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ABSTRACT. We determine those unoriented cobordism classes which can
be realized by a manifold whose tangent bundle splits into a sum of real (com-
plex) line bundles.

The main result of this paper answers a question raised by Robert Stong: A
closed manifold M of positive dimension n is cobordant to a manifold N whose
tangent bundle is a sum of line bundles iff the Euler characteristic of M is even.
This has a nice algebraic consequence since N is the splitting space of its tan-
gent bundle, namely, the Stiefel-Whitney classes of N are the elementary symmetric
polynomials of » classes in H YN Zz)' Note that the Euler characteristic mod 2
is just the top Stiefel-Whitney number.

In the stable range we have: Every manifold is cobordant to a manifold with
the property that the Whitney sum of its tangent bundle and a trivial line bundle
is a sum of line bundles.

We also get similar results for weakly complex manifolds, and ask that the
splitting be in terms of complex line bundles.

1. Constructions. Here we construct manifolds which arise as projective
bundles and which will be used in the following section to prove the main theorems.
All objects and morphisms are smooth. Associated to a real vector bundle
& — M is the fibre bundle RP(£) s M of lines in the fibres of £. The tangent
bundle 7RP(£) of RP(£) is well known. Let A denote the canonical line bundle
over RP(£), that is

A={(v, x) € Ex RP(E)|v € x}

then

(1) TRP(&) = n*(rM) @ ¢
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54 WOLF IBERKLEID

where ¢ is the tangent bundle along the fibres of 7. ¢ may be interpreted as fol-
lows:
¢®1=7" @\
Here n denotes the trivial n-dimensional vector bundle.
If, in particular, 7M =7 @1 then

@ rRP(&) = 7*(n) @ (*(&) @ A).

Lemma 1.1. Suppose M and & split into a sum of line bundles. If n of the
line bundles, in the splitting of tM, are trivial, n> 0, then rRP() splits into a
sum of line bundles, n — 1 of which are trivial.

Proof. Note, that in (2), 7*¢ ®: A is again a sum of line bundles. O

We construct some manifolds: Let RP(nl, cee,m ) RP(A 1$ e ®A t) where
A, ;= RP™ x ... x RP"ix ... x RP"™ s the pullback of the canonical line bundle
over the real projective space RP™i = RP(n +D. RP(nl, cesym ) is a closed mani-
fold of dimension 7y +++++n,+¢— 1.

Define the Stong generators X", n # 2° -1, as follows:

(@) Ifn=4s-2,s>0,

X" =RP(0,0,0,1, ..., 1).
N—

2s
(b) Ifn=4s, s>1,

X" =RP(0, 1, ..., 1).
Na—

2s
(c) Let A be the canonical line bundle over RP(0, 1);

= RP(\ ® 3).
) If n=2°Q2q+1)-1, p>0, g>0,n#5,
X"=RP(O,1,...,1,29),
a_—
ZPq-l

Stong [4] proved that the unoriented cobordism class [RP(nl, ceeym t)], t>2,
is indecomposable iff 37_; (";"2) =1 mod 2, where n=n, +++++ n,. Thus by [6]
the collection {[X™]} generates the unoriented cobordism ring 7'(*. (We show that
[X3] is indecomposable in Proposition 1.3.)

Let X" = RP(£) where £ — M is the bundle defining X™. If n is even, n # 2
then £ is a sum of line bundles and M is of the form Sxeeox ST = (S, & >2.
If » is odd, n £ 5, then £ is a sum of line bundles and M is of the form (Sl)’“RPl,
k> 3. Applying Lemma 1.1 gives most of:

Proposition 1.2. The Stong generators X" satisfy:
(a) rX" is isomorphic to a sum of line bundles if n # 2.
(b) One of the line bundles in (a) is trivial if n £ 5.
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SPLITTING THE TANGENT BUNDLE 55

(c) The only odd-dimensional product M**+! in the Stong generators with
Stiefel-Whitney number w,w,, £ 0 is of the form x%...x2x5,

Proof. It remains to prove (a) for n = 5 and part (c). We prove (c). (Part (a)
for n =5 will follow from Proposition 1.3(a).) A computation will show that X%...
X2X3 (k — 2 factors of X?) has nonvanishing Stiefel-Whitney number WoW,y e
We want to prove that no other product in the Stong generators has this property.
It follows from (1) and the analysis prior to this proposition that, if n is even,
n # 2, then ww,_ = wn[X"] =0. If » is odd, n £ 5, then all Stiefel-Whitney num-
bers associated with w__,, w _,,and w_ vanish. Thus M2E+1 cannot be divisible
by an odd Stong generator X" if 7> 5, so X divides M2*+!, But ww, = ws[X3]
=0 so no Stong generator X*, n £ 2, 5, can divide M2**! and X3 divides M2%+1
only once. O

Some more manifolds need to be constructed. Denote a bundle ¢ over M by
(M, £). We use induction now:

M1, A) = (RPLN), (kM) = (RP(A,_, ®1),3)

where A is the canonical line bundle. Define Y*+3 = RP()& @ 3).
Cohomology is Z,-cohomology. Using the Letay-thsch theorem, [1, p. 61] and
induction, one shows:

(3) H* MY = Z,la,, ooy ay]
mod the relations a% =0 and ¢, q; = af, 2<i< kwhere a; € HY(M*) for all i.
4) H¥(Y*+%) = H* (M) 8]
mod the relation aka = b* where b € HI(Y*+),
5) w(Y**) = (1 +a) oo (L+a,_ )1 +a,+0)1+ b)>.
If 0,(2) denotes the ith elementary symmetric polynomial in variables @ y+++,

a,, then it follows from (5) that
w,(Y) = 0, (k) + a,b,

wy 1Y) = ablo, ,(k-1)+ @y «+-apb.
Since the @/s live in the cohomology of a k-manifold, any homogeneous polynomial
in the a/s of degree > k vanishes so

wyw, 4(Y) = aibsok_z(k -= ( - l\ ay e a,e
We have proved part (b) of:

Proposition 1.3. If & is even, k> 2, then Y*+3 bas the following properties:
(@) 7Y is isomorphic to a sum of line bundles.
) wzwk+l[Y] £0.
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Proof. (Note that X> = Y.) We show (a) by induction. The tangent bundle of
M! = §! is simply 1. Suppose we have shown that M*=1 = 1@ 0 where 0 is a
sum of line bundles. M* 7, M*¥=1 js a fibre bundle and M* = 7*rM*~1 @ ¢ by (1)
where ¢ is the tangent bundle along the fibres of #. But ¢ is a line bundle; thus
tM* = 1 ® 7*0 ® ¢ where 7*0 @ ¢ is a sum of line bundles. It now follows from
Lemma 1.1 that rY*+3 is a sum of line bundles. O

2. The main theorems. Given an n-manifold M, denote the evaluation map
H™M) — Z, by x[M] for any x € H"(M). The total Wu class M) =1+v)+eeet
Y[n/2] and the total Stiefel-Whitney class w(M) =1+w; +---+w, of M are related
by the Steenrod squaring operation Sq=1 + Sq 4+++++8q": Sq v = w. Moreover,
given x € H¥(M) then Sq™ ¥(x)[M] = " Ex[M]. See [2].

Proposition 2.1. Let ME" be a closed manifold of dimension kn. Suppose
that w(M) = 17_; (1 + z,) where each z, is in HY(M) and bas the property that
Sq’ z;=0for 0 <j<k;thenw, [M]=0.

Proof. Note that v, =w, =z; +-+++2z andw, =z -2 .
wkn[M] =z zn[M]
=(zz+'”+zn+uk)(22 ...zn)[M]
R o z M) + Sq"(z2 ooz )NMl=0. O

If, in particular, 7M splits into a sum of (real, complex, or quaternionic) line
bundles, then the Euler characteristic of M is even.

Theorem 2.2. Every manifold is unoriented cobordant to a manifold M with
the property that T™M ® 1 splits into a sum of line bundles.

Proof. It suffices to prove that products of the Stong generators have this
property. By 1.2(a) we only have to prove it for manifolds of the form (X%)*. we
induct on k: 7X2@® 1 =rRP2 @1 is a sum of line bundles. Suppose the theorem
is true for (X2), j<k. If 0 = ("1""’ nt) is a partition of 2, let X* =

X"1...X". RP?* can be uniquely expressed in terms of the Stong generators
[RP?*] = [X2]* + Z x4

for some finite set W. Note that w k[x""] 0 forall @ € W; thus, if (Xz)’
divides X%, then j < k. By induction and 1.2(a) for every w € W, X% is
cobordant to a manifold M with the property that the sum of rM and a trivial
line bundle splits into a sum of line bundles. But rRP2* @1 is isomorphic to a
Z)k.

sum of line bundles, so the theorem holds for (x n]

Theorem 2.3. A class a e)ln, n > 0, contains a manifold M € a whose tan-
gent bundle splits into a sum of line bundles iff wn(a) =0.
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SPLITTING THE TANGENT BUNDLE 57

Proof. Necessity follows from 2.1. It suffices to prove the theorem for all
products of the Stong generators. From 1.2(b) and 2.2 it follows that, except for
(X2)* and (X%)*(X3), all products of the Stong generators satisfy the theorem.

Since w, [(X 2)k] £ 0 it remains to show that (X2)*(X3)! is cobordant to a
manifold whose tangent bundle splits into a sum of line bundles. 7X 3 splits into a
sum of line bundles so we only need to prove the theorem for (X kx5,

We induct on k: Suppose it is true for (X2)IX3, j < k. Y2*+3 of Proposition 1.3
is uniquely expressed in terms of the Stong generators

[Y2565] < [(xRX0) & 2 [x*]
w

for some finite set W of partitions. From 1.2(c) and 1.3(b) it follows that
w2w2k+3[XwJ =0 for all w € W. Thus, if (x2)/x* divides X%, then j< k. By
induction and 1.2(a), for every w € W, X“ is cobordant to a manifold whose tangent
bundle splits into a sum of line bundles. From 1.3(a) it follows that this is also true
for (X2)*x3. o

Corollary 2.4. A class a enn, n >0, contains a manifold M whose Stiefel-
Whitney classes are the elementary symmetric polynomials of classes tisvesst,
e H'(M) iff w (a)=0. O

It follows from Theorem 2.3 that every odd-dimensional manifold is cobordant
to a manifold whose tangent bundle splits into a sum of line bundles. The follow-
ing is the best one can say for all even-dimensional manifolds.

Corollary 2.5. Every even-dimensional manifold M2* is cobordant to a mani-
fold whose tangent bundle is isomorphic to a sum of 2-dimensional vector bundles.

Proof. If w,,[M] =0, then we are done by 2.3. Otherwise M is cobordant to
a sum of (X?)* and a manifold N2* with w,,[N] = 0. But r(X?)* is isomorphic
to a sum of 2-dimensional bundles. O

Remark. Note that none of the manifolds we constructed is orientable, so the
question as to whether there exists an orientable manifold M”, n > 0, which does
not bound and whose tangent bundle splits into a sum of line bundles is still open.
Nevertheless, one may get some necessary conditions. Since the first Pontryagin
class of a line bundle is zero, all Pontryagin classes of M are torsion. H™M; Z)
is free, so all Pontryagin numbers vanish. Thus, [M] € Tor ose, Moreover, it fol-
lows from [7] that Tor @€ is contained in the ideal of U generated by all odd-
dimensional classes.

3. The complex case. Unfortunately, it is very hard to determine those classes
in the complex cobordism ring Qg which can be realized by a manifold whose tan-
gent bundle splits into a sum of complex line bundles. But such determination is
accessible in J{,
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One may define CP(nl, v ’”z) as in §1 and go on to define the complex Stong
generators CX" of real dimension 2n. It follows from [3] and [1, p. 64] that these
manifolds generate the image of Qg —n,.

The tangent bundle of CX” does not split into a sum of line bundles. We remedy
this as follows: According to [4] there exists a map o: S! x S* — §2 which is
bordant to the identity 1: § 2,52 (e.g., the identification map which collapses to
a point the complement of an open disc in the torus). Therefore, if M fibres over
§2 x N, then [M] = [(0 x 1)*M] where (o x 1)*M is the pullback of M along o x 1:
S1x sTx N—s2xN.

Say n; =1, then CP(I\"IG o @ ?tnt) fibres over 2 x N where N is a product
of complex projective spaces. Thus

(0x 'CPO, @ --- @A, )= CP™, @ - @ A,)

where a*/\n‘ is again a complex line bundle and (0 x 1)*CP(n,,+++, n) fibres

over S! x s! x N.
Denote the almost complex manifold (¢ x 1)*CX” by C,X".

Proposition 3.1. The complex Stong generators C, X" have the following
properties:

(a) 7C,X" is isomorphic to a sum of complex line bundles.

(b) One of the line bundles from (a) is trivial if n#5.

(c) The only product M>2*+1) in the complex Stong generators with
wewg,_,[M 40 is of the form (C,X?)'C,X>.

Proof. For n£2,5, C_X" fibres over (§1)? x (§2)! x CP. If 7 denotes the
projection onto CP* and A the canonical line bundle over CP* then
A(SH2x (52 x CP¥) =t+1 @ 7"rCP¥ =1 @ (k + D",
With this in hand, the proofs of (a) and (b) are identical to the real case.

Part (c) follows from Proposition 1.2(c) since, according to 31,

n n n n
w4w2k_4[Cc,X 1... Co_x t]= w4w2k-4[Cx 1., cX t]

n n
=w2wk_2[X 1...x1

where k=7, +-<++n,. O

We may complexify our construction of Y (Proposition 1.3) and get CY which
by [4] fibres over § 2 rcY may not split, but 0 *CY does. Let us again identify
C,Y with o *CY.

Proposition 3.2. If k is even, k > 2, then the almost complex manifold
C, Y**3 of dimension 2k + 6 has the following properties:
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SPLITTING THE TANGENT BUNDLE 59

(a) 7C, Y is isomorphic to a sum of line bundles.
(b) w4w2k+2[Ca, Y]140. O

Theorem 3.3. Every weakly complex manifold is unoriented cobordant to an
almost complex manifold with the property that the Whitney sum of its tangent bundle
and a trivial complex line bundle splits into a sum of complex line bundles.

Proof. Note that the Stong generators C, X" generate the image of Qg -7,
= (Jl*)z. The proof is the same as in the real case. 0O

Remark. By using CX” instead of C, X" we can actually get a stronger result:
Every class in the image of Q,’;’ — T(* can be realized by a complex manifold M
with the property that TM @1 is a sum of complex line bundles.

Theorem 3.4. A class a in the image of an _"T(Zn’ n> 0, can be represented
by an almost complex manifold whose tangent bundle splits into a sum of complex
line bundles iff w, (a)=0. O

Corollary 3.5. A class a in the image o[an —.?'(2", n> 0, can be repre-
sented by an almost complex manifold M whose Chern classes are the elementary
symmetric polynomials of classes Lisee sty in H2M; Z) iff wZ"(a) =0. O

Corollary 3.6. Every weakly complex manifold M*" of dimension 4n is unoriented
cobordant to a manifold whose tangent bundle is isomorphic to a sum of 2-dimen-
sional complex vector bundles. 0O
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