literature, rather than top-

down and based on an understanding of their own processes,

products, and environment.”
79

 The importance of such context

sensitivity was affirmed by the former director of Contel’s soft-

ware metrics program five years later. “Different projects have

different products, environments, domains, goals, and custom-

ers, so developers have different needs. The metrics collected

should reflect the project’s process maturity and needs. It is not

only natural but desirable for different projects to collect differ-

ent metrics.”
80

Clearly, software complexity was itself complex, with a multi-

tude of facets that defied management or measurement by any

single method. Simple, singular approaches were unlikely to do

the trick in a complicated and messy reality. Complexity was a

slippery concept, and while various “structured” techniques

helped control the complexity of both design activity and the de-

sign itself, they hardly constituted a panacea. Moreover, deter-

mining the complexity of a particular design in some absolute

sense as well as relative to other designs was a tricky business. A

number of practitioners even acknowledged the essential fuzzi-

ness of design activity, suggesting that the principal benefits of

structured programming derived from general mental patterns

rather than specific techniques. Structured techniques constituted

one important pragmatic response to the problems of software

technology. Their promotion by some practitioners as dogma

rather than as practical tools served only to stiffen resistance.

Correctness Versus Confidence:
Program Verification
The issues of complexity, pragmatic accommodation, and self-

image were nowhere so apparent as in the area of program verifi-

cation. But while people could disagree over software metrics

Splitting the Difference

30 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

with little rancor, the question of how to determine a program’s

“correctness”—whether the program met its specifications—

aroused passions. The controversy pitted the advocates of pro-

gram testing against the promoters of formal verification. That the

former was often viewed as the “engineering” approach while the

latter was seen as more “scientific” or mathematical is suggestive

of both the nature of the techniques and the self-images of practi-

tioners. The nature of the solution sometimes seemed to be a

function of the perceptions of the practitioner as to what he or she

was (scientist or engineer) and just what that entailed. What be-

came apparent to at least a handful of practitioners, however, was

the existence of a middle ground. Complexity took its toll in every

venue and defied singular or absolutist approaches. Just as it had

in the case of software design and metrics, pragmatism in the case

of verification translated into accommodation and synthesis.

There was little disagreement in the 1970s that software quality

was too often a contradiction in terms. People agreed less on pre-

cisely what to do about it. Quality assurance techniques developed

for hardware were of dubious applicability. As a 1971 Computer

article noted, it “would indeed be fortunate if the well-developed

theory of hardware reliability could be used to predict or enhance

the reliability of software. Unfortunately, this is not to be the case

as hardware reliability theory is based mainly upon the statistical

analysis of random failures of components with age.”
81

 Never-

theless, something had to be done. In a 1974 Datamation piece,

Tom Steel of Equitable Life Insurance declared:

[T]he major critical problem in the [computer] industry is, in

my view, the quality of software, whether vendor or user pro-

duced. . . . It is usually inadequate functionally, inconsistent

between actuality and documentation, error-ridden and inex-

cusably inefficient. Beyond all that, it costs far too much. I

can think of no other products (aside, perhaps, from pornog-

raphy and telephone service in New York) that have all these

failings to anything like the degree found in software.
82

The search for a “back-end” answer followed two distinct paths—

testing and formal verification. Testing sought to develop reason-

able confidence that a program or system would behave as was

intended by “exercising” the program. Formal verification (also

referred to as program proving and proofs of correctness) sought

to prove mathematically that a program matched its specifications.

These two approaches tended to attract and foster often antago-

nistic mind-sets.

The idea of testing a program was hardly new, but the rela-

tively new emphasis on the software development process

prompted increased emphasis on more systematic testing

throughout the development cycle. A 1971 Datamation article

advised readers to “‘think testing’ right from the start—modules,

programs, systems—all designed to be tested along the way.”
83

Mirroring the increasing fashionability of structured programming

as the decade progressed, the late 1970s saw numerous calls for

structured testing. Complaining in 1977 that testing continued to

be a “witch-hunt,” Dorothy Walsh advocated a structured ap-

proach to testing that “formalizes the intuitive good practices that

are its foundation and provides procedures for using them that

may be carried out even by inexperienced programmers.”
84

 A

Datamation piece the following year argued for top-down testing

in addition to top-down coding.
85

Making testing a more integrated part of the development

process was all well and good, but testing proved just as vulner-

able to the pernicious effects of mounting complexity as other

aspects of software development. One can test software both stati-

cally and dynamically, and both are problematic. Static tests focus

on program structure, while dynamic tests focus on program exe-

cution. Put another way, static tests checked the program’s logic,

while dynamic tests checked the program’s function. Ideally, this

meant checking every possible logical path, in the case of the

former, and testing with every possible set of inputs (with respect

to the program specification), in the case of the latter. Complexity,

however, could easily defeat both strategies; combinatorial explo-

sion rendered both complete path testing and exhaustive dynamic

testing totally impractical in most instances.

The problem of test data selection attracted much attention. As

was noted in Datamation in 1977:

the key to constructing a minimal yet logically complete set of

test data is the accurate and explicit enumeration of all cases

or conditions handled by the program or system. . . . The

quality of the systems test often breaks down precisely at this

starting point. The complete definition of test cases is viewed

as an impossible task, so no attempt at an orderly enumeration

of conditions to be tested is made at all.
86

In other words, the complexity of typical software precluded the

economical derivation of test data that would completely exercise

all aspects of the program. Raising confidence in software testing

would require more than brute force. While some advocated the

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 31

use of randomly generated test cases, most sought a more ration-

alized solution.

In a 1975 article in Transactions, John Goodenough and Susan

Gerhart of SofTech sought to finesse the problem. They suggested

that the input domain of a program could be partitioned into

classes of inputs such that the testing of one element of a class

was equivalent to testing the entire class: “This pinpoints the fun-

damental problem of testing—the inference from the success of

one set of test data that others will also succeed, and that the suc-

cess of one test data set is equivalent to successfully completing

an exhaustive test of a program’s input domain.”
87

This was easier said than done, principally because, despite the

attempt at systematization, particular cases of program conditions

were nevertheless considered in an ad hoc fashion. Variations on

this approach were offered in later years. But those who awaited

the arrival of a comprehensive theory of testing amenable to

automation found little encouragement in a 1980 editorial in

Transactions that observed there was “increasing recognition that

it is unlikely there will be a grand theory of testing which will

lead to fully automatic testing systems. Instead the tester will be

called upon to use his intuition and problem-dependent knowl-

edge in a disciplined manner to test for a variety of specified error

types.”
88

 Attempting to apply computational leverage to testing

encountered the same difficulties as attempts to leverage other

problem domains; variability and complexity placed limits on

effective formalization and automation. DeMillo, Lipton, and

Frederick Sayward had made a similar observation two years

earlier: “Until more general strategies for systematic testing

emerge, programmers are probably better off using the tools and

insights they have in great abundance. Instead of guessing at

deeply rooted sources of error, they should use their specialized

knowledge about the most likely sources of error....”
89

 Here was

another acknowledgment of the importance of local, problem-

specific knowledge.

A similar spirit of pragmatism was evident in a 1980 piece in

Transactions that attempted to make the Goodenough–Gerhart

theory “more than an unattainable ideal,” by using it to detect

certain classes of error thought likely to occur.
90

 Likewise, writing

in IEEE Software in 1985, Nathan Petschenik of Bell Communi-

cations Research argued for the setting of “practical priorities” in

the selection of case studies by looking for key problems that

would cause massive disruption rather than attempting to track

down all or nearly all problems in the software.
91

 Practical ac-

complishment demanded pragmatic concessions.

Even more pragmatic were practitioners who, instead of pin-

ning their hopes on the arrival of a grand theory of testing, began

to explore a combination of various strategies. In a 1984 Transac-

tions article, Simeon Ntafos of the University of Texas described

an approach that combined structural (based on control flow),

black-box (based on the program’s input specifications), and er-

ror-driven (based on known errors) approaches to generate test

cases.
92

 The following year, Sandra Rapps and Elaine Weyuker at

the Courant Institute proposed employing both data flow and

control flow as a basis for determining path coverage. Mitre’s

Samuel Redwine, Jr., had explicitly suggested in 1983 an

“engineering approach” to generating test data that revolved

around the idea of “different domains and types or metrics of

coverage.”
93

 The use of a combination of testing strategies con-

stituted a pragmatic response to the deficiencies of individual

approaches. Such remedies held little appeal, however, for those

who saw legitimacy and efficacy as the products of formalism

rather than heuristics.

Stemming from the fundamental work of Floyd in the 1960s,
94

program verification with its formal mathematical basis appeared

a haven from the dirty, ad hoc world of testing. In a 1971 article in

Communications, Hoare presented a proof of the correctness of a

simple program. He urged the incorporation of such proofs into

the coding process, suggesting that carrying out proofs in this

fashion was “hardly more laborious than the traditional practice of

program testing.”
95

 Writing in the Computer Journal (the research

journal of the BCS) that same year, he and a colleague attempted

to demonstrate the practicality of employing previously proven

programs (in this case, a subroutine) in the proof of a new pro-

gram. Just as important in this case was the claim that the pro-

gram to be proved was “realistic” and “nontrivial.”
96

 Hoare ad-

dressed the scaling-up issue even more explicitly the following

year, admitting that the application of proof techniques “even to

small programs is already quite laborious, so their direct applica-

tion to large programs is out of the question.”
97

 There were chal-

lenges, however, not only with respect to the question of scaling-

up but also with regard to the epistemological foundations of

proof methods.

Stemming from the fundamental work

of Floyd in the 1960s, program

verification with its formal

mathematical basis appeared a haven

from the dirty, ad hoc world of testing.

The battle was formally joined on a widespread basis in 1979,

when DeMillo (Georgia Institute of Technology), Lipton (Yale),

and Alan Perlis (Yale) argued in their article “Social Processes

and Proofs of Theorems and Programs” that “in the end, it is a

social process that determines whether mathematicians feel confi-

dent about a theorem—and we believe that, because no compara-

ble social process can take place among program verifiers, pro-

gram verification is bound to fail.”
98

 In mathematics, they con-

tended, the proof of a theorem constitutes a message that is dis-

seminated, scrutinized, and commented on: “Being unreadable

and—literally—unspeakable, verifications cannot be internalized,

transformed, generalized, used, connected to other disciplines,

and eventually incorporated into a community conscious-

ness.”
98,p.275

 Toy proofs such as Hoare’s 1971 verification of the

FIND algorithm left them cold: “There is no continuity between

the world of FIND . . . and the world of production software,

billing systems that write real bills, scheduling systems that

schedule real events, ticketing systems that issue real tick-

ets.”
98,p.277

 So many of software’s problems were so intimately

connected with scale, the authors were arguing, that a toy (i.e.,

very small-scale) proof of concept amounted to no proof at all.

The practicality of formal verification had yet to be demonstrated

through application to large-scale programs. Even then, their prin-

cipal argument would remain undented; they would still lack con-

fidence in the result.

Verification advocates were not slow to pick up the gauntlet.

Leslie Lamport of SRI International declared, “I am one of those

Splitting the Difference

32 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

‘classicists’ who believe that a theorem either can or cannot be

derived from a set of axioms. I don’t believe that the correctness

of a theorem is to be decided by a general election.”
99

 W.D.

Maurer of George Washington University argued essentially that

it was not software engineers who should adopt the social proc-

esses of mathematics but rather the mathematicians who should

make use of the computer to produce complete formal proofs.
100

Implicit in such an assertion was the view that all good things

flowed from rigorous formalism. (The formal methods movement

will be discussed in the next section.) As for reliance on program

testing, he asserted that was “the way other sciences and engi-

neering disciplines used to function, with disastrous results. The

Tacoma Narrows Bridge collapsed because people were designing

bridges, in those days, with no thought whatever to proving that

they would not collapse.”
100,p.628

 DeMillo, Lipton, and Perlis

found this claim “a complete distortion of fact, and to suggest that

engineers [engage in formal proofs of correctness] . . . now is

simply false.”
101

Maurer’s view was indeed a distortion and a revealing one.

The Tacoma Narrows Bridge was the first suspension bridge to

connect the mainland of Washington State with the Olympic

Peninsula. The bridge demonstrated a pronounced tendency to

undulate and tore itself apart only months after it opened in 1940.

Analysis after the fact revealed that the bridge had behaved in a

fashion similar to an airplane wing in uncontrolled turbulence. As

Henry Petroski notes, the problem was not the result of a failure

to check the design. Rather, “the possibility of failure of the Ta-

coma Narrows Bridge in a crosswind of forty or so miles per hour

was completely unforeseen by its designers, and therefore that

situation was not analyzed [emphasis added]. On paper the bridge

behaved well under its own dead weight and the light traffic it

was to carry.”
102

 The problem did not reside within the realm of

verification, but within that of design. Just as unforeseen condi-

tions produce software errors, so, too, did they produce the Ta-

coma Narrows Bridge failure. Formalism is of no help in such

instances. That Maurer believed so illustrates how the debate over

such issues was often clouded by confusion over the nature of

engineering (and science).

DeMillo, Lipton, and Perlis were hardly alone in their doubts

over the usefulness of formal verification. Richard Hill of A.C.

Nielsen Management Services commented that he could not recall

“a single instance in which a proof of a program’s correctness would

have been useful.”
103

 H. Lienhard of Switzerland applauded even

louder: “It was time somebody said it—loud and clear—the formal

approach to software verification does not work now and probably

never will work in the real programming world. . . . There is one

dimension that is crucial in ‘real-life’ programs: complexity. The

problem of software engineering is usually not the finding of ‘deep

theorems’ but rather the highly nontrivial task of mastering com-

plexity.”
104

 All this, however, was a replay of an earlier debate in

the pages of Software Engineering Notes. An earlier version of

“Social Processes and Proofs” had been presented at the 1977 ACM

Symposium on Principles of Programming Languages, and it had

prompted a strong response from Dijkstra. Terming it “a very ugly

paper” in “the style of a political pamphlet,” Dijkstra protested that

the authors “just ignore that how to prove—not in the silly ways

they depict, but more elegantly—‘the correct functioning of par-

ticular pieces of software’ is the subject of a lively interchange of

experiences between scientists active in the field.”
105

 “Unaware that

the ‘problems of the real world’ are those you are left with when

you refuse to apply their effective solutions, they confirm the im-

pression of anti-intellectualistic reactionaries....”
105,p.15

 DeMillo,

Lipton, and Perlis did not take this lying down, refusing to concede

that their confidence in a piece of “real” software had ever been

increased by a proof of correctness. They also maintained that “the

verifications . . . are long, ugly, and boring, no matter how concise,

elegant, and fascinating the idea of verification may be. If verifica-

tions of real programs are currently being socialized, Professor

Dijkstra should have no trouble pointing to the channels of commu-

nication.”
106

 In response to a Dijkstra position paper on reliability,

H.J. Jeffrey of Bell Labs contended that if one examined what peo-

ple actually did, “what emerges is that formal correctness is really a

peripheral issue in software reliability, which is primarily concerned

with how to do a good software job without formal correctness

proofs.”
107

 Here again was a view concerned with practical accom-

plishment rather than the enshrinement of absolutes.

Even if it was not a chimera, program correctness still guaran-

teed only that the implementation matched the specifications. This

was of dubious value, as the Tacoma Narrows Bridge so amply

demonstrated, if the specifications themselves were flawed. A

1975 Transactions article examined data from both real and ex-

perimental software with the aim of better understanding software

errors. The authors concluded that “the ability to demonstrate a

program’s correspondence to its specification does not justify

complete confidence in the program’s correctness since a signifi-

cant number of errors are due to incomplete or erroneous specifi-

cation....”
108

 The difficulty of producing complete and correct

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 33

specifications was at the heart of a 1977 Transactions article by

Douglas Ross and Kenneth Schoman, Jr., of SofTech. While con-

tending that the problem was not insurmountable, they neverthe-

less observed that software designers “attempt to do the same

[requirements definition as manufacturers] of course, but being

faced with greater complexity and less exacting methods, their

successes form the surprises, rather than their failures! Experience

has taught us that system problems are complex and ill-defined.

The complexity of large systems is an inherent fact of life with

which one must cope.”
109

Why, then, was formal verification so appealing? Gerhart prof-

fered a telling observation at a 1978 Workshop on Software Test-

ing and Test Documentation. Academic researchers, she sug-

gested, “have found program proving far more attractive, with its

logical mathematical origins and possible integration with the

programming process, than testing with its statistical and experi-

mental origins and a posteriori programming phase.”
110

 But even

Dijkstra had expressed some doubts about the hope held by a

number of academic researchers that the verification process

could somehow be made easy, that one could enjoy the fruits of

formal mathematics without paying a price. In a 1975 essay in

SIGPLAN Notices, he contemplated attempts to automate the

process:

We see automatic theorem provers proving toy theorems,

we see automatic program verifiers verifying toy pro-

grams and one observes the honest expectation that with

faster machines with lots of concurrent processing, the

life-size problems come within reach as well. But, honest

as these expectations may be, are they justified? I some-

times wonder....
111

Clearly, though, the stance people took with regard to testing ver-

sus formal verification was at least partially a function of how

they perceived themselves. Self-perceived scientists might de-

velop a very different view than self-perceived engineers. Where

you sit sometimes determines where you stand.

Somewhere between the true believers and the heretics resided

what a number of practitioners regarded as the pragmatic middle

ground. Andrew Tanenbaum suggested that correctness proofs

“have their place, but they can easily lull one into a false sense of

security, and therein lies the potential danger.” He viewed testing

and formal verification as complementary rather than competing

approaches.
112

 Likewise, Gerhart and Lawrence Yelowitz con-

cluded after examining a variety of supposedly correct programs

that “experience with both testing and mathematical reasoning

should convince us that neither type of evidence is sufficient and

that both types are necessary.”
113

 In a similar vein, Parnas opined,

“both sides hold to such extreme positions that convergence on

the truth, which both are seeking, is not possible.” He attributed

this divergence to a misguided analogy between programming and

mathematics; the proper analogy compared programming with

engineering.
114

 Yet, either analogy was bound to discomfit those

left out. Moreover, as has been noted, not everyone subscribed to

the distinction. Acknowledging the somewhat “dirty” nature of

engineering, Parnas maintained that engineering mathematics

“need not meet the standards set by mathematicians because it is

not the only way to test an engineering design.” He, too, advo-

cated a combination of testing and formal verification as a means

of increasing confidence in software.
114

 A 1985 Transactions

article proposed a method—partition analysis—that attempted just

such an integration.
115

For almost a decade following DeMillo, Lipton, and Perlis’s

attack, the formal verification issue remained relatively quiescent,

with each camp seemingly content to go its own way. The peace

was shattered once again, though, in the pages of Communica-

tions in 1988. James Fetzer, a professor of philosophy at the Uni-

versity of Minnesota, proceeded to drop another bombshell on the

formal verificationists. In “Program Verification: The Very Idea,”

Fetzer argued that DeMillo et al. had reached the right conclusion

for the wrong reason. While acknowledging their point about the

necessity of social processes in proof validation, Fetzer contended

that such processes could in principle be incorporated into formal

verification and were therefore not an intractable obstacle to it.

According to Fetzer, there was still an inescapable problem that

cast doubt on the claims of the verificationists. Fetzer argued for

the theoretical necessity to distinguish programs as encod-

ings of algorithms from the logical structures that they rep-

resent. . . . Algorithms, rather than programs, thus appear to

be the appropriate candidates for analogies with pure

mathematics, while programs bear comparison with applied

mathematics. Propositions in applied mathematics, unlike

those in pure mathematics, run the risk of observational and

experimental disconfirmation.
116

Clearly, though, the stance people took

with regard to testing versus formal

verification was at least partially

a function of how they

perceived themselves.

To simplify a fairly complex argument, Fetzer’s case centered on

distinctions between absolute and relative verification and be-

tween abstract and physical machines. Absolute verification con-

cerns conclusions derived only from primitive axioms while rela-

tive verification concerns conclusions derived from premises

whose truth cannot be absolutely verified. Thus,

the properties of abstract machines that have no physical

machine counterparts can be established by definition, i.e.,

through stipulations or conventions, which might be for-

malized either by means of program rules of inference or by

means of primitive program axioms. . . . By comparison,

programs [meant to be compiled and run on real machines]

 . . . are merely subject to relative verification, at best, by

means of deductive procedures. Their differences from al-

gorithms arise precisely because, in these cases, the proper-

ties of the abstract machine they represent, in turn, stand for

physical machines whose properties can only be established

inductively.
116,p.1,058

In other words, programs intended for execution on computers

“cannot be subject to absolute verification, precisely because the

truth of these axioms depends upon the causal properties of physi-

cal systems, whose presence or absence is only ascertainable by

means of inductive procedures. . . . This conclusion strongly sug-

gests the conception of programming as a mathematical activity

requires qualification in order to be justified.”
116,p.1,059

 The gist of

Splitting the Difference

34 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Fetzer’s argument, then, was that because programs run on actual

computers in an empirical reality subject to all kinds of complex

and often unexpected interactions, rather than on abstract comput-

ers in a closed, mathematical system, programming had to be seen

as applied (and thus less than certain) mathematics rather than as

pure mathematics (amenable to absolute verification) as many

formal verificationists seemed to view it.

Whether the resulting furor exceeded that prompted by the

“Social Processes” paper is arguable, but it was certainly the equal

of it. One of the strongest salvos was a joint attack launched by 10

distinguished computer scientists. The “Gang of Ten,” as Fetzer

dubbed them, included Basili, Gerhart, David Gries, Nancy

Leveson, and Peter Neumann. According to this outraged group,

Fetzer’s article “is not a serious scientific analysis of the nature of

verification. The article distorts the practice and goals of program

verification and reflects a gross misunderstanding on the part of

the author about the nature of program verification. This article

does not meet minimal levels of serious scholarship.” They went

on to damn the editors as well, contending that “by publishing the

ill-informed, irresponsible, and dangerous article by Fetzer, the

editors of Communications have abrogated their responsibility, to

both the ACM membership and to the public at large....”
117

 The

editors stood by their decision, while Fetzer, displaying no second

thoughts either, proceeded to return fire. After inviting the Gang

of Ten to accompany cruise missiles on future flights in order to

demonstrate the feasibility of constructing verifications of dy-

namic (self-modifying) programs, Fetzer declared that “in its in-

excusable intolerance and insufferable self-righteousness, this

letter exemplifies the attitudes and behavior ordinarily expected

from religious zealots and ideological fanatics, whose degrees of

conviction invariably exceed the strength of the evidence.” Fetzer

was supported in this view by one reader who “having read the

vitriolic, unjustified, unreasoned attacks on Fetzer,” suspected that

“at least some defenders of program verification can find no real

arguments to rebut Fetzer’s contentions and resort to meaningless

insults in a desperate attempt to defend a position that cannot be

logically defended.”
118

Beneath all the verbal barbs, however, lay a legitimate point of

contention. One of the principal criticisms leveled at the Fetzer

article, by the Gang of Ten and by others in somewhat more

measured terms, was that it attacked a straw man, a “parody” of

formal verification. For example, one reader commented that the

article “does a disservice to the cause of the advancement of the

science of programming by belaboring the rather obvious fact that

programs which are run on real machines cannot be completely

reliable, as though advocates of verification thought other-

wise.”
119

 Another contended that it “makes one important but

elementary observation and takes it to an absurd conclusion.”
120

Fetzer responded that such complaints were without merit inas-

much as “the principal position under consideration with respect

to program verification, no doubt, is that of C.A.R. Hoare and

those [such as Dijkstra] who share a similar point of view, a mat-

ter about which my article is quite explicit.”
121

 John Dobson and

Brian Randell at the University of Newcastle Upon Tyne sug-

gested that the problem was essentially one of misleading rheto-

ric, that although formal verificationists did not truly believe in

the possibility of absolute verification, they nevertheless sounded

as if they did, hence the confusion.
122

 This, however, seemed to

ignore a distinction Fetzer had made earlier. “I am not promoting

the view that program verification purports to provide absolute

certainty, but rather attacking the belief that this might be possi-

ble.”
123

 A couple of readers, though, apparently felt the problem

was more than one of miscommunication, with one commending

Fetzer on exposing “the naivete of computing researchers in gen-

eral and their illusions concerning the relevance of mathematical

formalisms in particular.”
124

 In this, though, he seemed to go far

beyond Fetzer’s own views, for Fetzer repeatedly emphasized that

he was not arguing that formal verification was, by definition,

illegitimate, but rather that its use had to be accompanied by an

understanding of its limitations, limitations that suggested that

“the techniques of program verification have to play a much more

limited role in assuring the production of high quality software

than its advocates suggest.”
125

 Such an attitude seems to place

Fetzer, despite the view of the formal verification community,

closer to the pragmatic middle ground than to the antiverification

extreme.

Pragmatism also manifested itself in the explicit observation

that dogmatic insistence on perfect programs was likely to pro-

duce more frustration than achievement. In a 1976 Transactions

editorial, Leon Stucki of McDonnell Douglas advocated a design

philosophy aimed not at producing error-free programs but at

producing easily testable software.
126

 Later that year, C.V.

Ramamoorthy and colleagues suggested what they termed “partial

validation.” “Partial validation is a practical approach which can

be used to establish a sufficient degree [emphasis added] of confi-

dence in the reliability of a program. This approach partitions

program characteristics into a number of classes and then vali-

dates each class to a specified extent.”
127

 A similar point of view

was articulated two years later in a Transactions article on soft-

ware reliability models. The authors stated flatly, “It is neither

necessary nor economically feasible to get 100 percent reliable

(totally error-free) software in large, complex systems.”
128

Accepting this, however, raised the question of what could be

done to ensure that residual errors would be merely inconvenient

rather than disastrous. The answer was to make software “fault-

tolerant.” As Leveson of the University of California at Irvine

asserted in a 1982 piece in Software Engineering Notes,

since removal of all faults and perfect execution environ-

ments cannot at this point in time, and perhaps never will,

be guaranteed . . . there is incentive to make software fault-

tolerant. In this approach, it is assumed that run-time errors

will occur, and techniques are used to attempt to ensure that

the software will continue to function correctly in spite of

the presence of errors.
129

Software fault tolerance differed from traditional engineering

safety factors, however, in that the latter is a matter of physical

tolerances while the former involves detection of and recovery

from unforeseen errors. One approach Algirdas Avizienis and

John Kelly of UCLA championed was to develop multiple inde-

pendent versions of a program—N-version programming. Inde-

pendent development efforts would supposedly produce programs

unlikely to contain the same errors. “The obvious advantage of

design diversity is that reliable computing does not require the

complete absence of design faults, but only that those faults not

produce similar errors in a majority of the designs.”
130

 The space

shuttle program employed a similar scheme in the development of

its basic flight software to guard against “generic” software errors.

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 35

One can only imagine the reaction of those involved when, in the

second half of the 1980s, doubts were raised as to the validity of

the assumption underlying multiversion programming. Writing in

IEEE Transactions on Software Engineering, two National Aero-

nautics and Space Administration researchers observed that recent

research had “demonstrated that programmers given the same task

are prone to make mistakes that potentially reduce the effective-

ness of a fault-tolerant approach.”
131

 Such mistakes could poten-

tially produce “coincident failures” in which two or more program

versions would fail (albeit not necessarily in precisely the same

way) given identical input. This raised the possibility, in a major-

ity voting scheme, of correct versions of the program being out-

voted by the incorrect versions.

While probably no one expected that an assumption of statisti-

cally independent failures could ever fully hold, it was neverthe-

less the theoretical heart of the argument. If failures were not at

least highly independent, the utility of N-version programming

was seriously undermined. Leveson and John Knight of the Uni-

versity of Virginia raised more doubts the following month when

they described an experiment that seemed to confirm this. They

noted:

it is assumed in some analyses of the technique that the N dif-

ferent versions [of a particular program] will fail independ-

ently; that is faults in the different versions occur at random

and are unrelated. . . . We are concerned that this assumption

might be false. Our intuition indicates that when solving a dif-

ficult intellectual problem (such as writing a computer pro-

gram) people tend to make the same mistakes . . . even when

they are working independently. Some parts of a problem may

be inherently more difficult than others.
132

Their experiment confirmed their fears, revealing a surprisingly

high number of coincident failures in a set of independently de-

veloped programs. They cautioned, however, against overgener-

alization, emphasizing that the independence-of-errors assumption

had only been shown invalid for the particular problem that was

programmed. Their caveats, however, did not deter Avizienis and

his colleagues from repeatedly charging that their findings were

flawed as a result of key experimental differences and inadequate

development methods. Knight and Leveson finally felt compelled

to answer this constellation of criticisms with an in-depth re-

sponse in Software Engineering Notes in 1990. They contended

not only that the criticism was unfounded but also that in many

respects their experiment more accurately reflected the ideas Avi-

zienis et al. espoused than the latter’s own work.
133

 In any event,

other researchers suggested it might be more effective to pursue

directly a quality other than statistical independence. In 1989, Bev

Littlewood of City University London and Douglas Miller of

George Washington University argued, “the achieved level [of

diversity of program versions] will depend on the diversity of the

processes (software development methodologies) used in their

creation.”
134

 They contended that statistical independence of pro-

gram versions was a misleading goal; the real goal had to be di-

versity, including diversity of development method. The following

year, however, Knight, Leveson, and another colleague suggested

diversity of process was not necessarily of much help. In a follow-

up to the 1986 article, they maintained:

simple methods to reduce correlated failures arising from

logically-unrelated faults (i.e., input-domain related faults)

do not appear to exist. The faults that induced coincident

failures were not caused by the use of a specific program-

ming language or any other specific tool or method, and

even the use of diverse algorithms did not eliminate input-

domain related faults. In most cases, the failures resulted

from fundamental flaws in the algorithms that the pro-

grammers designed. Thus we do not expect that changing

development tools or methods, or any other simple tech-

nique, would reduce significantly the incidence of corre-

lated failures in N-version software.
135

Here again was evidence that fundamental problem-solving proc-

esses lay at the heart of software development. It also amounted to

rediscovery of a fact that had been intimated years before: Statis-

tical reliability techniques developed for hardware would not

work for software.

Pragmatism thus moved the question

from one of correctness to

one of confidence.

This did not mean, though, that statistically based approaches

to reliability had no applicability to software. But they had to

approach things from a different perspective, one that incorpo-

rated the local knowledge and attributes of particular programs

operating in particular environments. While a variety of software

reliability models existed by the mid-1980s, hopes for a single

definitive universal model had not been fulfilled. No single model

seemed to perform well in all situations. “More importantly,” a

1986 article contended, “it does not seem possible to analyze the

particular context in which reliability measurement is to take

place so as to decide a priori which model is likely to be trust-

worthy. . . . [However] if a user knows that past predictions ema-

nating from a model have been in close accord with actual be-

havior for a particular data set then he/she might have confidence

in future predictions for the same data.”
136

 The authors proceeded

to describe some tools to assist in the selection of an appropriate

model. Indeed, in his introduction to a special section on software

testing in the June 1988 issue of Communications, the guest editor

argued that while particular types of statistical approaches might

be problematic, nevertheless “probabilistic analysis seems appro-

priate for testing theory because it is capable of comparing meth-

ods and assessing confidence in successful tests.”
137

 In this con-

text, as in so many others related to software, the dictum

“different horses for different courses” found increasing favor.

Even so, speaking at the 1989 World Computer Congress, Parnas

still felt compelled to decry narrow focuses and false dichotomies

when dealing with issues of software reliability.
138

Complexity proved inhospitable to dogmatism regarding both

the means and goal of verification. Neither testing nor proofs

could guarantee a “correct” program at reasonable cost, if at all,

and some practitioners questioned the necessity of error-free

software. Inhabitants of the middle ground advocated strategies

combining both testing and formal proofs, while admitting the

unlikelihood of total confidence. Pragmatism thus moved the

question from one of correctness to one of confidence. For those

who viewed their work ultimately in terms of science and mathe-

matics, though, the operative notions were those of truth and fal-

sity. MacKenzie illustrates just how problematic this dichotomy is

Splitting the Difference

36 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

for both hardware and software.
139

 Those more conscious of the

nature of engineering accommodated themselves to the notion of

confidence. As the 1983 National Bureau of Standards guidelines

for federal information processing systems admonished, “No sin-

gle VV&T [validation, verification, and testing] technique can

guarantee correct, error-free software. However, a carefully cho-

sen set of techniques for a specific project can help to ensure the

development and maintenance of quality software for that proj-

ect.”
140

 Similarly, in their introduction to a special 1989 issue of

IEEE Software focusing on verification and validation, the guest

editors observed that “a V&V effort selects tasks from a broad

spectrum of analysis and test techniques to tailor each V&V effort

to the project’s needs.”
141

 A complex reality did not easily ac-

commodate desires for absolutes; instead, practitioners were

forced to accommodate the limitations that complexity of both

program and process imposed.

In Search of Rigor:
The Formal Methods Movement
While in one sense the issue of formal verification was one facet

of the reliability question, in another sense it was the most promi-

nently divisive aspect of a larger debate over formal methods

more generally. Such methods eventually covered the full spec-

trum of software development and maintenance activities. What

linked them was their emphasis on mathematically based nota-

tions and methods of reasoning. This addressed what many of

their advocates viewed as the principal deficiency of software

practice: sloppy, fuzzy, and ad hoc thinking. Formal methods, they

believed, would counteract such tendencies. They would enforce

disciplined approaches to problem solving by requiring precise

logical reasoning. Their use would by definition make would-be

software engineers more scientific and thus more professional.

The result would be better software and a better public image for

those producing the software.

Not surprisingly, Hoare was one of the most prominent stan-

dard-bearers for formal methods (along with Mills and Dijkstra).

(Recently, Hoare has softened his view considerably, admitting

that less formal methods, including engineering intuition, have

proven surprisingly effective in producing relatively reliable sys-

tems. He still feels, however, that formal methods have a role to

play in the development of safety-critical and security-critical

systems.) One of his first major declarations in this regard came in

his famous 1969 Communications article, “An Axiomatic Basis

for Computer Programming.” It was here, in the wake of the 1968

NATO conference on software engineering, that Hoare argued that

programming was “an exact science in that all the properties of a

program and all the consequences of executing it in any given

environment can, in principle, be found out from the text of the

program itself by means of purely deductive reasoning.”
142

 He

went further in 1981, claiming:

we have only recently come to the realisation of the mathe-

matical and logical basis of computer programming; we can

now begin to construct program specifications with the

same accuracy as an engineer will survey a site for a bridge

or road, and we can now construct programs proved to meet

their specification with as much certainty as the engineer

assures us his bridge will not fall down. Introduction of

these techniques promises to transform the arcane and error-

prone craft of computer programming to meet the highest

standards of a modern engineering profession.
143

If nothing else, Hoare’s remarks suggest a limited appreciation of

the history of bridge building, which, like virtually every other

realm of engineering practice, has never enjoyed the sort of cer-

tainty that Hoare seems to attribute to it. The assumption of im-

perfect knowledge and the use of approximations are part and

parcel of civil engineering. Indeed, that is one of the main ration-

ales for incorporating safety factors into design calculations. The

sentiments Hoare expressed illustrate the misconceptions that

continued to plague software engineering regarding science, engi-

neering, and the relationship between them.
144

Formal methods advocates such as Hoare left little doubt that

they equated “informal” methods with “arcane and error-prone”

programming. Others, however, saw a role for both perspectives.

For instance, among the benefits Leveson ascribed to formal

methods in her introduction to a special issue of Transactions

were “rigor and precision including unambiguous communication,

prediction, evaluation, and better understanding and control over

software products and the software development process.” Note-

worthy, however, was her attendant observation:

We need not only better formal methods but also ways of

interfacing them to human abilities and less formal meth-

ods. There is much to be gained from investigating the

process of integrating formal methods with informal soft-

ware engineering procedures, e.g., determining how they

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 37

can be used together in a complementary fashion to take ad-

vantage of the strengths of each.
145

Gerhart echoed this point in her introduction to a companion spe-

cial issue of IEEE Software: “[T]he next challenge is to integrate

these formal methods with the variety of informal techniques (like

design records, conceptual modeling, and graphical representa-

tions) required to achieve the goal of a formally based engineering

discipline.”
146

 Here, it seems, was an attempt to reconcile a plu-

ralistic reality with the singularity exhibited by the formalists’

professional rhetoric.

Increasingly, formal methods advocates were not of one mind

with respect to the sufficiency of formal methods alone. Intro-

ducing a special issue of the Software Engineering Journal de-

voted to theorem proving and software engineering, C.B. Jones of

the University of Manchester was careful to note that mathemati-

cal methods were neither “panacea” nor “quack remedy.” Rather,

“there are, in fact, many useful approaches which will make con-

tributions to various application and/or development environ-

ments. Specialist (‘fourth-generation’) languages, Prolog, func-

tional languages, prototyping and others all have a contribution to

make.”
147

 At a 1989 formal methods workshop, participants re-

portedly leavened their insistence on the necessity of formal

methods with the caution that formal methods alone were insuffi-

cient for development of trustworthy systems.
148

 That year’s In-

ternational Conference on Software Engineering presented the

formal methods debate in microcosm, with believers emphasizing

the need for greater attention to formal methods, skeptics arguing

the superiority of “intuition and guessing,” and others calling for

“considered application” of formal methods depending on indi-

vidual circumstances.
25,p.109

Articles appearing in the late 1980s and early 1990s lent sub-

stance to this sort of pragmatism. Writing in IEEE Software in

1990, Anthony Hall related experience with formal methods at

Praxis, a British software engineering company. He noted that

“even though we have undertaken very few proofs or completely

formal development steps, we have found that inspections of for-

mal specifications reveal more errors than those of informal speci-

fications, and it is more effective to inspect designs or programs

against formal specifications than against other kinds of design

documentation [emphasis added].” He made it clear that “program

verification is only one aspect of formal methods. In many ways,

it is the most difficult. For non–safety-critical projects, program

verification is far from the most important aspect of a formal de-

velopment.”
149

 Moreover, he argued that it was unrealistic to ex-

pect most software engineers to easily and routinely carry out

formal proofs and that proof tools were primitive and possibly

condemned to remain that way.
149,p.17

 An article in that month’s

Computer suggested that such pragmatism could be found in aca-

demia as well. In a broad introduction to formal specification,

Jeannette Wing of Carnegie Mellon University noted, “Although

you may never completely verify an entire system, you can cer-

tainly verify smaller, critical parts.”
150

 Another way around the

difficulties of formal verification, though, was to change the na-

ture of formal verification. This was a key part of an integrated

process dubbed Cleanroom software engineering.

An approach Mills and others developed at IBM, Cleanroom

software engineering, was presented as “a practical process to

place software development under statistical quality control.”
151

While highly formalized, the Cleanroom process nevertheless

embodied several concessions to practicality. Foremost among

these was the verification process used:

The method of human mathematical verification used in

Cleanroom development, called functional verification, is

quite different from the method of axiomatic verification

usually taught in universities. It is based . . . on the reduc-

tion of software verification to ordinary mathematical rea-

soning about sets and functions as directly as possible. . . .

By introducing verification in terms of sets and functions,

you establish a basis for reasoning that scales up.
151,p.22

A related key feature of the Cleanroom was that development and

verification were both iterative and cumulative. Incremental de-

velopment meant in theory that only relatively small pieces of

programming would ever have to be verified. A further aid to

formal verification was the use of a limited set of design primi-

tives within the software. Another sign of pragmatism in the

Cleanroom scheme was that “structural testing that requires

knowledge of the design is replaced by formal verification, but

functional testing is retained.”
151,p.22

 A statistical usage profile

provided the basis for this testing. An experiment reported in

Transactions seemed to provide support for the efficacy claims

made by advocates of the Cleanroom.
152

 However, it should be

noted that the size of the programs used as examples of the suc-

cess of the Cleanroom approach represented both how far the

technique had come and how far it still had to go. Most of these

programs involved fewer than 50,000 lines of instructions, which

was still an impressive amount of formally verified code. Never-

theless, with major systems requiring hundreds of thousands and

even millions of lines of code, the practicality of using the Clean-

room approach for such systems was still an open question. More

importantly, one aspect of the Cleanroom process that was dis-

tinctly unpragmatic was its insistence on stable specifications.
151

Clearly, while this demand may be relatively easy to meet in some

contexts, it may be virtually impossible in others.

Mathematical methods were neither

“panacea” nor “quack remedy.”

Thus the issue of applicability raised its head once again. Some

formal methods advocates, though, were beginning to display a

heightened awareness of its importance. Wing, for instance, ex-

plicitly acknowledged the issue of applicability as pertaining to

both specification languages specifically and formal methods

generally, emphasizing that “an advocate of a particular formal

method should tell potential users the method’s domain of appli-

cability. . . . Without knowing the proper domain of application, a

user may inappropriately apply a formal method to an inapplica-

ble domain.”
150,pp.12-13

 Indeed, a 1987 Computer Journal piece

compared two different approaches to formal specification: the

Vienna Development Method and OBJ. The authors concluded,

“The two approaches each lend their own insights to a problem.

VDM [Vienna Development Method] encourages a more ‘top-

down’ approach to viewing a problem, while OBJ may be used in

a more ‘bottom-up’ style which gives fresh ideas on how to parti-

tion the problem and how to structure the specification. The over-

all experience was that the two methods complemented each

other.”
153

 Even Hoare seemed to be mellowing somewhat, admit-

ting in Computer in 1987 that the small and familiar example that

Splitting the Difference

38 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

had been used to illustrate some formal methods for program

design

revealed (all too clearly) the full weight of the notations and

complexity of the mathematical proofs involved in formali-

zation of the process of program design. The reader may

well be discouraged from applying these methods to prob-

lems of a scale more typical of software engineering. And

there are many other serious concerns which are not ad-

dressed directly by formalization, for example, cost estima-

tion, project management, quality control, testing, mainte-

nance, and enhancement of the program after delivery.
154

Nevertheless, in 1990 the associate editor-in-chief of IEEE Soft-

ware deplored what he saw as the ever-widening divide between

software engineering purists and real-world practitioners, “The

consequence is that practitioners are drifting toward the north pole

and purists toward the south pole (or vice versa—either side is

very cold). Those researchers who do take a more pragmatic ap-

proach and those practitioners who see the value of formal meth-

ods are trying to decide if they should move north or south.”
155

While there was clearly some movement toward the equator, it

seemed there was still a great deal of drift toward the poles.

The formal methods debate embodied virtually every type of

tension extant in the software engineering and computer science

communities: academia versus industry, research versus practice,

science versus engineering. From the other side of the road, for-

mal methods often appeared as the esoteric playthings of an elite

unconcerned with the circumstances of real-world software de-

velopment. Formal methods advocates viewed their critics as

stubborn and archaic craftsmen, either unwilling or unable to

adopt self-evidently superior techniques built on science and

mathematics. Nevertheless, there did exist a middle ground that

sought a balanced, integrated approach combining formal meth-

ods with other techniques so as to most effectively deal with the

particular problem at hand. By the 1990s, the population of this

middle ground was slowly growing, but the underlying tensions

still remained.

The Sound and the Fury:
Language Disputes
Just as verification proved unamenable to any one approach, so,

too, did programming (and, more importantly, programmers) ap-

pear resistant to any single language. The area of programming

languages has always provided rich grounds for controversy, per-

haps because the issue of programming language is so basic and

inescapable for practitioners that it inevitably generates strong

emotions. The enduring tension between language generality and

specificity played itself out in several arenas. The concept of a

universal language effective in virtually all circumstances

(ALGOL, PL/I) continued to attract hearts and minds as it had in

the 1960s, while others touted powerful application-oriented lan-

guages usable by nonprogrammers (so-called fourth-generation

languages) as well as special-purpose languages aimed at par-

ticular domains (such as NewSpeak, intended for safety-critical

programs
156

). At the same time, the old-guard languages—

principally Fortran and COBOL—continued to thrive and, to the

distress of many, evolve.
157

Those who enjoyed a good language controversy soon enough

had one to rival the disputes over ALGOL and PL/I. In January

1975, the U.S. Department of Defense (DoD) Director of Defense

Research and Engineering set up a department-wide program to

develop a single common high-level military programming lan-

guage for embedded systems. (An embedded computer system is

one that is an integral part of some larger system, e.g., the com-

puters used to control a modern jet fighter.) A High Order Lan-

guage Working Group was established to carry out this program.

David Fisher of the Institute for Defense Analyses described the

effort as “based on the idea that many of the support costs for

software increase with the number of languages, and that lan-

guages must be suited to their applications. Furthermore, with a

common programming language, a software development and

maintenance environment could be built, providing centralized

support and common libraries that could be shared....”
158

 DoD

difficulties with software mirrored those in the larger world. A

study earlier in the decade by the Air Force Systems Command—

“Information Processing/Data Automation Implications of Air

Force Command and Control Requirements in the 1980s”—had

confirmed, as Barry Boehm conveyed to Datamation readers, that

“for almost all applications, software . . . was ‘the tall pole in the

tent’—the major source of difficult future problems and opera-

tional performance penalties.”
159

 Fisher, however, revealed un-

usually modest expectations, “The present diversity of program-

ming languages used in embedded computer systems did not

cause most of the problems—nor would a common programming

language cause them to disappear. Nevertheless, the existing lan-

guage situation unquestionably aggravates them and inhibits some

potential solutions.”
158,p.26

 Recalling some of the expectations that

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 39

accompanied ALGOL and PL/I, such a view seems atypical in its

pragmatism. The extent to which others shared this view of the

DoD effort was another matter.

Since no existing language satisfied all the requirements with

respect to embedded applications, reliability, maintainability, and

machine independence, the High Order Language Working Group

decided to develop a new language. From 1975 to 1977, the group

concentrated on iteratively developing a set of language require-

ments in consultation with all interested communities. In the

summer of 1977, the working group selected four contractors to

propose initial language designs. These prototype designs were

evaluated by numerous review teams from academia, government,

and industry. In the spring of 1978, the working group narrowed

the competition to two proposals, which were then further devel-

oped and refined along with prototype processors. After another

round of evaluation, the working group selected Cii-Honeywell

Bull’s language in the spring of 1979 and christened it Ada, after

Lady Ada Lovelace, the world’s “first” programmer. For the re-

mainder of 1979, Ada was subjected to additional testing and

refinement.

If anyone believed the product of this effort would be uncon-

troversial, they soon learned otherwise. No less a personage than

Dijkstra took a dim view of the proceedings:

It is so illuminating because it shows in a nutshell what

havoc is created by not stating your goals but only pre-

scribing partial means intended to solve your problems. . . .

It makes also quite clear why the new programming lan-

guage cannot be expected to be an improvement over PAS-

CAL, on which the new language should be “based.” . . .

You cannot improve a design like PASCAL significantly by

only shifting the “centre of gravity” of the compromises

embodied in it; such shifts never result in a significant im-

provement. . . . Why does the world seem to persist so stub-

bornly in being such a backward place?
160

A 1979 report in Datamation noted that while the Ada re-

quirements study suggested that one language could in theory

support most application areas, that “does not, of course, imply

that it is desirable.”
161

 “The Ada language control people will

have a very difficult task. They must attract the reluctant services,

hold the language stable but correct . . . and not let multiple im-

plementations create language anomalies by different interpreta-

tions of the language. Historically, this latter problem has seldom,

if ever, been solved.”
161,p.150

 Writing in SIGPLAN Notices, Rob

Kling and Walt Scacchi expressed skepticism on sociological

grounds. Noting the attractiveness of technical fixes that allowed

one to “focus on designing technologies which can be high spir-

ited fun rather than upon the human dilemmas which can be woe-

fully depressing,” they saw “little reason to believe that projects

which use DoD-1 [which would become Ada] are guaranteed

lower life-cycle costs than similar projects which do not, when the

projects are executed in routine production environments under

routine contractual and market arrangements (and not as show-

cases for DoD-1 use).”
162

Given that Ada was intended to be almost all things to all peo-

ple, language complexity was a bone of contention, just as it had

been in the cases of ALGOL and PL/I. Paul Eggert of UCLA

suggested that Ada was yet another example of the “Wish List

Syndrome.” He accused Ada of being to Pascal what PL/I was to

Fortran—an unwieldy conglomeration of features.
163

 In a similar

vein, another SIGPLAN Notices reader contended that the com-

plexity of the language would encourage the use of language sub-

sets leading to incompatible implementations and styles and per-

haps even dialects.
164

 In fact, one of the most hotly debated issues

concerned the question of language subsets as a means of reduc-

ing the effective complexity of the language.

In his 1980 Turing Award Lecture,

Hoare despaired that with Ada, the

“mistakes which have been made in the

last twenty years are being repeated

today on an even grander scale.”

The ACM voted against approval of Ada as an American Na-

tional Standards Institute (ANSI) standard, partly in reaction to

the absence of subsets that were reliable (i.e., produced identical

results across compilers) and efficient (in terms of compilation).

The organization argued that if there were, in fact, “numerous

potential commercial applications—not limited to ‘embedded

systems’—and . . . these applications cover a broad range of com-

plexity, then there is a strong and—we believe—valid argument

for the definition of one or more ‘authorized’ subsets.”
165

 In 1982,

Ledgard and Andrew Singer advocated in Communications either

scaling down or subsetting Ada, “As strong supporters of the Ada

effort, we are concerned that in the long run the language will fail

with users for the same reason that other large languages have

failed—not enough was left out.”
166

 Robert Glass agreed that

“simplicity is to be sought. Practitioners, however, have ever more

complex problems to solve. The goal of simplicity must never

take precedence over the goal of problem-solving.”
167

 Randall

Leavitt did not care for the idea of Ada subsets, but acknowledged

that Ada might be a little too substantial, “My experiences with

Fortran transportability and maintenance indicate that a subset is

only another problem to overcome, not a solution. However, Ada

would benefit from some pruning.”
168

 DoD, not surprisingly, also

took issue with the notion of Ada subsets, arguing that subsetting

“would potentially defeat the portability of applications software,

libraries, reusable components, and programmers.”
165

 As for

pruning the language, Brian Wichmann, a member of the Ada

design team, asserted that while Ada could be simplified by re-

ducing its facilities, “it is far from clear . . . that the resulting lan-

guage will be as useful to the user community especially in the

long run.”
169

 The question, though, was useful in what sense?

Clearly, Ada, with its smorgasbord of features, was potentially

of great utility. But potential utility does not automatically trans-

late into practical utility. The potential utility of Ada could well be

vitiated by its bulk and complexity. In other words, Ada, like

other attempts at a universal language, might be too far beyond

the pivot between generality and specificity—the point at which

trade-offs seem to balance—to appeal to as wide an audience as

its proponents hoped.

Ada certainly did have its proponents. William MacGregor of

the University of Texas, responding to Dijkstra’s complaints about

the four candidate designs, opined, “Alternatives to the common

language being what they are, there is room for a great deal of

Splitting the Difference

40 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

imperfection in the new language while still achieving a substan-

tial economic advantage.”
170

 Peter Wegner, while admitting Ada

was comparable in complexity to PL/I and thus vulnerable to the

same kind of criticisms, contended that Ada was “better engi-

neered than Pascal or PL/I. . . . The resulting language has more

expressive power and greater security and reliability than either

Pascal or PL/I.”
171

 Hoare, however, believed that reliability and

the kind of complexity Ada exhibited were mutually exclusive. In

his 1980 Turing Award Lecture, Hoare despaired that with Ada,

the “mistakes which have been made in the last twenty years are

being repeated today on an even grander scale.”
172

 The depth of

Hoare’s concern was evident in his appeal to

not allow this language in its present state to be used in ap-

plications where reliability is critical, i.e., nuclear power

stations, cruise missiles, early warning systems, anti-

ballistic missile defense systems. . . . An unreliable pro-

gramming language generating unreliable programs consti-

tutes a far greater risk to our environment and to our society

than unsafe cars, toxic pesticides, or accidents at nuclear

power stations.
172,p.83

None of this, of course, was likely to derail a language DoD

was pushing. Just as DoD backing had compelled commitment to

COBOL on the part of manufacturers courting the Pentagon, so,

too, did firm DoD commitment to Ada serve to propel the lan-

guage forward. The ANSI Ada standard was issued in early 1983.

That same year, the Under Secretary of Defense for Research and

Engineering issued a DoD directive concerning programming

language policy that reiterated the department’s commitment to

Ada: “The Ada programming language shall become the single,

common, computer programming language for Defense mission-

critical applications.”
173

 The directive specified 1984 milestones

toward adoption.

Unhappiness over Ada was matched by irritation over the con-

tinued popularity of Fortran (and to a lesser extent COBOL). In a

1972 retrospective, Saul Rosen suggested, “The most striking fact

about programming languages . . . has been the continued over-

whelming acceptance of Fortran and COBOL.”
174

 Indeed, both

languages were expanding to provide increased functionality, thus

tightening their hold on users. A 1974 Communications article

offered techniques addressing the absence of facilities in Fortran

for handling character strings.
175

 The previous year, programming

guru Dan McCracken had admitted that although “nobody would

claim that Fortran is ideal for anything, from teachability, to un-

derstandability of finished programs,” nevertheless “Fortran is

very thoroughly entrenched, and . . . not likely to be displaced in a

big way any time soon.”
176

 More than a decade later, McCracken

could still assert, “Fortran is still the language of choice for engi-

neering and scientific calculations. (Those who deplore this fact

should at least admit that it is a fact.)”
177

 Perhaps the most elo-

quent expression of resignation was heard at a 1975 National

Computer Conference session at which Ben Wegbreit of Xerox

observed with a distinct lack of enthusiasm, “Ah, . . . Fortran will

be around until the end of time....”
178

The infatuation with structured programming heightened the

discontent, as proposals aimed at permitting Fortran devotees to

enjoy the fruits of SP began to circulate midway through the

1970s. Calls for “structured Fortran” were not greeted with waves

of enthusiasm. Much of the debate was played out, appropriately

enough, in the pages of SIGPLAN Notices. One reader harkened

back to the old days, declaring that Fortran “should have died in

the early sixties with the appearance of Algol 60. I am thus ap-

palled by the time and effort invested by so many people in

keeping it alive.”
179

 Another reader suggested that attempts to use

Fortran for structured programming were “like trying to make a

tack hammer suitable for driving railroad spikes.”
180

 Stuart Row-

land of the State University of New York contended, “there is

really only one problem with structured Fortran—it is still For-

tran.”
181

 Fortran was not without defenders, though. One asserted,

“Fortran has not outlived itself. Fortran is still quite tolerable for a

broad spectrum of problems and the transferability makes its use

of continued economic importance in our industry.”
182

 While

constituting a less than ringing endorsement, such comments il-

lustrate well the nature of the attachment to Fortran. Fortran re-

mained entrenched less because it was powerful and elegant than

because it remained a practical means of accomplishing a wide

variety of work and represented a substantial investment in soft-

ware and training. In much the same way, the QWERTY keyboard

continues to resist replacement by the ergonomically superior

Dvorak keyboard. Anthony Ralston and Jerrold Wagner recog-

nized this in their 1976 Transactions article, calling for the exten-

sion of Fortran IV into Structured Fortran (SF). They argued,

“attempts to ‘kill’ Fortran, however well intentioned and, even

however desirable such a result might be, are doomed to failure.

Revolution in higher level languages is no longer possible; evolu-

tion is the only—and necessary—alternative.”
183

 Similar argu-

ments were taking place over COBOL. Once again, McCracken

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 41

attempted to put things in perspective. He made his plea for

pragmatism with respect to COBOL in a 1976 Datamation essay:

COBOL is the most widely used language in the world by a

very wide margin, and it will stay that way for at least a

decade. So let’s work to make the best of it, and to improve

it gradually but steadily. . . . I say, let’s get on with it and not

sit around moaning about the horrible state of programming

languages while waiting for some utopian solution that

never seems to get any closer.
184

What should not be overlooked in the recognition of language

inertia, however, is how Fortran and COBOL attained such inertia

in the first place—by occupying the pivot between generality and

specificity.

The tension between generality and specificity surfaced repeat-

edly over the years. The arguments over a universal language

were simply cases of the larger issue. In an unusually philosophi-

cal 1975 paper, Naur compared and contrasted programming lan-

guages with mathematics and natural languages. He argued that

the lack of precision in natural languages, far from being a defect,

in fact made it possible for natural language to continually de-

velop and to express an endless succession of new ideas. The

development of natural language, he felt, could be used as a guide

for the design of programming languages. Programming lan-

guages “should preferably be built from a few, very general, very

abstract concepts, that can be applied in many combinations,

thereby yielding the desired flexibility of expression.”
185

 A 1977

Communications article seemed to express the opposite point of

view:

Members of this new generation of languages still strive to

be general purpose, trying to be applicable to a wide variety

of problem domains; and it is here that they may encounter

some inherent limitation. For in attempting to span a wide

range of potential users with the facilities of a single lan-

guage, a language designer will either end up with an enor-

mously complex language or one which is only moderately

well adapted to any one of the application areas.
186

Mark Crispin of MIT had made more or less the same point in

Datamation the previous year. “APL [a highly mathematical lan-

guage developed around 1960] is a nice language when used as a

programmable calculator. Similarly, COBOL is best for large

business data base crunching. Neither is very good for the other’s

type of usage. Let us recognize this rather than try to have the

seminationalistic banner of absolute superiority of one over the

other!”
187

 Writing in a similar vein with respect to ALGOL and

Fortran, A.C. Larman had struck the same chord in a more color-

ful way in the Computer Bulletin (published by the BCS) in 1971,

“One cannot state, unequivocally, that . . . a racehorse is ‘superior

to’ a dray-horse or a show-jumper; it depends entirely on the pur-

pose for which one requires it....”
188

 All these statements seem to

recognize implicitly the existence of a pivot along the generality–

specificity axis. A 1976 overview of computer technology sug-

gested, however, that the pivot had shifted in theory if not in fact.

Ware Myers argued “for people whose primary emphasis is on

their own work, the so-called higher-level languages are still or-

ders of magnitude too primitive. The gap between this kind of

user and the present languages is staggering. Languages need to

become more application-oriented.”
189

Ask and thou shalt receive. As computing entered the 1980s, ap-

plications development remained a major headache. A 1981 Data-

mation report observed that applications development “remains one

of the dp industry’s thorniest problems. Since the ’50s, when higher

level languages emerged, there’s been only slow, piecemeal prog-

ress.”
190

 The following year, though, the magazine heralded a new

approach that was easing applications backlogs, “The key to this

new trend is the appearance of simpler step-by-step program devel-

opment languages that are making it possible for users without de-

tailed programming expertise to develop their own applications.”
191

Known as nonprocedural or fourth-generation languages (4GLs),

these systems, which were sophisticated and powerful descendants

of packages such as IBM’s Report Program Generator, supposedly

permitted a user to specify what he or she wanted done without

detailing how to go about doing it. Often used in conjunction with a

database, systems such as RAMIS and Nomad made it easier to

develop custom applications that manipulated and distilled the in-

formation in the database (e.g., sales figures). One could, for exam-

ple, order the system to produce a chart or table without specifying

exactly what a chart or table looked like or how to go about assem-

bling one. Moreover, one could do this in a language whose syntax

bore at least a passing resemblance to normal English. Fourth-

generation languages had the potential to remove the programming

middleman.

“4GLs are as major a technological

advance to computer programming

as integrated circuits were to

computer hardware and orbiting

satellites to data communications.”

Predictably, some practitioners gushed with enthusiasm while

others were less enraptured. Perhaps the ultimate kudos were

bestowed by Nigel Read and Douglas Harmon in a 1983 Datama-

tion essay in which they proclaimed, “4GLs are as major a tech-

nological advance to computer programming as integrated circuits

were to computer hardware and orbiting satellites to data commu-

nications.”
192

 James Martin, czar of the consultants, was also a

devout proponent of 4GLs. Others, however, were more reserved

in their attitudes. John Cardullo and Herb Jacobsohn, for example,

felt that Read and Harmon had overstated their case, “We resist

the implication that the use of 4GLs will solve all the problems

that are raised by Read and Harmon. They are merely one more

very valuable means to help address, define, and solve the myriad

problems that face managers.”
193

 Similarly, Bill Inmon of Coo-

pers & Lybrand contended that while 4GLs were “certainly ap-

propriate for decision support, prototyping, and environments

where there is a limited amount of data and/or processing,” there

was evidence that “for operational systems, fourth generation

languages and application development without programmers

don’t deliver the productivity gains their advocates claim.”
194

Michael Brown of Hewlett-Packard disputed Inmon’s contention,

though in fairly moderate terms, “The use of fourth generation

languages does allow an increase in the number of individuals

with an applications bias to successfully develop programs. While

the organization still needs a balance of computer science types,

some production gains are accomplished by getting people with

Splitting the Difference

42 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

real application experience and competence closer to the devel-

opment process.”
195

 Consultant F.J. Grant came at it from the

opposite direction, but seemed to end up in more or less the same

place. Grant declared that 4GLs were not “a solution to the intel-

lectual and infrastructural problems of traditional MIS

[management information systems] implementations,” but ac-

knowledged that they “must be taken seriously.”
196

Most people agreed that 4GLs were, in fact, effective in certain

situations. The key question had to do with which situations.

Fourth-generation languages derived their power from incorpo-

rated knowledge of the application domain. As Wegner noted in a

1984 article in IEEE Software, the “choice of a domain of dis-

course for an application generator and the design of a generic

program generator and parameter interface require a deep under-

standing of the problem domain.”
197

 The previous year in Data-

mation, Alex and Dan Pines had observed that the “problem with

the programmerless approach [embodied by application genera-

tors] is that it institutes a simple software solution that attempts to

achieve two conflicting goals: universal flexibility and extreme

ease of use.”
198

 This point was echoed in a 1988 article in IEEE

Software, which concluded that “a user can save application-

development time if the problem matches the assumptions in the

tool’s predefined nonprocedural facilities. If the problem is not the

kind the tool was designed for, the user may pay development and

performance penalties. In these cases, conventional programming

is a better alternative.”
199

 Nonprocedural languages could greatly

facilitate the development of certain applications in well-defined

problem domains by “nonprogrammers,” but they were not a uni-

versal answer to the problem of software productivity; they were a

palliative rather than a cure.

The fact that 4GLs were nonprocedural did not exempt them

from the tension between generality and specificity. Instead, they

were an excellent example of the trade-off between breadth and

depth. Fourth-generation languages provided relatively high-

powered (in terms of productivity) development capability, i.e.,

leverage in depth, within a limited range of applications. In con-

trast, languages such as Fortran and COBOL provided less con-

ceptual power within a much broader range, while languages such

as PL/I provided little application-specific capability but virtually

“universal” range, i.e., leverage in breadth.

Attempts at programming language synthesis were highlighted

in a 1986 issue of IEEE Software. Noting the difficulties engen-

dered by trying to use the wrong tool for a particular purpose, the

guest editor described a new class of programming languages

aimed at solving the problem. These languages “do not restrict the

programmer to only one paradigm . . . rather they are multipara-

digm systems incorporating two or more of the conventional pro-

gram paradigms.”
200

 As Pamela Zave of Bell Laboratories ob-

served in a 1989 article describing one approach to multiparadigm

programming, “By definition, a paradigm offers a single-minded,

cohesive view—this is, in fact, how the popular paradigms help us

think clearly, offer substantial analytic capabilities, and achieve

their reputations for elegance. The corresponding disadvantage is

that each paradigm is too narrowly focused to describe all aspects

of a large, complex system.”
201

 Such “paradigms” included data

flow, functional, imperative (embodied in popular procedural

languages such as Fortran and Pascal), and object-oriented pro-

gramming. Multiple paradigms, though, were not cost-free. As the

paradigms multiplied, so, too, did the complexity of the language.

The real question, then, was just how many different paradigms

one could lump together within one language before the complex-

ity of the language vitiated the gains derived from the availability

of more than one paradigm. While there has been some success in

augmenting existing languages with a new type of language con-

struct representing a different paradigm, such as the addition of

object-oriented constructs to C (C++), it is unclear just how many

such balls a programmer can successfully juggle. If complexity

has been an issue for the large “universal” languages, it cannot

help but be an issue for truly multiparadigm languages. Moreover,

such paradigms differentiate languages in a manner not necessar-

ily congruent with differences in application domain. Fortran and

COBOL, for example, are aimed at different application domains

(science and engineering in the case of the former, commercial

data processing in the case of the latter) but both are imperative

languages. Therefore, language paradigms, which represent styles

of thought, are not necessarily the same as orientation toward a

particular application domain. Thus, multiparadigm languages

may represent synthesis on one level but not another.

Others took a dim view of the language skirmishes altogether.

In his 1977 Turing Award Lecture, John Backus, the originator of

Fortran, complained, “discussions about programming languages

often resemble medieval debates about the number of angels that

can dance on the head of a pin instead of exciting contests be-

tween fundamentally differing concepts.”
202

 Backus considered

von Neumann architecture (sequential computing) an “intellectual

bottleneck” restricting thinking about programming languages. In

a 1979 Computer essay, R.N. Caffin suggested an even higher

level of irrelevance for language debates, “The solution for more

general work does not lie in fool-proof, very high level, pseudo-

English languages. We must accept, for the present at least, that

programming requires thought.”
203

 Commenting on Caffin’s es-

say, Jim Haynes of the University of California at Santa Cruz

suggested the problem lay in the fact that “inventing new lan-

guages and arguing their relative merits is easier and more fun

than solving real problems.”
204

 Similarly, David Feign asserted

that the “much harder problem of understanding how people

really think and express themselves, and translating this into a

machine language, has been dropped by computer scientists.

Solving the harder problem would mean more work....”
205

 Wil-

liam Wulf of Carnegie Mellon University summarized the situa-

tion in a 1980 article on programming language trends, “Choosing

the proper balance between the generality of individual features

and the cost of their interaction is what has often turned out to be

more difficult than expected, and what has often been done

badly.”
206

 But Wulf also recognized that programming languages

could not cure the basic problem, “The fundamental problem of

constructing reliable, maintainable software is that of reducing its

complexity to a level with which humans can cope. . . . Program-

ming is intellectually tough. A programming language can, at

most, alleviate the difficulty of the task.”
206,pp.21-22

Nevertheless, programming languages continued to be a prime

source of contention. While disputes such as that concerning testing

versus formal verification were at least theoretically amenable to

resolution via pragmatic synthesis, language scraps tended to be

more a matter of trade-offs. The tension between generality and

specificity could often not be resolved, but merely accommodated

by the development and use of languages residing near the pivot

point. While some practitioners used the behemoth universal lan-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 43

guages and others employed application-specific 4GLs or nonpro-

cedural languages such as LISP, vast numbers found practical ac-

complishment (if not spiritual fulfillment) in the class of languages

that included Fortran, COBOL, and Pascal. For the most part, the

trade-off between breadth and depth in high-level languages has

been inescapable. Pragmatism for many practitioners has been a

matter of splitting the difference with languages at the pivot. To the

extent that language paradigms are distinct from application orien-

tation, multiparadigm programming, were it to prove viable, would

not necessarily alleviate this tension. The same holds true for soft-

ware development methodologies.

Mixing and Matching:
Redefining the Life Cycle
Pragmatism concerning the limitations of human intellectual capac-

ity and the utility of any particular approach had also infiltrated

thinking about the traditional software life cycle. Not only was

software itself growing increasingly complex, so, too, was the effort

required to produce it. Attempts to rationalize the process had to

recognize that software development was a complex and multifac-

eted activity intimately related to human social and cognitive proc-

esses. The traditional, essentially sequential (allowance was gener-

ally made for some degree of feedback between stages) model of

the development process, while mitigating problems of complexity,

embodied little appreciation of the intellectual difficulties inherent

in system specification and design. The obvious alternative, an it-

erative or cyclical process, addressed the cognitive problems but

was less effective in lending order and coherence to development

activity. Once again, combination and accommodation appeared

more profitable than any singular approach.

By the mid-1970s, doubts began to surface in some quarters as

to the realism of a principally sequential model of the develop-

ment cycle. Researchers at the University of Maryland suggested

that this ideal was often difficult to achieve. In Transactions in

1975, Basili and Albert Turner observed, “building a system using

a well-modularized, top-down approach requires that the problem

and its solution be well understood. . . . Furthermore, design flaws

often do not show up until the implementation is well under way

so that correcting the problems can require major effort.”
207

 In-

stead, Basili and Turner suggested implementing a simplified

version of the system and iteratively enhancing it until the full

system was implemented, “‘Iterative enhancement’ represents a

practical means of applying stepwise refinement.”
207,p.391

 What

this amounted to was a kind of prototyping, a development strat-

egy that would attract great attention down the road. A more ex-

plicit call for prototyping appeared in a 1980 essay in Computer

by W.P. Dodd. The notion of prototype programs had been dis-

cussed at the previous year’s International Conference on Soft-

ware Engineering but had been more or less dismissed on the

basis of cost. Dodd, however, suggested that the vast resources

expended on program maintenance reflected the fact that software

developers were producing prototypes but refusing to admit it, “In

any case, why should we complacently assume we don't need

prototypes when more established branches of engineering . . .

wouldn’t dream of not producing a prototype?”
208

 Such senti-

ments signaled growing recognition that the basically sequential

nature of the classic “waterfall” life cycle imperfectly modeled a

reality in which foreknowledge in system specification and design

was usually incomplete at best and sheer guesswork at worst.

(Patrick Hall et al. have written on the difficulty of making the

waterfall model work and on the social functions it performs that

help keep it in place.
209

)

This helped explain why so many highly planned projects

seemed to fall on their faces. Indeed, Fletcher Buckley of RCA

suggested in 1982 that software plans were often ineffective be-

cause the idealized software life cycle was just that—an unattain-

able ideal.
210

 McCracken and Jackson went even further, asserting

that the “life cycle concept is simply unsuited to the needs of the

1980s in developing systems.”
211

 Honeywell’s G.R. Gladden was

also of the opinion that “the concept of a ‘software life-cycle’ is

no longer helpful, indeed may be harmful to our software devel-

opment profession.”
212

 On the other hand, Patrick Hall argued

that life cycles, in general, were a good thing. Rather, “it is pe-

dantic defenders of particular life-cycles that are bad. Just as pe-

dantic defenders of particular development methods, or anything

else of that matter, are bad.”
213

 Bruce Blum of Johns Hopkins

articulated a similar view.
214

 Either way, some serious questions

were being raised concerning the applicability of a predominantly

sequential development cycle.

Such sentiments signaled growing

recognition that the basically

sequential nature of the classic

“waterfall” life cycle imperfectly

modeled a reality in which

foreknowledge in system specification

and design was usually incomplete at

best and sheer guesswork at worst.

The obvious alternative to a sequential process was a cyclical

one. In a 1983 letter to Communications, Joseph Chambers ech-

oed Basili and Turner from nearly a decade before, “Development

of any software system is essentially an iterative process.”
215

 That

the waterfall model was unrealistic was explicitly acknowledged

in sessions at the 1984 International Conference on Software En-

gineering, while a report on the 1985 International Workshop on

the Software Process and Software Environments observed signs

of “some emerging consensus that process models have some

inherently cyclic nature.”
216

 As IBM’s Stefano Nocentini argued,

“in complex environments, problems are solved through succes-

sive approximations rather than through precise, invariant defini-

tions.”
217

 Prototyping, clearly accommodating such a view, had

been steadily picking up interest; a 1982 Software Engineering

Symposium sponsored by ACM SIGSOFT, the IEEE Computer

Society’s Technical Committees on Software Engineering and

VLSI (Very Large Scale Integration), and the National Bureau of

Standards had focused on rapid prototyping. Accompanying much

discussion of the technique, though, were words of caution. In a

1983 Communications article, R.E.A. Mason and T.T. Carey

noted that there were also “disadvantages to the use of prototypes,

such as higher initial cost for the requirements phase of the devel-

opment cycle and the possible loss of distinction between this

phase and the design phase. But for certain types of applications,

there is a growing consensus that prototypes form an effective

component of an application development methodology.”
218

 Jerry

Splitting the Difference

44 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Schulz of Northwestern National Insurance also warned that pro-

totyping was not a magical elixir, “Although prototypes will be a

great help in developing decision support systems, much of data

processing work consists of systems whose primary purpose is not

decision support but rather the everyday operations of the busi-

ness. While prototyping may also be of value here, the pressure

will still remain to develop precise project specifications, spelling

out such things as each needed calculation.”
219

 As was so often

the case in software, it was just a matter of time before someone

seized the pragmatic middle ground with an argument for synthe-

sis. In 1984, Boehm, Terence Gray, and Thomas Seewaldt de-

scribed in Transactions an experiment comparing the prototyping

approach to software development with the specification-driven

approach. While, by their own admission, the experiment could

hardly be considered definitive, they nevertheless found the re-

sults to suggest that “both prototyping and specifying have valu-

able advantages that complement each other. For most large proj-

ects, and many small ones, a mix of prototyping and specifying

will be preferable to the exclusive use of either by itself.”
220

 Pro-

totyping seemed to result in smaller programs, reduced effort, and

ease of use, while the traditional approach lent more coherence,

functionality, and robustness.
221

 Therefore, a synthetic approach

could use prototyping to compensate for intellectual limitations

with respect to problem definition and system specification and to

employ the traditional specification approach to ameliorate com-

plexity by increasing coherence and fault tolerance.

In a more radical departure from the conventional development

process, prototyping combined with program transformations in

what was dubbed the operational approach. The operational ap-

proach represented yet another attempt to apply computational

leverage to the problem of software development. The concept of

program transformations had been batted around for a number of

years in various forms. One of the most ambitious was that envi-

sioned by Zohar Manna and Richard Waldinger in a 1979 Trans-

actions article in which they considered the principles to be incor-

porated into an automatic program synthesis system:

Our basic approach is to transform the specifications repeat-

edly according to certain transformation rules. Guided by a

number of strategic controls, these rules attempt to produce

an equivalent [program] description composed entirely of

constructs from the target language. Many of the transfor-

mation rules represent knowledge about the program’s sub-

ject domain; some explicate the constructs of the specifica-

tion and target languages; and a few rules represent basic

programming principles.
222

In other words, once the program specification had been devel-

oped at some highly conceptual or abstract level, the computer

would then be used in a multistage process to transform the speci-

fication into the programming language. The transformation proc-

essor would automatically bridge the gap between specification

and code. This got around one of the key trade-offs in software

generally and for formal methods in particular: understandability

versus efficiency. The argument, as articulated at a 1979 British

conference on the topic, was that “transforming specifications of

programs into efficient algorithms . . . [was preferable] rather than

having to prove correctness of clever and probably ‘unnatural’

programs.”
223

A few years later, David Wile of the University of Southern

California proposed a somewhat more modest approach in which

the implementer would manually choose the transformations to be

applied, leaving the computer to carry out the transformations. He

admitted, however, that producing a large and useful catalog of

transformations was a mountain yet to be climbed.
224

 A more

pivotal problem, though, was one that also vitiated the usefulness

of formal verification—achieving a correct program specification

in the first place. The transformations would presumably preserve

program correctness, but that assumed that the initial program

specification had been correct at the start.

This was where rapid prototyping came in. According to Zave

in a 1984 Communications article, in the operational approach,

“the specification itself can be used as a prototype, since it is ex-

ecutable. This type of prototype can be produced rapidly and will

be produced as an integral part of the ordinary development cycle.

. . . In the conventional approach a prototype is produced by iter-

ating the entire development cycle.”
225

 The approach Zave de-

scribed was “operational” presumably because the problem-

oriented specification was executable (albeit inefficiently) and

thus operational. One could therefore experiment with the specifi-

cation, which in effect was a prototype of the program, until the

prototype and thus the specification appeared satisfactory. The

implementer would then guide the application of transformations

to produce an efficient implementation of the system. All of

which was fine if you could develop a system that could do it. A

1981 Transactions article had noted that “the construction of

software by applying only formally verified rules is a time-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 45

consuming and highly sophisticated activity even for an expert

programmer.”
226

 As Zave admitted, one of the major weaknesses

of the operational approach was that “transformational imple-

mentation is a relatively untried approach, and the necessary theo-

retical supports are only beginning to be developed. The idea of

program transformations has been with us for a long time . . .

without noticeable impact.”
225,p.117

Ideally, practitioners required not just an appreciation for the

limitations of particular models but a framework for choosing the

most appropriate model at the most appropriate time. The spiral

model of software development purported to furnish just such a

framework. As Boehm described it in Computer in 1988, the spi-

ral model was oriented around the notion of risk assessment.

Rather than revolving around a particular element such as the

executable code or the documentation, a quality that characterized

other life cycle models, the spiral model focused on making well-

considered choices to employ approaches embodied in particular

models at different times in the development process. According

to Boehm:

this risk-driven subsetting of the spiral model steps allows

the model to accommodate any appropriate mixture of a

specification-oriented, prototype-oriented, simulation-

oriented, automatic transformation-oriented, or other ap-

proach to software development. In such cases, the appro-

priate mixed strategy is chosen by considering the relative

magnitude of the program risks and the relative effective-

ness of the various techniques in resolving the risks.
227

The model is spiral in the sense that it is a cyclic process in

which each cycle expands in terms of cost and commitment, yet

involves the same sequence of identification of alternatives,

assessment and choice, production, and evaluation. Each itera-

tion brings one closer to the operational system through succes-

sively greater elaboration. A particularly appealing aspect of the

spiral model was that, under certain circumstances, it could

become equivalent to one of the other process models, thus

rendering those other models effectively special cases of the

spiral model.
227,p.69

 Boehm admitted, however, that the spiral

model was not without problems, being difficult to reconcile

with typical software development contracts and relying on the

risk-assessment expertise of the people involved. Moreover, the

model required further elaboration before people without sub-

stantial experience with it could use it effectively.
227,pp.70-71

Still, the spiral model represented a milestone in that it formally

embraced the notion of technical pluralism with respect to life

cycle models. It viewed accommodation and synthesis as the

normal state of affairs.

Thus, a key insight of this period in terms of software devel-

opment models was of a kind with those in aforementioned areas.

Although the evolution of an alternative view of the development

process as cyclical as opposed to sequential was vital, its impor-

tance would have been diminished if the community of practition-

ers had either bifurcated with respect to the two approaches and

their variants or simply adopted the newer ones in wholesale

fashion. While some practitioners no doubt did definitively opt for

one approach over another, many displayed the same essential

insight that was evident in other important disputes over software

technology—that rewards often flowed from pragmatic accom-

modation based on appreciation of the limitations of singular so-

lutions. The advent of an articulated framework for achieving

such accommodation was an even more sophisticated manifesta-

tion of technical pluralism.

Establishing the Milieu:
Toward a Development Environment
Assuming the absence of a magic wand in the form of a truly

automatic programming system such as the synthesis system

Manna and Waldinger proposed, the various activities comprising

the development process could still benefit from less ambitious

tools. Compilers applied computational leverage to one aspect of

software development; computer-based tools could benefit other

aspects. Editors, debuggers, and other equally modest yet useful

tools significantly assisted in the performance of various devel-

opment and maintenance activities. Grouping the necessary tools

together into a development environment would clearly facilitate

the development process.

Here too, one discovers the basic trade-off between breadth

and depth. On the one hand, one could form a programming envi-

ronment that mainly resembled a development tool kit, involving

a wide selection of tools minimally coordinated in terms of inter-

tool communication. Such an environment would embody little

specific orientation in the way of language, methodology, or ap-

plication area and could be applied to a broad range of develop-

ment efforts. On the other hand, an environment could be inte-

grated to the extent that it revolved around a particular language,

Splitting the Difference

46 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

methodology, and application type and thus provide high degrees

of functionality directly related to those particulars. When tool

sets were not so oriented, clearly some amount of their combined

effective leverage was vitiated; their leverage in depth suffered for

the sake of leverage in breadth. If, however, one combined tools

into a single environment integrated in terms of languages, meth-

odology, and/or application area, one constrained the range of the

environment's utility; leverage in breadth was sacrificed for lever-

age in depth. This inescapable trade-off produced programming

environments of all stripes. The popularity of the Unix system,

however, suggests that tool kit environments may reside at a pivot

similar to that of high-level languages. On one side of the pivot

lies broad, completely ad hoc collections of tools with virtually no

coordination among them. On the other side lies the realm of

relatively narrowly oriented, tightly integrated environments. As

in other areas of software technology, practitioners often opted for

the middle ground.

In a development on a par (at least in hindsight) with the intro-

duction of Fortran, a 1974 Communications article introduced the

Unix time-sharing system. What Bell Labs colleagues Dennis

Ritchie and Ken Thompson had wrought was much more than an

operating system. Unix constituted a programming environment.

Programs available under Unix included an assembler, editor,

symbolic debugger, text formatter, macro processor, C (a new

language that would quickly become identified with Unix), and

Fortran compilers, as well as a collection of maintenance and

utility programs.
228

 The system also facilitated the funneling of

one tool’s output directly into another tool. In a 1977 article, Bell

Labs’ Evan Ivie took things even further. He suggested that the

programming community “develop a program development

‘facility’ (or facilities) much like those that have been developed

for other professions (e.g., carpenter’s workbench, dentist’s office,

engineer’s laboratory). Such an approach would help focus atten-

tion on the need for adequate tools and procedures; it would serve

as a mechanism for integrating tools into a coordinated set....”
229

Furthermore, the workbench concept encompassed the entire

software life cycle. Part of Ivie’s motivation stemmed from his

perception (widely shared) that the programming community had

yet to produce “a software development methodology that is suf-

ficiently general so that it can be transferred from one project to

another and from one machine to another.”
229,p.753

 Colleagues

Kernighan and Plauger had made a similar argument the previous

year, suggesting, “few programmers think to use or build pro-

grams as tools. If they maintain a set of utilities at all, such pro-

grams tend to be high personalized and must be modified for each

new application.”
230

 The authors urged the development and use

of general-purpose tools.

Unix represented only one of a number of approaches falling

under the rubric of programming environments. Unix was (and is)

the quintessential toolkit type of environment. Unix supported

neither a particular development methodology nor a specific lan-

guage, although the C language is closely associated with it.

(Ritchie developed C at Bell Labs in 1972 as a tool for creating

Unix, evolving out of the B language Thompson developed.)

Rather, as Anthony Wasserman put it in 1981 in his introduction

to a set of Computer articles on development environments, “the

facilities of Unix may be thought of as a tool kit from which the

developer can select tools that are appropriate for a particular task

and for which a toolsmith can easily build additional tools.”
231

This kind of approach was not without its drawbacks. In a 1981

Datamation sidebar, Michael Lesk of Bell Labs noted:

Unix has grown more than it has been built, with many people

from many places tossing software into the system. . . . Much

of the attractiveness of Unix derives from its hospitality to

new commands and features. This has also meant a diversity

of names and styles. To some of us, this diversity is attractive,

while to others the diversity is frustrating, but to hope for the

hospitality without the diversity is unrealistic.
232

A Datamation article three years later emphasized the negative

aspects, complaining, “all the improvements to Unix simply seem

to add to the confusion—there are now a bewildering number of

Unix versions from AT&T and other vendors, each with its own

special features.”
233

 Dennis Barlow and Norman Zimbel of Arthur

D. Little concurred, “It is clear that Unix is not a single operating

system, but rather a generic identifier for a clan of operating sys-

tems sprung from a common root.”
234

 A sidebar indicated, how-

ever, that AT&T viewed Unix as the solution rather than the

problem:

A standard operating system that could be used on many

different vendors’ hardware would be an important boost to

interchangeability. AT&T believes the Unix operating sys-

tem to be a strong candidate for such a standard for several

reasons, including portability, flexibility for diverse proj-

ects, versatility from micros to mainframes, and the exis-

tence of a large group of experienced users to feed the

growing marketplace.
235

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 47

Indeed, in 1981 ACM President Denning had used Unix as an

example of what was needed to promote software reuse, “In short,

to foster a new attitude—that programs are potentially public,

sharable, and transportable—we need operating systems that are

hospitable toward saving and reusing program parts. I will cite

Bell Labs’ Unix operating system to illustrate that the technology

is at hand.”
236

 A Datamation reader suggested in 1984 that the

bottom line with regard to Unix was the same as in the cases of

COBOL and Fortran, “Unix users like Unix for the same reasons

that PC/DOS users like their operating system—it works. We do

not claim any mystical properties over other operating sys-

tems....”
237

 (The author admitted, though, that as was the norm for

any significant development in software, Unix had its share of

self-righteous zealots.) Unix might not have been the end-all and

be-all of programming environments, but it enabled users to get

useful work done. In other words, Unix may well represent the

pragmatic pivot region in terms of programming environments.

Other environments consciously focused on a specific lan-

guage. The Cornell Program Synthesizer was a modest step along

these lines. As described in 1979 in SIGPLAN Notices, the

Cornell project was a self-contained programming environment

tailored to the grammar of the host programming language, pro-

viding, among other things, automatic language-specific syntactic

checks.
238

 One of the more popular language-oriented approaches

was the Interlisp environment, which provided tools specially

designed to facilitate the development of LISP programs.
231

 More

ambitious, in keeping with its language, was the Ada Program

Support Environment. A 1981 Computer article noted, “potential

benefits of the language and environment can only be fully real-

ized if the two are properly integrated.”
239

 The emphasis, as one

would expect given the hopes and rationale for Ada, was on port-

ability, “Tool portability, project portability, retargetability, re-

hostability, and programmer portability are all important.”
239,p.28

Like Unix though, the Ada environment would be open-ended,

permitting modification and extension at any time. Just as Unix

tools were written in C, Ada environment tools would be written

in Ada to ensure portability and coordination.

Yet another tack one could take in designing a development

environment was to focus on the domain of application. The LISP

Programmer’s Apprentice under development in the late 1970s at

MIT, although dedicated to LISP, focused on providing assistance

in particular application domains. The apprentice would cooperate

with the user in the design, implementation, and maintenance of

programs by performing various checks on the program design

and code.
240

 Reflecting pragmatic recognition of the facts of life

in software technology, the developers saw this as a “realistic

interim solution to the current software problems and as an evolu-

tionary path towards the more ambitious goals of automatic pro-

gramming.”
240

 As the potential of expert systems began to seize

imaginations in the 1980s, the notion of knowledge-based pro-

gramming assistants became increasingly attractive. In a paper

presented at a 1984 SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Development Environments,

Elliot Soloway of Yale University concluded that, based on pro-

gramming experiments,

the software aids that we see relevant to enhancing the de-

sign process are those that can digest the information pro-

vided by the designer. In particular, one aspect in which de-

signers seemed to need assistance was in keeping track of

the “notes” they made (the assumptions, expectations, and

constraints) and recalling them at just the appropriate time.

Software that could perform this type of assistance would

require considerable understanding of the design process it-

self, and information that is problem specific.
241

Such bookkeeping assistance seems to fall somewhere between

toolkits and automatic program synthesis in terms of ambition and

usefulness. MCC’s Software Technology Program seemed to be

aiming for this type of environment in the mid-1980s, one that

would “aid all aspects of complex software development, includ-

ing requirements capture, exploration, and early design.”
242

 In-

deed, this sort of approach has come to be known as “exploratory”

software development. At its core, exploratory software develop-

ment was a means of accommodating design uncertainty whereas

more traditional methods aimed to combat it.
243

 Winston Royce of

TRW recently asserted, “the exploratory approach is instinctively

correct to programmers, who use the act of coding to examine a

problem and code execution to test a requirements hypothesis.”
244

At its core, exploratory software

development was a means of

accommodating design uncertainty

whereas more traditional methods

aimed to combat it.

However, embedding any form of localized knowledge

(including characteristics of the work culture) within a develop-

ment environment constituted a substantial problem in and of

itself. Reconfiguring the environment for every project could

potentially involve a large amount of effort. This was the rationale

behind the Gandalf project described in Transactions in 1986. The

authors noted, “hand-crafting a software development environ-

ment for each project is economically infeasible. Gandalf solves

this problem by generating sets of related environments.” More

specifically, “Gandalf promotes the creation of project-oriented

software development environments in which many traits, such as

protection policies, are tuned to groups of persons working on a

project rather than to the entire computing community or to par-

ticular individuals.”
245

 Two years later, also writing in Transac-

tions, Jayashree Ramanathan and Soumitra Sarkar discussed a

similar idea featuring a project-specific assistant that was pro-

duced through interpretation of a conceptual modeling language

used to specify process, data, tool, and user models specific to a

particular project.
246

 Sophisticated development environments

such as these were early examples of what has been labeled

“metaCASE.” Whereas computer-aided software engineering

(CASE) involved the use of programming tools aimed at sup-

porting a particular method or approach, metaCASE aimed at

supporting a variety of approaches in a variety of settings. As the

guest editors of a special issue of Communications noted in 1992:

it is becoming apparent that a single design method will not

adequately address all application domains. . . . Also, differ-

ences in skill levels, styles, attitudes, cultures, goals, and

constraints demand highly tailorable CASE tools. The goal

is a technology that can accommodate many methods, nota-

tions, styles, and levels of sophistication....
247

Splitting the Difference

48 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

CASE tools that could be tailored to accommodate the specific

circumstances of a given project effectively embodied and en-

dorsed the notion of technical pluralism.

Along with this came slow acceptance that salvation was not to

be found in analogies with other design processes, most obviously

those related to computer hardware. A 1974 Computer article

pointed out that this insight had produced more frustration than

anything else, “Unfortunately, while the theory underlying the

application of computers in the design of computing hardware has

developed thoroughly, keeping pace (or nearly so) with the devel-

oping technology, the implementation of this theory remains a

difficult, mostly manual exercise in the design of programs and

programming systems.”
248

 On the other hand, Peter Freeman

noted later that year that

when talking about the automation of software design, we

are in fact talking about the automation of software crea-

tion—that is, the design, production, testing, and redesign of

software using the traditional meanings of those terms. Be-

cause of the totally symbolic nature of software, it may turn

out that techniques applicable to the design of other objects

will apply to the entire creation process of software.
249

According to Freeman, the areas requiring work included problem

representation, solution representation, and problem solving. The

fundamental nature of these areas reflects the level of cognitive

activities involved in software development. Their fuzziness sug-

gests the difficulty of reducing software problems to clearly de-

lineated critical technical problems subject to systematic attack.

Freeman himself cautioned, “unless software design problems can

be formulated in detail exactly like some other class of design

problems, the use of techniques from other areas may require a

good deal of work.”
249

 A decade later, at a 1985 MCC interdisci-

plinary symposium on complex design, design expert J. Christo-

pher Jones suggested that software design was indeed unique.

According to a report in IEEE Software, Jones contended, “the

complexities of software give rise to a new situation beyond the

scope of the previous engineering efforts, obliging students of the

subject to ‘go outside the rules.’”
243,p.70

Thus, while programming environments applied additional

computational leverage to the problem of software production and

supported the imposition of structure and coherence onto the de-

velopment process, they still suffered limitations arising from

software’s ephemeral nature. The fundamental, complex, and

fuzzy processes involved in software development rendered com-

parisons with other technologies of dubious value. No single ap-

proach would suffice, leading many practitioners to split the dif-

ference at the pivot. Environments that could be relatively easily

customized to fit the problem at hand represented an even more

pragmatic response to the diversity of project characteristics. Such

pragmatism may not have been overly satisfying, but practitioners

could at least accomplish more than they could before.

Picking and Choosing:
The Essence of Engineering
The 1980s witnessed a growing realization that effective software

development is contingent on a whole range of factors and influ-

ences. Recognition of the necessity and reality of technical plural-

ism, though, also led to an inescapable question. If there was seldom

(if ever) a manifestly single best approach, how did one go about

choosing an approach from the array of available options? This

question had three facets to it. First, how did one go about charac-

terizing different approaches so as to facilitate reasoning about

them? Second, and similarly, how did one go about characterizing

the attributes of the situation at hand in terms of problem or task,

organization, culture, etc.? Finally, how did the qualities of the for-

mer relate to those of the latter? Any type of selection entailed de-

termining in some fashion the most appropriate match between the

characteristics of various approaches and the characteristics of the

problem and its associated circumstances.

Jones contended, “The complexities of

software give rise to a new situation

beyond the scope of the previous

engineering efforts, obliging students

of the subject to ‘go outside the rules.’”

This necessitated turning away from the search for a philoso-

pher’s stone, from the hope of universalism. As Brooks argued in

1987, “building software will always be hard. There is inherently

no silver bullet.”
250

 Paul Rook of GEC Software had observed in

the first issue of the Software Engineering Journal the previous

year:

differences in organization structures, applications and ex-

isting approaches make it impractical to prescribe a single

scheme that can be universally followed. Methods, tools,

management practices or any other element of the total de-

velopment environment cannot be chosen without consid-

ering each element in its relationship to the other parts of

the development system.
251

A similar, albeit somewhat less nuanced conclusion had been

reached earlier at a London Comparative Review of Information

Systems Design Methodologies conference, one of a series of

such conferences. In his summary of the conference in the Com-

puter Bulletin, Anthony Finkelstein reported that practitioners

“were shown that the search for a best methodology is futile and

that they should be able to draw from an armoury of approaches

which they can integrate.”
252

 Left unanswered, though, as such

conclusions often did, was how to go about practically differenti-

ating and selecting approaches.

A number of articles in the 1980s and 1990s attempted to pro-

vide frameworks and procedures for making such choices. In

1982, for example, A.T. Wood-Harper and G. Fitzgerald identified

six major approaches to systems analysis—general systems the-

ory, human activity systems, participative (sociotechnical), tradi-

tional, data analysis, and structured systems (functional)—and

attempted to classify them according to paradigm, conceptual

model, and objectives.
253

 A finer granularity characterized an

article appearing three years later that compared the features of

seven specific techniques or methods on the basis of analysis and

design features but also with respect to philosophy, assumptions,

and objectives. The seven examined techniques ranged over five

countries and 12 years and differed in significant ways.
254

 Even

seemingly unitary approaches such as prototyping could be and

were broken down into several subtypes.
255

 In this realm as well,

formalism raised its head in the form of a 1992 IEEE Software

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 49

article in which two researchers at the University of California at

Irvine sought to scientifically compare software design method-

ologies such as the Jackson method, structured design, and object-

oriented design according to Grady Booch. Their approach was,

first, to distill a set of key features (base framework) and, then, to

describe those features as manifested by the methodologies in

terms of a meta-language or modeling formalism. They felt this

would provide a basis for “objective” comparisons.
256

All of these efforts, though, were static in the sense that they

offered only a structured description of a number of particular

approaches or techniques, giving little guidance as to how to go

about doing the selecting. It was in this spirit that D.M. Episkopou

and Wood-Harper proposed a framework, that is, a process model,

for matching a particular method to a particular environment,

“[N]o one approach can be classed as ‘superior’ to the others—

rather the art is in applying a suitable approach contingent on

variables within and around the problem situation.”
257

 Their sys-

tem involved identifying and describing roles in the problem-

solving process and their environments and then matching these

with a particular methodology. A 1988 Transactions article placed

the idea of project-based selection in the context of life cycle

models, arguing that project managers needed to choose an ap-

propriate life cycle model for each project based on such factors

as requirements volatility, the shape of that volatility, and the

longevity of the application.
258

 Pushing the selection issue even

further, some technologists argued that even this was too simplis-

tic a view. For example, Bo Sanden of George Mason University

disputed that

design problems can be grouped according to method, and

that each method addresses a particular type of problem

better than any other method. While this may be true for

some well-understood problem categories, generally, the

fact of the matter is that one method will seldom cover all

the essential aspects of any real-world problem. Rather, it is

important to have at one’s disposal a number of design prin-

ciples (from different methods) and apply those which result

in important statements about the problem at hand.
259

Sanden proceeded to show how the problem Booch used to illus-

trate object-oriented design in 1986 could be better handled using

the Jackson approach in conjunction with Booch’s object-oriented

one. Apparently sympathetic to this sort of eclectism was Nicho-

las Zvegintzov, the editor of Software Maintenance News, who

declared at the 1989 International Conference on Software Engi-

neering a few months later, “we may as well abandon the dream

of getting the whole under control. Various methods will work for

localized problems. You will always be working on parts of the

system.”
25,p.109

 Interestingly, if one elevates this attitude to the

level of the life cycle model, one ends up with something resem-

bling Boehm’s spiral approach.

If software engineering is to become an actuality rather than

a wish, it will require more than simple acknowledgment of the

necessity of choice. It will also need a basis for choice. If, in

fact, the dominant trend in software technology since 1970 has

been a slowly increasing willingness to embrace the notion of

technical pluralism (perhaps owing to a combination of project

failures and competitive pressures), it is difficult to escape the

implication that the key trend of the 1990s must be development

of a thoughtful basis for choice. That basis, moreover, must

consider the myriad factors that characterize any particular

software solution. A thoughtful basis, though, should not be

taken to mean an exclusive or overwhelming reliance on science

and mathematics. For while these will undoubtedly play impor-

tant roles in software engineering, as they have in other engi-

neering fields, they are no substitute for experience and aes-

thetics, intuition and heuristics. Accepting the necessity of

choice, developing a basis for choice, and carrying out that

choice in a nondogmatic manner demonstrate the height of

pragmatism. As such, pragmatism is the essence of engineering.

Conclusion
The closing panel at the 1978 International Conference on Soft-

ware Engineering had concluded rather dolefully, “the problems

of the ’80s look very much like the problems of the ’70s and de-

pressingly similar to the problems of the ’60s.”
260

 At the 1985

conference, Geoffrey Pattie, Britain’s minister of state for industry

and information technology, seemed to confirm it, “To put it very

bluntly . . . too much delivered software is still unsatisfactory. It is

still too often delivered late, costs more than expected, sometimes

fails to work in the way required, and quite often consumes exces-

sive resources in what is euphemistically called maintenance.”
261

Almost a decade later, an article in Scientific American sought to

explain “software’s chronic crisis.”
262

 For all the achievements of

the previous quarter century, the software problem, as Denning

had labeled it, had not gone away. In 1992, one practitioner ob-

served that more than half of the projects of which she was aware,

in diverse application areas, were late, over budget, unreliable,

and difficult to maintain, “The persistency of the [software] crisis

is discouraging.”
263

It often seemed, in fact, that virtually

nothing in the realm of software

qualified as straightforward.

To some extent this can be attributed to the steadily increasing

ambitions of software developers and users. Clearly, significant

progress has been made; systems that would have defied the

imagination not long ago can now be attempted with the expecta-

tion of at least some modicum of success. Nevertheless, the basic

problems remain. Doing software was difficult in the 1960s, and it

is still difficult in the 1990s. Software has become more ordered

internally, as has the development process that produces it. But as

steadily increasing ambitions have compensated for the mitigating

effects of structure on software’s complexity, software developers

have not found their work any easier.

Consider all the critical areas in which software’s malleability,

discreteness, and concomitant complexity served to frustrate at-

tempts to hurdle problems rather than wrestle with them. A uni-

versal language might have done wonders for communication,

transportability, and tool development, except that it was, by defi-

nition, too complex and cumbersome for the tastes of many. On

the other hand, highly application-specific languages were con-

ceptually powerful, but enhanced productivity only in narrow

areas. Exhaustive testing would have greatly increased software

reliability, but combinatorial explosion would not permit it. For-

mal verification would have done the same, but the complexity of

the proofs vitiated its usefulness. Furthermore, a proof was only

Splitting the Difference

50 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

as good as the program specification, and developing specifica-

tions was a rather fuzzy process, human foresight being far from

perfect. The problem of human cognitive limitations hindered the

development of complete and appropriate program specifications,

while iterative development tended to reduce overall design co-

herence. Simple, comprehensive measurements would have pro-

vided an objective check on program complexity, but that very

complexity limited the validity of straightforward measurements.

It often seemed, in fact, that virtually nothing in the realm of

software qualified as straightforward.

Complexity may be a fundamental phenomenon and problem

solving a fundamental activity, but neither is simple. On the con-

trary, both are complicated and multifaceted, often defying

straightforward understanding or response. The salience of these

facts stems directly from both software’s ephemeral nature and

the potential derived therein for broad computational leverage.

Because software is abstract, it can be effectively applied to a

wide range of problems. This entails, in turn, basic notions of

design and problem solving—hierarchical decomposition, ab-

straction, and so forth—that, while highly useful, defy translation

into exact technical doctrine equally effective under all circum-

stances. No single approach in any single aspect of software tech-

nology could fully satisfy the needs or desires of practitioners.

Precise dogma finding its expression in a single programming

language, design technique, metric type, or management method

is no doubt more emotionally satisfying, but nevertheless imprac-

tical. Effective technological practice demands technical pluralism

operating in the context of local knowledge and within a frame-

work for choice.

The story of software engineering since the label came into use

is thus a story of compromise among generality and specificity,

heuristics and formalism, procedures and data, sequence and cy-

cle. The practical response was combination and accommoda-

tion—covering all bases or splitting the difference, synthesizing

complementary approaches or accommodating inescapable trade-

offs. Pragmatists argued for mixed strategies of testing and prov-

ing, the use of tailored reliability models and development envi-

ronments, the use of a full set of metrics, and the synthesis of life-

cycle models. But while seizing the middle ground appeared to be

a practical way to cope with difficulties, it seemed unlikely to

produce a revolution. If software technologists are nowadays

devoting more effort to engaging in a pragmatic fashion with the

complexity of their problems, it is to their credit. That is sympto-

matic of maturity and of real engineering.

Acknowledgments
This research was supported in part by the Charles Babbage In-

stitute for the History of Information Processing and by the

Leverhulme Trust.

References
[1] Andrew L. Friedman with Dominic S. Cornfeld, Computer Systems

Development: History, Organization and Implementation. New
York: John Wiley & Sons, 1989.

[2] David Lorge Parnas, “Software Aspects of Strategic Defense Sys-
tems,” Am. Scientist, vol. 73, no. 5, pp. 432-440; reprinted in Com-

puterization and Controversy: Value Conflicts and Social Choices,

Charles Dunlop and Rob Kling, eds. New York: Academic Press,
1991, pp. 593-611.

[3] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidents
of Software Engineering,” Computer, vol. 20, p. 12, Apr. 1987.

[4] Eloina Pelaez, “A Gift from Pandora’s Box: The Software Crisis,”
PhD diss., Univ. of Edinburgh, 1988.

[5] Peter Naur and Brian Randell, eds., Software Engineering: Report on

a Conference Sponsored by the NATO Science Committee, Gar-
misch, Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs Divi-
sion, North Atlantic Treaty Organization (NATO), 1969, p. 13.

[6] B. Randell, “Towards a Methodology of Computing System De-
sign,” Peter Naur and Brian Randell, eds., Software Engineering:

Report on a Conference Sponsored by the NATO Science Committee,

Garmisch, Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs
Division, North Atlantic Treaty Organization (NATO), 1969, p. 205.

[7] Stanley Gill, “Thoughts on the Sequence of Writing Software,” Peter
Naur and Brian Randell, eds., Software Engineering: Report on a

Conference Sponsored by the NATO Science Committee, Garmisch,
Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs Division,
North Atlantic Treaty Organization (NATO), 1969, p. 186.

[8] J. N. Buxton and B. Randell, eds., Software Engineering Techniques:

A Report on a Conference Sponsored by the NATO Science Com-

mittee, Rome, Italy, Oct. 27–31, 1969. Brussels: Scientific Affairs
Division, NATO, 1970, p. 7.

[9] R. M. Needham and J. D. Aron, “Software Engineering and Com-
puter Science,” J. N. Buxton and B. Randell, eds., Software Engi-

neering Techniques: A Report on a Conference Sponsored by the

NATO Science Committee, Rome, Italy, Oct. 27–31, 1969. Brussels:
Scientific Affairs Division, NATO, 1970, p. 114.

[10] Niklaus Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, vol. 14, p. 221, Apr. 1971.

[11] Alan Cohen, “Letter,” Datamation, vol. 17, p. 15, Feb. 1, 1971.
[12] D. L. Parnas, “A Technique for Software Module Specification with

Examples,” Comm. ACM, vol. 15, p. 330, May 1972.
[13] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems

into Modules,” Comm. ACM, vol. 15, p. 1,053, Dec. 1972.
[14] Glenford J. Myers, “Characteristics of Composite Design,” Datama-

tion, vol. 19, p. 102, Sept. 1973.
[15] Frank DeRemer and Hans Kron, “Programming-in-the-Large Versus

Programming-in-the-Small,” SIGPLAN Notices, vol. 10, p. 114, June
1975.

[16] Barbara H. Liskov and Stephen N. Zilles, “Specification Techniques
for Data Abstractions,” IEEE Transactions on Software Engineering,

vol. 1, p. 7, Mar. 1975.
[17] John Guttag, “Abstract Data Types and the Development of Data

Structures,” Comm. ACM, vol. 20, p. 404, June 1977.
[18] Grady Booch, “Object-Oriented Development,” IEEE Transactions

on Software Engineering, vol. 12, p. 212, Feb. 1986.
[19] Patrick H. Loy, “A Comparison of Object-Oriented and Structured

Development Methods,” Software Eng. Notes, vol. 15, p. 46, Jan.
1990.

[20] Brad J. Cox, “Message/Object Programming: An Evolutionary
Change in Programming Technology,” IEEE Software, vol. 1, p. 51,
Jan. 1984.

[21] Victor R. Basili et al., “Characterization of an Ada Software Devel-
opment,” Computer, vol. 18, p. 64, Sept. 1985.

[22] Paul T. Ward, “How to Integrate Object Orientation with Structured
Analysis and Design,” IEEE Software, vol. 6, pp. 74–82, Mar. 1989.

[23] Russell J. Abbott, “Knowledge Abstraction,” Comm. ACM, vol. 30,
p. 666, Aug. 1987.

[24] Bill Curtis, Herb Krasner, and Neil Iscoe, “A Field Study of the
Software Design Process for Large Systems,” Comm. ACM, vol. 31,
p. 1,271, Nov. 1988.

[25] Galen Gruman, “ICSE Assesses the State of Software Engineering,”
IEEE Software, vol. 6, pp. 110–111, July 1989.

[26] M.A. Jackson, Principles of Program Design. New York: Academic
Press, 1975.

[27] Jean Warnier, Logical Construction of Programs, translation by
B.M. Flanagan. New York: Van Nostrand Reinhold, 1976.

[28] John Parker, “A Comparison of Design Methodologies,” Software

Eng. Notes, vol. 3, p. 19, Oct. 1978.
[29] James R. Donaldson, “Structured Programming,” Datamation, vol.

19, p. 53, Dec. 1973.
[30] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”

IBM Systems J., vol. 13, pp. 115–139, May 1974; reprinted in Clas-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 51

sics in Software Engineering, Edward N. Yourdon, ed. New York:
Yourdon Press, 1979, pp. 207–232.

[31] Herbert A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge,
Mass.: MIT Press, 1981.

[32] F. Terry Baker and Harlan D. Mills, “Chief Programmer Teams,”
Datamation, vol. 19, p. 58, Dec. 1973.

[33] Gerald M. Weinberg, The Psychology of Computer Programming.

New York: Van Nostrand Reinhold, 1971.
[34] Laton McCartney, “Data for Rent,” Datamation, vol. 23, p. 167,

May 1977.
[35] Fred Gruenberger, “Letter,” Datamation, vol. 20, pp. 27–28, Feb.

1974.
[36] Dick Butterworth, “Letter,” Datamation, vol. 20, p. 158, Mar. 1974.
[37] John G. Fletcher, “Letter,” Datamation, vol. 20, p. 29, Mar. 1974.
[38] R. R. Brown, “1974 Lake Arrowhead Workshop on Structured Pro-

gramming,” Computer, vol. 7, p. 62, Oct. 1974.
[39] James L. Elshoff, “The Influence of Structured Programming on

PL/I Program Profiles,” IEEE Transactions on Software Engineer-

ing, vol. 3, p. 367, Sept. 1977.
[40] Frank P. Mathur, “Review of Infotech State of the Art Report:

Structured Programming,” Computer, vol. 9, p. 116, Dec. 1976.
[41] Paul Abrahams, “‘Structured Programming’ Considered Harmful,”

SIGPLAN Notices, vol. 10, p. 13, Apr. 1975.
[42] Daniel M. Berry, “Structured Documentation,” SIGPLAN Notices,

vol. 10, p. 9, Nov. 1975.
[43] David L. Parnas and Paul C. Clements, “A Rational Design Process:

How and Why to Fake It,” IEEE Transactions on Software Engi-

neering, vol. 12, pp. 251–252, Feb. 1986.
[44] “Address on Structured Programming Keynotes Compcon Software

Sessions,” Computer, vol. 8, p. 7, Mar. 1975.
[45] Peter J. Denning, “Comments on Mathematical Overkill,” SIGPLAN

Notices, vol. 10, p. 11, Sept. 1975.
[46] C. Wrandle Barth, “STRCMACS—an Extensive Set of Macros to

Aid in Structured Programming in 360/370 Assembly Language,”
SIGPLAN Notices, vol. 11, p. 31, Aug. 1976.

[47] David Frost, “Psychology and Program Design,” Datamation, vol.
21, p. 138, May 1975.

[48] Lawrence J. Peters and Leonard L. Tripp, “Is Software Design
Wicked?” Datamation, vol. 22, p. 127, May 1976.

[49] Lawrence J. Peters and Leonard L. Tripp, “Comparing Software
Design Methodologies,” Datamation, vol. 23, p. 94, Nov. 1977.

[50] Dennis P. Geller, “Letter,” Software Eng. Notes, vol. 4, p. 18, Jan.
1979.

[51] Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Soft-

ware Engineering. Reading, Mass.: Addison-Wesley, 1982, p. 177.
[52] Edsger W. Dijkstra, Selected Writings on Computing: A Personal

Perspective. New York: Springer Verlag, 1982, pp. 126–128.
[53] Harlan D. Mills, “The New Math of Computer Programming,”

Comm. of the ACM, vol. 18, p. 44, Jan. 1975.
[54] Harlan Mills, “Software Development,” IEEE Transactions on Soft-

ware Engineering, vol. 2, pp. 268–269, Dec. 1976.
[55] Edsger W. Dijkstra, A Discipline of Programming. Englewood

Cliffs, N.J.: Prentice Hall, 1976.
[56] M. E. Hopkins, “A Case for the GOTO,” Proc. 25th Nat’l ACM

Conf., 1972, pp. 787–790, reprinted in Yourdon, Classics in Soft-

ware Engineering, pp. 101–109; W. A. Wulf, “A Case Against the
GOTO,” Proc. 25th Nat’l ACM Conf., pp. 791–797, reprinted in
Yourdon, Classics in Software Engineering, pp. 85–98.

[57] Donald Knuth, “Structured Programming With Go To Statements,”
Computing Surveys, vol. 6, pp. 261–301, Dec. 1974.

[58] R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, “Can Structured
Programs Be Efficient?” SIGPLAN Notices, vol. 11, p. 16, Oct.
1976.

[59] Ronald E. Jeffries, “Letter,” SIGPLAN Notices, vol. 11, p. 1, Dec.
1976.

[60] William Rosenfeld, “Letter,” SIGPLAN Notices, vol. 11, p. 3, Dec.
1976.

[61] Henry F. Ledgard and Michael Marcotty, “A Genealogy of Control
Structures,” Comm. ACM, vol. 18, p. 629, Nov. 1975.

[62] Mario J. Gonzalez, Jr., “Workshop Report: The Science of Design,”
Computer, vol. 12, p. 113, Dec. 1979.

[63] Tom Gilb, “Letter,” Software Eng. Notes, vol. 3, p. 28, July 1978.

[64] Kenneth W. Kolence, “A Software View of Measurement Tools,”
Datamation, vol. 17, p. 32, Jan. 1, 1971.

[65] Maurice H. Halstead, Elements of Software Science. New York:
Elsevier, 1977.

[66] Thomas J. McCabe, “A Complexity Measure,” IEEE Transactions

on Software Engineering, vol. 2, p. 308, Dec. 1976.
[67] Glenford J. Meyers, “An Extension to the Cyclomatic Measure of

Program Complexity,” SIGPLAN Notices, vol. 12, p. 61, Oct. 1977.
[68] James L. Elshoff and Michael Marcotty, “On the Use of the Cyclo-

matic Number to Measure Program Complexity,” SIGPLAN Notices,

vol. 13, p. 38, Dec. 1978.
[69] Alonzo G. Grace, Jr., “The Dimensions of Complexity,” Datama-

tion, vol. 23, p. 317, Sept. 1977.
[70] Edward T. Chen, “Program Complexity and Programmer Productiv-

ity,” IEEE Transactions on Software Engineering, vol. 4, p. 188,
May 1978.

[71] Bill Curtis et al., “Measuring the Psychological Complexity of Soft-
ware Maintenance Tasks with the Halstead and McCabe Metrics,”
IEEE Transactions on Software Engineering, vol. 5, p. 103, Mar.
1979.

[72] N. F. Schneidewind and Heinz-Michael Hoffmann, “An Experiment
in Software Error Data Collection and Analysis,” IEEE Transactions

on Software Engineering, vol. 5, p. 283, May 1979.
[73] Warren Harrison et al., “Applying Software Complexity Metrics to

Program Maintenance,” Computer, vol. 15, p. 78, Sept. 1982.
[74] W. M. Evangelist, “Relationships Among Computational, Software,

and Intuitive Complexity,” SIGPLAN Notices, vol. 18, p. 58, Dec.
1983.

[75] Victor R. Basili, Richard W. Selby, Jr., and Tsai-Yun Phillips,
“Metric Analysis and Data Validation Across Fortran Projects,”
IEEE Transactions on Software Engineering, vol. 9, p. 662, Nov.
1983.

[76] Martin Shepperd, “A Critique of Cyclomatic Complexity as a Soft-
ware Metric,” Software Eng. J., vol. 3, p. 35, Mar. 1988.

[77] J. Paul Myers, Jr., “The Complexity of Software Testing,” Software

Eng. J., vol. 7, p. 13, Jan. 1992.
[78] John C. Munson and Taghi M. Khoshgoftaar, “Measuring Dynamic

Program Complexity,” IEEE Software, vol. 9, pp. 48-49, Nov. 1992.
[79] Victor R. Basili, “Tailoring SQA to Fit Your Own Life Cycle,” IEEE

Software, vol. 5, p. 87, Mar. 1988.
[80] Shari L. Pfleeger, “Lessons Learned in Building a Corporate Metrics

Program,” IEEE Software, vol. 10, p. 74, May 1993.
[81] Bernard Elspas, Milton W. Green, and Karl N. Levitt, “Software

Reliability,” Computer, vol. 4, p. 22, Jan./Feb. 1971.
[82] John L. Kirkley, “The Critical Issues: A 1974 Perspective,” Data-

mation, vol. 20, p. 65, Jan. 1974.
[83] T. J. Vander Noot, “Systems Testing ... a Taboo Subject?” Datama-

tion, vol. 17, p. 64, Nov. 15, 1971.
[84] Dorothy A. Walsh, “Structured Testing,” Datamation, vol. 23, p.

111, July 1977.
[85] Paul F. Barbuto, Jr., and Joe Geller, “Tools for Top-Down Testing,”

Datamation, vol. 24, p. 178, Oct. 1978.
[86] Laura L. Scharer, “Improving System Testing Techniques,” Data-

mation, vol. 23, p. 117, Sept. 1977.
[87] John B. Goodenough and Susan L. Gerhart, “Toward a Theory of

Test Data Selection,” IEEE Transactions on Software Engineering,

vol. 1, p. 165, June 1975.
[88] B. Chandrasekaran, “Guest Editorial,” IEEE Transactions on Soft-

ware Engineering, vol. 6, p. 235, May 1980.
[89] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward,

“Hints on Test Data Selection: Help for the Practicing Programmer,”
Computer, vol. 11, p. 41, Apr. 1978.

[90] Elaine J. Weyuker and Thomas J. Ostrand, “Theories of Program
Testing and the Application of Revealing Subdomains,” IEEE

Transactions on Software Engineering, vol. 6, p. 245, May 1980.
[91] Nathan H. Petschenik, “Practical Priorities in System Testing,” IEEE

Software, vol. 2, p. 18, Sept. 1985.
[92] Simeon C. Ntafos, “On Required Element Testing,” IEEE Transac-

tions on Software Engineering, vol. 10, p. 795, Nov. 1984.
[93] Samuel T. Redwine, Jr., “An Engineering Approach to Software Test

Data Design,” IEEE Transactions on Software Engineering, vol. 9,
p. 192, Mar. 1983.

Splitting the Difference

52 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

[94] Robert W. Floyd, “Assigning Meanings to Programs,” Mathematical

Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics. Providence, R.I.: American Mathematical Society,
1967, pp. 19–32. For a more in-depth discussion of the history of re-
search on formal verification, see C. B. Jones, The Search for Trac-

table Ways of Reasoning About Programs. Manchester, England:
Dept. of Computer Science, Manchester Univ., 1992, UMCS-92-4-4.

[95] C. A. R. Hoare, “Proof of a Program: FIND,” Comm. ACM, vol. 14,
p. 39, Jan. 1971.

[96] M. Foley and C. A. R. Hoare, “Proof of a Recursive Program:
Quicksort,” Computer J., vol. 14, p. 391, Nov. 1971.

[97] C. A. R. Hoare, “Proof of a Structured Program: ‘The Sieve of Era-
tosthenes,’” Computer J., vol. 15, p. 321, Nov. 1972.

[98] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Social
Processes and Proofs of Theorems and Programs,” Comm. ACM, vol.
22, p. 271, May 1979.

[99] Leslie Lamport, “Letter,” Comm. ACM, vol. 22, p. 624, Nov. 1979.
[100] W. D. Maurer, “Letter,” Comm. ACM, vol. 22, p. 625, Nov. 1979.
[101] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,”

Comm. ACM, vol. 22, p. 630, Nov. 1979.
[102] Henry Petroski, To Engineer Is Human: The Role of Failure in Suc-

cessful Design. New York: St. Martin’s Press, 1985, p. 165.
[103] Richard Hill, “Letter,” Comm. ACM, vol. 22, p. 621, Nov. 1979.
[104] H. Lienhard, “Letter,” Comm. ACM, vol. 22, p. 622, Nov. 1979.
[105] Edsger W. Dijkstra, “On a Political Pamphlet from the Middle

Ages,” Software Eng. Notes, vol. 3, p. 14, Apr. 1978.
[106] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,”

Software Eng. Notes, vol. 3, pp. 16–17, Apr. 1978.
[107] H. J. Jeffrey, “Letter,” Software Eng. Notes, vol. 3, p. 18, Apr. 1978.
[108] Raymond J. Rubey, Joseph A. Dana, and Peter W. Biche,

“Quantitative Aspects of Software Validation,” IEEE Transactions

on Software Engineering, vol. 1, p. 152, June 1975.
[109] Douglas T. Ross and Kenneth E. Schoman, Jr., “Structured Analysis

for Requirements Definition,” IEEE Transactions on Software Engi-

neering, vol. 3, p. 6, Jan. 1977.
[110] Susan Gerhart, “Workshop Report: Software Testing and Test

Documentation,” Computer, vol. 12, p. 99, Mar. 1979.
[111] Edsger W. Dijkstra, “Correctness Concerns and, Among Other

Things, Why They Are Resented,” SIGPLAN Notices, vol. 10, p.
547, June 1975.

[112] Andrew S. Tanenbaum, “In Defense of Program Testing or Correct-
ness Proofs Considered Harmful,” SIGPLAN Notices, vol. 11, p. 68,
May 1976.

[113] Susan L. Gerhart and Lawrence Yelowitz, “Observations of Fallibil-
ity in Applications of Modern Programming Methodologies,” IEEE

Transactions on Software Engineering, vol. 2, p. 206, Sept. 1976.
[114] David L. Parnas, “Letter,” Software Eng. Notes, vol. 3, p. 20, Oct.

1978.
[115] Debra J. Richardson and Lori A. Clarke, “Partition Analysis: A

Method Combining Testing and Verification,” IEEE Transactions on

Software Engineering, vol. 11, p. 1,488, Dec. 1985.
[116] James H. Fetzer, “Program Verification: The Very Idea,” Comm.

ACM, vol. 31, p. 1,057, Sept. 1988.
[117] Mark Ardis et al., “Letter,” Comm. ACM, vol. 32, p. 287, Mar. 1989.
[118] Richard Hill, “Letter,” Comm. ACM, vol. 32, p. 790, July 1989.
[119] James C. Pleasant, “Letter,” Comm. ACM, vol. 32, p. 374, Mar.

1989.
[120] Lawrence Paulson, Avra Cohen, and Michael Gordon, “Letter,”

Comm. ACM, vol. 32, p. 375, Mar. 1989.
[121] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 378, Mar. 1989.
[122] John Dobson and Brian Randell, “Program Verification: Public

Image and Private Reality,” Comm. ACM, vol. 32, pp. 420–422, Apr.
1989.

[123] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 381, Mar. 1989.
[124] David A. Nelson, “Letter,” Comm. ACM, vol. 32, p. 792, July 1989.
[125] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 381, Mar. 1989.
[126] Leon Stucki, “Guest Editorial,” IEEE Transactions on Software

Engineering, vol. 2, p. 194, Sept. 1976.
[127] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen, “On the

Automated Generation of Program Test Data,” IEEE Transactions

on Software Engineering, vol. 2, p. 293, Dec. 1976.

[128] George J. Schick and Ray W. Wolverton, “An Analysis of Compet-
ing Software Reliability Models,” IEEE Transactions on Software

Engineering, vol. 4, p. 105, Mar. 1978.
[129] Nancy G. Leveson, “Software Safety,” Software Eng. Notes, vol. 7,

p. 21, Apr. 1982.
[130] Algirdas Avizienis and John P. J. Kelly, “Fault Tolerance by Design

Diversity: Concepts and Experiments,” Computer, vol. 17, p. 67,
Aug. 1984.

[131] Dave E. Eckhardt, Jr., and Larry D. Lee, “A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coincident Errors,”
IEEE Transactions on Software Engineering, vol. 11, p. 1,511, Dec.
1985.

[132] John C. Knight and Nancy G. Leveson, “An Experimental Evalua-
tion of the Assumption of Independence in Multiversion Program-
ming,” IEEE Transactions on Software Engineering, vol. 12, p. 96,
Jan. 1986.

[133] John C. Knight and Nancy G. Leveson, “A Reply to the Criticisms of
the Knight & Leveson Experiment,” Software Eng. Notes, vol. 15,
pp. 24–35, Jan. 1990.

[134] Bev Littlewood and Douglas R. Miller, “Conceptual Modeling of
Coincident Failures in Multiversion Software,” IEEE Transactions

on Software Engineering, vol. 15, p. 1,596, Dec. 1989.
[135] Susan S. Brilliant, John C. Knight, and Nancy G. Leveson, “Analysis

of Faults in an N-Version Software Experiment,” IEEE Transactions

on Software Engineering, vol. 16, p. 245, Feb. 1990.
[136] Abdalla A. Abdel-Ghaly, P. Y. Chan, and Bev Littlewood,

“Evaluation of Competing Software Reliability Predictions,” IEEE

Transactions on Software Engineering, vol. 12, p. 950, Sept. 1986.
[137] Richard Hamlet, “Special Section on Software Testing,” Comm.

ACM, vol. 31, pp. 665–666, June 1988.
[138] Galen Gruman, “IFIP Participants Debate Programming Ap-

proaches,” IEEE Software, vol. 6, p. 76, Nov. 1989.
[139] Donald MacKenzie, “Negotiating Arithmetic, Constructing Proof:

The Sociology of Mathematics and Information Technology,” Social

Studies of Science, vol. 23, pp. 37–65, Feb. 1993.
[140] National Bureau of Standards, Guideline for Lifecycle Validation,

Verification, and Testing of Software, Washington, D.C., 1983, NBS
FIPS 101; quoted in David Gelperin and Bill Hetzel, “The Growth of
Software Testing,” Comm. ACM, vol. 31, p. 690, June 1988.

[141] Dolores R. Wallace and Roger U. Fujii, “Verification and Valida-
tion: Techniques to Assure Reliability,” IEEE Software, vol. 6, p. 9,
May 1989.

[142] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Comm. ACM, vol. 12, p. 576, Oct. 1969.

[143] C. A. R. Hoare, “Professionalism,” Computer Bull., 2nd series, p. 3,
Sept. 1981.

[144] Stuart Shapiro, “Its Own Worst Enemy: How Software Engineering
Has Fallen Victim to Engineering Mythology,” CRICT Discussion
Paper No. 25, Brunel Univ., 1992.

[145] Nancy G. Leveson, “Formal Methods in Software Engineering,”
IEEE Transactions on Software Engineering, vol. 16, p. 929, Sept.
1990.

[146] Susan L. Gerhart, “Applications of Formal Methods: Developing
Virtuoso Software,” IEEE Software, vol. 10, p. 10, Sept. 1990.

[147] C. B. Jones, “Theorem Proving and Software Engineering,” Software

Eng. J., vol. 3, p. 2, Jan. 1988.
[148] Susan Gerhart, “Formal Methodists Warn of Software Disasters,”

IEEE Software, vol. 6, p. 77, Nov. 1989.
[149] Anthony Hall, “Seven Myths of Formal Methods,” IEEE Software,

vol. 7, p. 13, Sept. 1990.
[150] Jeannette M. Wing, “A Specifier’s Introduction to Formal Methods,”

Computer, vol. 23, p. 13, Sept. 1990.
[151] Harlan D. Mills, Michael Dyer, and Richard C. Linger, “Cleanroom

Software Engineering,” IEEE Software, vol. 4, p. 20, Sept. 1987.
[152] Richard W. Shelby, Victor R. Basili, and F. Terry Baker,

“Cleanroom Software Development: An Empirical Evaluation,”
IEEE Transactions on Software Engineering, vol. 13, pp. 1,027–
1,037, Sept. 1987.

[153] D. A. Duce and E. V. C. Fielding, “Formal Specification—a Com-
parison of Two Techniques,” Computer J., vol. 30, p. 327, Aug.
1987.

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 53

[154] C. A. R. Hoare, “An Overview of Some Formal Methods for Pro-
gram Design,” Computer, vol. 20, pp. 90–91, Sept. 1987.

[155] Carl Chang, “Let’s Stop the Bipolar Drift,” IEEE Software, vol. 7,
p. 4, May 1990.

[156] I. F. Currie, “NewSpeak: An Unexceptional Language,” Software

Eng. J., vol. 1, pp. 170–176, July 1986.
[157] Jean E. Sammet, Programming Languages: History and Funda-

mentals. Englewood Cliffs, N.J.: Prentice Hall, 1969; and Richard L.
Wexelblat, ed., History of Programming Languages. New York:
Academic Press, 1981. These works contain in-depth histories of
these older languages.

[158] David A. Fisher, “DoD’s Common Programming Language Effort,”
Computer, vol. 11, p. 25, Mar. 1978.

[159] Barry W. Boehm, “Software and Its Impact: A Quantitative Assess-
ment,” Datamation, vol. 19, p. 48, May 1973.

[160] Edsger W. Dijkstra, “DoD-I: The Summing Up,” SIGPLAN Notices,

vol. 13, pp. 24–26, July 1978.
[161] Robert L. Glass, “From Pascal to Pebbleman ... and Beyond,” Data-

mation, vol. 25, pp. 146–147, July 1979.
[162] Rob Kling and Walter Scacchi, “The DoD Common High Order

Programming Language Effort (DoD-1): What Will the Impacts
Be?” SIGPLAN Notices, vol. 14, pp. 32–40, Feb. 1979.

[163] Paul R. Eggert, “Letter,” SIGPLAN Notices, vol. 15, p. 9, Jan. 1980.
[164] J. T. Galkowski, “A Critique of the DOD Common Language Ef-

fort,” SIGPLAN Notices, vol. 15, p. 15, June 1980.
[165] Patrick Skelly, “The ACM Position on Standardization of the Ada

Language,” Comm. ACM, vol. 25, p. 119, Feb. 1982.
[166] Henry F. Ledgard and Andrew Singer, “Scaling Down Ada (or To-

wards a Standard Ada Subset),” Comm. ACM, vol. 25, p. 121, Feb.
1982.

[167] Robert L. Glass, “Letter,” Comm. ACM, vol. 25, p. 500, July 1982.
[168] Randall Leavitt, “Letter,” Comm. ACM, vol. 25, p. 500, July 1982.
[169] Brian Wichmann, “Is Ada Too Big? A Designer Answers the Crit-

ics,” Comm. ACM, vol. 27, p. 103, Feb. 1984.
[170] William I. MacGregor, “Letter,” SIGPLAN Notices, vol. 13, p. 18,

Sept. 1978.
[171] Peter Wegner, “The Ada Language and Environment,” Software

Eng. Notes, vol. 5, p. 9, Apr. 1980.
[172] Charles Antony Richard Hoare, “The Emperor’s Old Clothes,”

Comm. ACM, vol. 24, p. 82, Feb. 1981.
[173] “DOD Interim Policy on Ada Issued,” Comm. ACM, vol. 26, p. 706,

Sept. 1983.
[174] Saul Rosen, “Programming Systems and Languages 1965–1975,”

Comm. ACM, vol. 15, p. 591, July 1972.
[175] David R. Hanson, “A Simple Technique for Representing Strings in

Fortran IV,” Comm. ACM, vol. 17, p. 646, Nov. 1974.
[176] Daniel D. McCracken, “Is There a Fortran in Your Future?” Data-

mation, vol. 19, p. 237, May 1973.
[177] Daniel D. McCracken, “Letter,” Comm. ACM, vol. 28, p. 568, June

1985.
[178] “The NCC: Reminiscent of the Late Sixties,” Datamation, vol. 21, p.

104, June 1975.
[179] Tomasz Kowaltowski, “Letter,” SIGPLAN Notices, vol. 10, p. 4,

Aug. 1975.
[180] Eric Campbell, “Letter,” SIGPLAN Notices, vol. 11, p. 2, May 1976.
[181] Stuart W. Rowland, “Some Comments on Structured Fortran,” SIG-

PLAN Notices, vol. 11, p. 45, Oct. 1976.
[182] Michael J. Viehman, “Letter,” SIGPLAN Notices, vol. 10, p. 8, Oct.

1975.
[183] Anthony Ralston and Jerrold L. Wagener, “Structured Fortran—an

Evolution of Standard Fortran,” IEEE Transactions on Software En-

gineering, vol. 2, p. 154, Sept. 1976.
[184] Daniel D.McCracken, “Let’s Hear It for COBOL!” Datamation, vol.

22, p. 242, May 1976.
[185] Peter Naur, “Programming Languages, Natural Languages, and

Mathematics,” Comm. ACM, vol. 18, pp. 678–680, Dec. 1975.
[186] Michael Hammer et al., “A Very High Level Programming Lan-

guage for Data Processing Applications,” Comm. ACM, vol. 20, pp.
832–833, Nov. 1977.

[187] Mark R. Crispin, “Letter,” Datamation, vol. 22, p. 7, Nov. 1976.
[188] A. C. Larman, “Letter,” Computer Bull., 1st series, no. 16, p. 506,

Nov. 1972.

[189] Ware Myers, “Key Developments in Computer Technology: A Sur-
vey,” Computer, vol. 9, p. 59, Nov. 1976.

[190] Linda Runyan, “Software Still a Sore Spot,” Datamation, vol. 27, p.
165, Mar. 1981.

[191] Ronald A. Frank, “Let the Users Program,” Datamation, vol. 28, p.
88, Jan. 1982.

[192] Nigel S. Read and Douglas L. Harmon, “Language Barrier to Pro-
ductivity,” Datamation, vol. 29, p. 209, Feb. 1983.

[193] John Cardullo and Herb Jacobsohn, “Letter,” Datamation, vol. 29, p.
24, May 1983.

[194] Bill Inmon, “Rethinking Productivity,” Datamation, vol. 30, p. 185,
June 15, 1984.

[195] Michael H. Brown, “Letter,” Datamation, vol. 30, p. 23, Sept. 15,
1984.

[196] F. J. Grant, “The Downside of 4GLs,” Datamation, vol. 31, p. 99,
July 15, 1985.

[197] Peter Wegner, “Capital-Intensive Software Technology, Part 2:
Programming in the Large,” IEEE Software, vol. 1, p. 31, July 1984.

[198] Alex Pines and Dan Pines, “Don’t Shoot the Programmers,” Data-

mation, vol. 29, p. 114, Aug. 1983.
[199] Santosh K. Misra and Paul J. Jalics, “Third-Generation Versus

Fourth-Generation Software Development,” IEEE Software, vol. 6,
p. 14, July 1989.

[200] Bruce Hailpern, “Multiparadigm Languages and Environments,”
IEEE Software, vol. 3, p. 6, Jan. 1986.

[201] Pamela Zave, “A Compositional Approach to Multiparadigm Pro-
gramming,” IEEE Software, vol. 6, p. 15, Sept. 1989.

[202] John Backus, “Can Programming Be Liberated From the von Neu-
mann Style? A Functional Style and Its Algebra of Programs,”
Comm. ACM, vol. 21, p. 514, Aug. 1978.

[203] R. N. Caffin, “Heresy on High-Level Languages,” Computer, vol.
12, pp. 108–109, Mar. 1979.

[204] Jim Haynes, “Comment on High-Level Heresy,” Computer, vol. 12,
p. 109, Mar. 1979.

[205] David Feign, “Letter,” Computer, vol. 12, p. 122, Sept. 1979.
[206] William A. Wulf, “Trends in the Design and Implementation of

Programming Languages,” Computer, vol. 13, p. 15, Jan. 1980.
[207] Victor R. Basili and Albert J. Turner, “Iterative Enhancement: A

Practical Technique for Software Development,” IEEE Transactions

on Software Engineering, vol. 1, p. 390, Dec. 1975.
[208] W. P. Dodd, “Prototype Programs,” Computer, vol. 13, p. 81, Feb.

1980.
[209] Pat Hall, Janet Low, and Steve Woolgar, “Human Factors in Infor-

mation Systems Development: A Project Report,” CRICT Discus-
sion Paper No. 31, Brunel University, 1992.

[210] Fletcher J. Buckley, “A Modest Proposal,” Computer, vol. 15, p.
103, Dec. 1982.

[211] Daniel D. McCracken and Michael A. Jackson, “Life Cycle Concept
Considered Harmful,” Software Eng. Notes, vol. 7, p. 32, Apr. 1982.

[212] G. R. Gladden, “Stop the Life-Cycle, I Want to Get Off,” Software

Eng. Notes, vol. 7, p. 35, Apr. 1982.
[213] Patrick A. V. Hall, “Letter,” Software Eng. Notes, vol. 7, p. 23, July

1982.
[214] Bruce I. Blum, “The Life Cycle—a Debate Over Alternate Models,”

Software Eng. Notes, vol. 7, p. 18, Oct. 1982.
[215] Joseph W. Chambers, “Letter,” Comm. ACM, vol. 26, p. 108, Feb.

1983.
[216] Ware Myers, “Can Software Development Processes Improve—

Drastically?” IEEE Software, vol. 1, p. 101, July 1984; Mark Dow-
son and Jack C. Wileden, “A Brief Report on the International
Workshop on the Software Process and Software Environments,”
Software Eng. Notes, vol. 10, p. 21, July 1985.

[217] Stefano Nocentini, “The Planning Ritual,” Datamation, vol. 31, p.
128, Apr. 15, 1985.

[218] R. E. A. Mason and T. T. Carey, “Prototyping Interactive Informa-
tion Systems,” Comm. ACM, vol. 26, p. 348, May 1983.

[219] Jerry Schulz, “Letter,” Datamation, vol. 29, p. 24, Sept. 1983.
[220] Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt,

“Prototyping Versus Specifying: A Multiproject Experiment,” IEEE

Transactions on Software Engineering, vol. 10, p. 300, May 1984.
[221] Gruia-Catalin Roman, “A Taxonomy of Current Issues in Require-

ments Engineering,” Computer, vol. 18, p. 20, Apr. 1985.

Splitting the Difference

54 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

[222] Zohar Manna and Richard Waldinger, “Synthesis: Dreams => Pro-
grams,” IEEE Transactions on Software Engineering, vol. 5, p. 295,
July 1979.

[223] D. J. Cooke, “Program Transformation,” Computer Bull., 2nd series,
p. 20, Dec. 1979.

[224] David W. Wile, “Program Developments: Formal Explanations of
Implementations,” Comm. ACM, vol. 26, p. 903, Nov. 1983.

[225] Pamela Zave, “The Operational Versus the Conventional Approach
to Software Development,” Comm. ACM, vol. 27, p. 113, Feb. 1984.

[226] Manfred Broy and Peter Pepper, “Program Development as a Formal
Activity,” IEEE Transactions on Software Engineering, vol. 7, p. 22,
Jan. 1981.

[227] Barry W. Boehm, “A Spiral Model of Software Development and
Enhancement,” Computer, vol. 21, p. 65, May 1988.

[228] Dennis M. Ritchie and Ken Thompson, “The Unix Time-Sharing
System,” Comm. ACM, vol. 17, p. 365, July 1974.

[229] Evan L. Ivie, “The Programmer’s Workbench—a Machine for Soft-
ware Development,” Comm. ACM, vol. 20, p. 746, Oct. 1977.

[230] B. W. Kernighan and P. J. Plauger, “Software Tools,” Software Eng.

Notes, vol. 1, p. 15, May 1976.
[231] Anthony I. Wasserman, “Automated Development Environments,”

Computer, vol. 14, p. 9, Apr. 1981.
[232] Michael Lesk, “Another View,” Datamation, vol. 27, p. 139, Nov.

1981.
[233] David Morris, “How Not to Worry About Unix,” Datamation, vol.

30, p. 83, Aug. 1, 1984.
[234] Dennis F. Barlow and Norman S. Zimbel, “Unix—How Important Is

It?” Datamation, vol. 30, p. 101, Aug. 1, 1984.
[235] T. H. Crowley, L. L. Crume, and C. B. Hergenhan, “AT&T Asks for

a Unix Standard,” Datamation, vol. 30, p. 100, Aug. 1, 1984.
[236] Peter J. Denning, “Throwaway Programs,” Comm. ACM, vol. 24, p.

58, Feb. 1981.
[237] Grover P. Righter, “Letter,” Datamation, vol. 30, p. 16, Nov. 1,

1984.
[238] Tim Teitelbaum, “The Cornell Program Synthesizer: A Syntax-

Directed Programming Environment,” SIGPLAN Notices, vol. 14, p.
75, Oct. 1979.

[239] Vic Stenning et al., “The Ada Environment: A Perspective,” Com-

puter, vol. 14, p. 27, June 1981.
[240] Charles Rich and Howard E. Shrobe, “Initial Report on a Lisp Pro-

grammer’s Apprentice,” IEEE Transactions on Software Engineer-

ing, vol. 4, p. 456, Nov. 1978.
[241] Elliot Soloway, “A Cognitively-Based Methodology for Designing

Languages/Environments/Methodologies,” SIGPLAN Notices, vol.
19, p. 195, May 1984.

[242] Ware Myers, “MCC: Planning the Revolution in Software,” IEEE

Software, vol. 2, p. 72, Nov. 1985.
[243] J. Trenouth, “A Survey of Exploratory Software Development,”

Computer J., vol. 34, p. 153, Apr. 1991.
[244] Winston Royce, “Has the Exploratory Approach Come of Age?”

IEEE Software, vol. 10, p. 104, Jan. 1993.
[245] A. Nico Habermann and David Notkin, “Gandalf: Software Devel-

opment Environments,” IEEE Transactions on Software Engineer-

ing, vol. 12, p. 1,118, Dec. 1986.
[246] Jayshree Ramanathan and Soumitra Sarkar, “Providing Customized

Assistance for Software Lifecycle Approaches,” IEEE Transactions

on Software Engineering, vol. 14, p. 749, June 1988.
[247] Ronald J. Norman and Gene Forte, “CASE in the ’90s,” Comm.

ACM, vol. 35, p. 30, Apr. 1992.
[248] Arthur J. Collmeyer, “Developments in Design Automation,” Com-

puter, vol. 7, p. 11, Jan. 1974.
[249] Peter Freeman, “Automating Software Design,” Computer, vol. 7, p.

34, Apr. 1974.
[250] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidents

of Software Engineering,” Computer, vol. 20, p. 11, Apr. 1987.
[251] Paul Rook, “Controlling Software Projects,” Software Eng. J., vol. 1,

p. 8, Jan. 1986.
[252] Anthony Finkelstein, “London Open CRIS Conference,” Computer

Bull., 2nd series, p. 5, Sept. 1984.
[253] A. T. Wood-Harper and G. Fitzgerald, “A Taxonomy of Current

Approaches to Systems Analysis,” Computer J., vol. 25, pp. 12–16,
Feb. 1982.

[254] G. Fitzgerald, N. Stokes, and J. R. G. Wood, “Feature Analysis of
Contemporary Information Systems Methodologies,” Computer J.,

vol. 28, no. 3, pp. 223–230, 1985.
[255] J. Mayhew and P. A. Dearnley, “An Alternative Prototyping Classi-

fication,” Computer J., vol. 30, pp. 481–484, Dec. 1987.
[256] Xiping Song and Leon J. Osterweil, “Toward Objective, Systematic

Design-Method Comparisons,” IEEE Software, vol. 9, p. 44, May
1992.

[257] D. M. Episkopou and A. T. Wood-Harper, “Towards a Framework to
Choose Appropriate IS Approaches,” Computer J., vol. 29, p. 222,
June 1986.

[258] Alan M. Davis, Edward H. Bersoff, and Edward R. Comer, “A Strat-
egy for Comparing Alternative Software Development Life Cycle
Models,” IEEE Transactions on Software Engineering, vol. 14, pp.
1,453–1,461, Oct. 1988.

[259] Bo Sanden, “The Case for Electric Design of Real-Time Software,”
IEEE Transactions on Software Engineering, vol. 15, p. 360, Mar.
1989.

[260] “Panel on Problems of the 80s, ICSE Atlanta,” Software Eng. Notes,

vol. 3, p. 29, July 1978.
[261] Ware Myers, “New British Tool Centre a Response to Software

Complexity,” IEEE Software, vol. 2, p. 94, Nov. 1985.
[262] W. Wayt Gibbs, “Software’s Chronic Crisis,” Scientific Am., pp. 72–

81, Sept. 1994.
[263] Annie Kuntzmann-Combelles, “Software Help Wanted: Revolution-

ary Thinkers,” IEEE Software, vol. 9, p. 10, Sept. 1992.

Stuart Shapiro is a Visiting Research Fel-

low in the Centre for Research into Inno-

vation, Culture and Technology (CRICT) at

Brunel University in England. He has pre-

viously been a Research Fellow in the

Centre for Technology Strategy at the Open

University, also in England. He holds a BS

in computer science from Northwestern

University and a PhD in applied history and

social sciences from Carnegie Mellon Uni-

versity. His research has focused on the history and sociology of

software engineering. He also has interests in engineering profes-

sional development and in information technology and privacy.

The author can be contacted at

Centre for Research into Innovation, Culture and Technology

Brunel University

Uxbridge, Middlesex UB8 3PH, United Kingdom

e-mail: s_shapiro@acm.org

