
SPLITTING THE PASCH AXIOM

Victor Pambuccian

Pasch’s axiom is shown to be equivalent to the conjunction of the following two axioms:
“In any right triangle the hypotenuse is greater than the leg” and “If ∠AOB is right, B
lies between O and C, and D is the footpoint of the perpendicular from B to AC, then the
segment OA is greater than the segment BD.”

1 introduction

In [3] we have shown how the Euclidean parallel postulate can be split into two weaker

geometrically meaningful axioms. We have also motivated the operation of splitting axioms

in that paper and shall not repeat those arguments here. In this paper, we shall attempt to

split the Pasch axiom.

The plane Euclidean geometry of ruler and gauge constructions, considered as a first-order

theory in a language L with two relation symbols — ≡ (quaternary) and B (ternary) — will

be denoted by E . Its models are Cartesian planes over Pythagorean ordered fields.

Let F be a formally real and Pythagorean field and ≤ an ordering of the additive group of F

with 0 ≤ 1; ≤ will be called a normed semi-ordering of F . Let P = {x ∈ F : x ≥ 0} be the set

of semi-positive elements of F , and let ‖ · ‖ : F ×F → P be defined by ‖(x, y)‖ =
√

x2 + y2.

Using ‖ · ‖, we can define a notion of congruence (≡F ) and betweenness (BF ) by setting

ab ≡F cd iff ‖a− b‖ = ‖c− d‖ and BF (abc) iff ‖a− b‖ + ‖b− c‖ = ‖a− c‖.1 The

structure 〈F × F,≡F ,BF 〉 will be called a semi-ordered Cartesian plane.

Let E− stand for 2-dimensional Pasch-free Euclidean geometry, the first-order theory, ex-

1Here v = (v1, v2) and v −w = (v1 − w1, v2 − w2).



pressed in L, whose models are semi-ordered Cartesian planes. This theory was introduced

in L. W. Szczerba [6] and a representation theorem for it was proved in L. W. Szczerba

and W. Szmielew [7]. All pure congruence-theorems from E are in E− as well. The Pasch

axiom (P), however, is not in E−; by adding P to E− we get E .

H. N. Gupta and A. Prestel [2] have considered a weakening of P, which can be equiv-

alently stated as either “The footpoint of the altitude of a right triangle lies between the

endpoints of the hypotenuse” or “In every right triangle, the hypotenuse is greater than the

legs” (R) or “The triangle inequality”.2 The equivalence of these statements, provable in E−,

is shown in [4, Satz 2.3]. It was shown in [2] that the models of E− and R are quadratically

semi-ordered Cartesian planes, that is, the semi-order of the coordinate field F satisfies the

condition

0 ≤ x → 0 ≤ xy2. (1)

By constructing a quadratically semi-ordered formally real and Pythagorean field which is

not ordered, Gupta and Prestel [2] have shown that R is weaker than P, i. e.

E− 6` R → P.

It is therefore natural to ask for the missing link from R to P, that is, for a geometrically

meaningful statement R′, such that

E− ` P ↔ R ∧ R′, (2)

E− 6` R′ → P, (3)

E− 6` R ∨ R′. (4)

2We shall choose the statement R as the geometric counterpart of (1), since it requires a smaller number

of variables in its formulation in the language L. It can be stated as (∀oabb′c) o 6= a∧ o 6= b∧B(bob′)∧ ob ≡
ob′ ∧ ab ≡ ab′ ∧ ac ≡ ao ∧ (B(acb) ∨B(abc)) → B(acb).



Axiom R′ states that BD is shorter than OA
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We shall prove that the statement (R′): “If ∠AOB is right, B lies between O and C (with

B 6= O and B 6= C), and D is the footpoint of the perpendicular from B to AC, then the

segment OA is greater than the segment BD” satisfies (2) and (4). We were unable to either

prove or disprove (3).

2 the proof

We shall first prove that R and R′ satisfy (2). The →-part of it is trivial, since it amounts

to checking that R and R′ are valid in Cartesian planes over Pythagorean ordered fields.

To prove the converse, let (F,≤) be the coordinate field of a semi-ordered Cartesian plane

satisfying R and R′, and x > 0, t > 0 be any two non-zero semi-positive elements in F . With

O = (0, 0), A = (0, 1), B = (x, 0), C = (x + t, 0) in (R′), the statement “BD is shorter than

OA” made by the axiom (R′) becomes

| t√
1 + (x + t)2

| < 1. (5)

Since the semi-order is quadratic (as R is valid in our Cartesian plane as well), we can deduce

from (5) that (cf. [5, Lemma (1.18)])

t2

1 + (x + t)2
< 1, (6)

which, in turn, implies that
1 + x2 + 2xt

1 + (x + t)2
> 0.

Multiplying by 1 + (x + t)2, which is a square, we get

1 + x2 + 2xt > 0. (7)



We have thus established that R and R′ imply that the quadratically semi-ordered coordinate

field (F,≤) satifies (7) for all x > 0, t > 0 in F .

Suppose that, for some x > 0 and t > 0 in F , xt < 0. By (7) and the fact that the semi-order

is quadratic, these particular values of x and t have to satisfy

1 + x2 + 2xtq2 > 0, for all q ∈ F . (8)

With q = 1/t, (8) becomes

−2x

t
< 1 + x2,

which implies (cf. [5, Lemma (1.18)])

− t

2x
>

1

1 + x2
, and hence − t(1 + x2)2

2x
> 1 + x2,

which contradicts (8) with q = 1+x2

2x
.

Therefore, for all x > 0 and t > 0 we must have xt > 0, i. e. the semi-order is an order. This

proves (2).

To prove (4), we shall construct a semi-order on the field of real numbers R following the

method used in [6]. Let

a =

√
1− 1

2
√

2
.

Extend {1, a, a2} to a basis B of R over Q. Let ϕ be the linear automorphism defined on B

by ϕ(a2) = −a2 and ϕ(b) = b for all b ∈ B \ {a2}. Let ϕ(P ) = P1, where P is the positive

cone of R. Define now ≤1 on R by x ≤1 y iff y−x ∈ P1. (R,≤1) is a semi-ordered field which

is not quadratically semi-ordered, since a2, a square, is negative. (R,≤1) does not satisfy (5)

with x = t = 1/2. Therefore neither R nor R′ are valid in the semi-ordered Cartesian plane

over (R,≤1). This proves (4).

Note that in the above construction we could have constructed the semi-order ≤1 on the

Euclidean closure Eu(Q) of Q (that is, the smallest Euclidean subfield of R). In this way we

would have avoided the use of the Axiom of Choice in extending {1, a, a2} to a basis.

It is worth noting that, if we set B = O in R′, we get an axiom that is equivalent to R (cf.[4,

Satz 2.3]). Therefore, if we omit the condition B 6= O in the antecedent of R′, we get an

axiom P ′ that is equivalent — given E− — to P.

It is also worth mentioning that L. M. Kelly’s proof of Sylvester’s problem (cf. [1, p.

65]) uses both and R and R′. According to (2), this means that, in the Euclidean case, his

proof uses the full power of the ordering of the plane. It remains open whether this is true

in the absolute case as well.
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