
SplitX: High-Performance Private Analytics

Ruichuan Chen
Bell Labs / Alcatel-Lucent

ruichuan.chen@alcatel-
lucent.com

Istemi Ekin Akkus
MPI-SWS

iakkus@mpi-sws.org

Paul Francis
MPI-SWS

francis@mpi-sws.org

ABSTRACT

There is a growing body of research on mechanisms for pre-
serving online user privacy while still allowing aggregate
queries over private user data. A common approach is to
store user data at users’ devices, and to query the data in
such a way that a differentially private noisy result is pro-
duced without exposing individual user data to any system
component. A particular challenge is to design a system
that scales well while limiting how much the malicious users
can distort the result. This paper presents SplitX, a high-
performance analytics system for making differentially pri-
vate queries over distributed user data. SplitX is typically
two to three orders of magnitude more efficient in band-
width, and from three to five orders of magnitude more ef-
ficient in computation than previous comparable systems,
while operating under a similar trust model. SplitX accom-
plishes this performance by replacing public-key operations
with exclusive-or operations. This paper presents the design
of SplitX, analyzes its security and performance, and de-
scribes its implementation and deployment across 416 users.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

Keywords

Analytics; differential privacy; XOR cryptography

1. INTRODUCTION
The tracking of online users has become a major concern,

leading to both government and industry regulations to limit
tracking, e.g., the EU Cookie Law [2] and the W3C Do-Not-
Track [3]. The two primary use cases for tracking are behav-
ioral advertising and analytics. Unfortunately, regulations
like the EU Cookie Law and Do-Not-Track are only able to
limit tracking at the expense of advertising and analytics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

Concurrent to these developments, there has been active
research on ways to allow behavioral advertising [6,15,19,32]
or analytics [4,9,13,20,26,28] while still protecting user pri-
vacy. An approach that satisfies both industry and con-
sumers is better than the current forced compromise [7].
Unfortunately, to our knowledge, none of the proposals cited
above have made a noticeable impact on commercially de-
ployed systems. Regarding the research on private analytics
systems, which is the topic of this paper, we believe that all
of the previous proposals have technical shortcomings that
make them unsuitable for commercial acceptance.

A common requirement among previous analytics propos-
als is that no system component should ever have access
to individual user data. (This requirement is in contrast
to most database privacy research, which usually assumes
that there is a trusted database that sees all user data, e.g.,
hospital records or records of online purchases.) To satisfy
this requirement, all the previous proposals assume that user
data resides on users’ own devices or devices the users trust.
In other words, user data is distributed across a potentially
large number of client devices.

A common approach among previous proposals is that
they all add differentially private noise [11, 12, 14] to the
aggregate result of queries, so that the privacy of any indi-
vidual user is protected. The query answers transmitted by
client devices flow through one or more servers that oblivi-
ously generate answer aggregates and output the noisy ag-
gregates. By“oblivious”, we mean that the servers aggregate
answers without seeing individual user answers. Within this
framework, there are two places where differentially private
noise can be added: either the client adds noise to the an-
swer it is transmitting [13, 20, 26, 28], or the servers blindly
add noise such that they do not know how much noise is
added [4, 9]. It is important that servers add noise blindly;
otherwise, they could determine the noise-free aggregate if,
for instance, the noisy aggregate were publicly released.

There are two primary technical shortcomings of the pre-
vious analytics proposals that make them unsuitable for
commercial use: scalability and answer pollution. Regard-
ing answer pollution, three of the proposals [20,26,28] where
the clients add noise suffer from the problem that even a sin-
gle malicious client can substantially pollute the aggregate
result through the transmission of a single answer. This is
unacceptable in a world where any user may be malicious, or
any user device may be corrupted with malware. Regarding
scalability, all of the proposals, except Hardt et al. [20], re-
quire at least public-key operations or something even more
expensive. For instance, PDDP [9] and Akkus et al. [4], both

315

of which scale substantially better than any of [13, 26, 28],
nevertheless require a public-key operation per single bit of
client answer, and require roughly one kilobit of message
data per single bit of client answer.

Hardt et al.’s proposal [20], by contrast, scales much bet-
ter, requiring only a few arithmetic operations per client
answer, and only roughly two bits of message data per bit
of client answer. Besides being susceptible to answer pollu-
tion attacks, however, this system is also not very general.
It is designed on the premise that the clients know a priori
what queries to answer, and that all clients answer the same
set of queries. In a general setting where different analysts
wish to query different communities of clients, this system
does not scale.

This paper presents SplitX, a system for making differen-
tially private queries over distributed user data that scales
substantially better than previous systems, does not suffer
from answer pollution attacks, and is general. SplitX oper-
ates under a similar trust model as several recent analytics
proposals [4, 9, 20], i.e., honest-but-curious servers that do
not collude, and untrusted analysts.

SplitX derives its scalability from the fact that it uses
a simple exclusive-or (XOR) operation as its crypto primi-
tive. The sending client XOR’s its message with a random
string of identical length. It sends the XOR’ed message via
one proxy, and the random string via another proxy, thus
effectively producing a one-time pad. As a bandwidth op-
timization, the randomly selected seed, used as the input
to the pseudo-random number generator (PRNG), may be
used in lieu of the random string.

SplitX is resistant to malicious clients attempting to pol-
lute answers. Any single answer can only modify an ag-
gregate answer by a single count. In addition, SplitX has
mechanisms to detect whether a client, as identified by its
IP address, repeatedly answers the same query.

SplitX is a general system in that an untrusted analyst can
direct its own queries (e.g., SQL queries with counts as an-
swers) to a selected (but anonymous) client population, and
receive differentially private results. SplitX anonymously
distributes queries to and receives answers from only the se-
lected clients. For instance, an analyst that wants to query
only clients that have visited a specific website may do so
without having to send the query to all clients. This is ac-
complished through a kind of anonymous pub-sub channel:
clients that, for instance, visit a given website “subscribe”
to a channel associated with visitors of the website, and an-
alysts interested in that set of clients “publish” queries to
that channel.

Altogether, this paper makes the following contributions:

• It presents the design of SplitX, a general system for
making differentially private queries over distributed
user data. SplitX is typically two to three orders of
magnitude more efficient in bandwidth, and from three
to five orders of magnitude more efficient in computa-
tion than previous comparable systems (i.e., the sys-
tems with similar features and trust model). SplitX is
resistant to answer pollution by malicious clients.

• It presents both security and performance evaluations
of SplitX.

• It describes a complete implementation of SplitX, and
reports the results from a realistic deployment across
416 clients distributed globally.

Cli

...

Clients
Aggregator

and 2 Mixes Ana

...

Analysts

Cli

Cli

Ana

Ana

Subscribe to queries

Publish queries

Answer queries

Figure 1: System overview. All interactions are anony-

mous and unlinkable. Answers are differentially private.

The rest of this paper is organized as follows. The next
section gives an overview of SplitX, and states its goals and
trust assumptions. Sections 3, 4, and 5 present the system
design. We provide SplitX’s privacy analysis in Section 6,
and describe our implementation, performance evaluation
and deployment in Section 7. Finally, we present related
work and conclude in Sections 8 and 9, respectively.

2. SPLITX OVERVIEW

2.1 System Components
Figure 1 gives a high-level overview of SplitX, which con-

sists of the following system components:
Analysts. An analyst is a server that formulates queries,

publishes the queries to clients, either directly or indirectly
via the aggregator, and receives the aggregate noisy results
from the aggregator. There can be many analysts.

Clients. Clients store user data, and answer queries over
that data. A client may be a user’s own device, or some other
device the user trusts with his or her data. Clients subscribe
to queries from specific analysts. In some cases, a client
may have a direct (non-anonymous) relationship with an
analyst, and request queries directly from the analyst. One
such example is web analytics, where the client could receive
queries from the web server (i.e., analyst) when it accesses
the web server, similar to [4]. In other cases, a client may
have an indirect relationship with the analyst. An example
is a software vendor that wishes to gather aggregate data on
its user base. In this case, the client anonymously requests
queries via the mixes and the aggregator. Client software
can be bundled with existing software that requires private
analytics, thus eliminating need for user incentives.

Aggregator and Mixes. The aggregator and two mixes
interpose between analysts and clients. They work together
to ensure that requests for queries and answers to queries
are handled in a way that satisfies our privacy goals (§2.2).

The mixes receive XOR-encrypted answers from clients,
blindly add additional XOR-encrypted random answers (as
the differentially private noise [11, 12, 14]), shuffle the real
and noisy answers, and pass them to the aggregator. The
aggregator interfaces with analysts. It decrypts the answers
received from the mixes, adds them up, and supplies the
aggregate result to the appropriate analyst.

In addition, the mixes act as anonymizing proxies for
query requests. Both mixes and the aggregator act as anonymiz-
ing proxies for query answers. Details are given in §4.

316

2.2 Privacy Goals
SplitX achieves three privacy properties: anonymity, un-

linkability, and differential privacy. Anonymity means that
no system component can associate user data with a user
identifier. Unlinkability means that no system component
can link any pair of requests or answers to the same user,
even in the absence of an identifier (i.e., anonymously). Break-
ing the unlinkability property could allow system compo-
nents to build quasi-identifiers which may in turn be de-
anonymized with auxiliary information. Finally, all aggre-
gate results in the system are produced under differential
privacy guarantees, i.e., the produced aggregate results do
not violate the privacy of any individual users.

2.3 Other Goals
The system should scale well. First, the system should

be able to direct queries from a given analyst to only those
clients which are associated with that analyst. Second, the
system should scale at least linearly with 1) the number of
clients, 2) the number of queries, 3) the size of queries, and 4)
the size of answers. Third, the scaling factor should be small
(e.g., efficient XOR operations versus expensive public-key
operations). This both allows the system to handle millions
of clients each answering thousands of queries, and accom-
modates low-capacity clients (e.g., mobile devices).

The system should tolerate churn among clients, since
they may be frequently-disconnected devices like smartphones.

The system should be resistant to clients attempting to
pollute results. In particular, a single answer should not be
able to distort the aggregate result by more than a single
count. While an ideal goal would be to limit any single de-
vice to a single answer per query, accomplishing this would
amount to solving the Sybil problem, which is out of the
scope of this paper. Rather, SplitX is able to detect dupli-
cate answers per query that come from any given IP address.

2.4 Trust Assumptions
Clients are potentially malicious in that they wish to pol-

lute aggregate results.
Analysts are potentially malicious in that they try to break

the privacy properties described in §2.2, i.e., de-anonymize
clients, link client requests or answers, or remove differen-
tially private noise.

The aggregator and two mixes are honest but curious.
They run the specified protocol faithfully, but may try to
exploit additional information that can be learned in doing
so. The aggregator does not operate fake clients. There is
no collusion (i.e., information sharing) among the aggregator
and the two mixes. In other words, at least two of the three
entities refuse to collude.

While our honest-but-curious trust assumption is not new
(see [4,9,20]), we wish nevertheless to emphasize that we be-
lieve that this assumption is appropriate in a realistic ana-
lytics scenario, for instance, where the aggregator pays mix
operators for running mixes, and charges analysts. Here,
the aggregator and the mixes would explicitly state non-
collusion in their privacy statements, which are legally bind-
ing documents. Although the relationship between the ag-
gregator and the mixes does create an opportunity for collu-
sion, it would be difficult and risky for either party to lever-
age the individual user data obtained through that collusion.
This is because the data analyst (e.g., an advertiser) would
want to know the origin of the data, and an honest analyst

Cli
SID,X

Agg

Mix2

Mix1

SID,X

SID, R or <seed, l>

R = PRNG(seed,l)

X = XOR(M,R)

R = PRNG(seed,l)

M = XOR(X,R)

SID, R or <seed, l>

Figure 2: XOR-based encryption. Client Cli sends mes-

sage M of length l to aggregator Agg via mixes Mix1 and Mix2.

would not only reject illicitly gathered data, but might also
expose the aggregator or the mixes. As a result, we believe
our trust assumption is reasonable in the real world.

Finally, we assume that crypto operations are operated
correctly: messages cannot be eavesdropped, the aggregator
and mixes cannot be impersonated, and changes in messages
by a man-in-the-middle can be detected.

3. TECHNICAL BUILDING BLOCKS
Before we elaborate on the detailed design of SplitX in

§4, this section first describes a few techniques that we will
utilize throughout the whole design.

3.1 XOR-based Encryption
SplitX derives its performance from using the XOR op-

eration as the basis of message encryption. XOR-based en-
cryption has been previously proposed for anonymous com-
munications [8]. In SplitX, it provides two key benefits:

• It is very efficient (relative to public-key operations).

• It allows mixes to blindly add noisy answers and shuffle
them with real client answers (see §4.2).

This section describes the XOR-based encryption and its
notation. Figure 2 illustrates the transmission of a message
M of length l bits from client Cli to aggregator Agg via a
pair of mixes Mix1 and Mix2. To do so, Cli generates a
random string R, also of length l bits. In particular, R is
generated with a pseudo-random number generator (PRNG)
seeded with a cryptographically strong random number. Cli
does an XOR operation with M and R to produce a new
message X:

X = M ⊕ R (1)

Cli then sends X to Agg via Mix1, and sends either R
or 〈seed, l〉, whichever is shorter, to Agg via Mix2. We call
this operation splitting, and refer to the two XOR-encrypted
messages as split messages. If Agg receives 〈seed, l〉, it can
recreate R by seeding the same PRNG with the received
seed. To recreate message M , Agg does an XOR operation
with X and R:

M = X ⊕ R (2)

This operation is called joining. Because Agg may receive
many split messages from Mix1 and Mix2, a pair of asso-
ciated split messages (i.e., X, and R or 〈seed, l〉) must be
identified as belonging to the same message. Therefore, Cli
also generates a unique identifier per message called the split
identifier (SID). The SID is itself a large random number, so
that it is unique among all SIDs with high probability, dur-
ing the time the message is being processed in the system.

Provided that the seed is cryptographically strong, each
pair of the split messages appear random, and neither Mix1

317

nor Mix2 can decrypt the original message unless they col-
lude (i.e., share information). To prevent an eavesdropper
from decrypting messages, all direct communications be-
tween clients, mixes, and aggregator are encrypted with the
standard transport layer security (TLS). To prevent spoof-
ing, the mixes and aggregator are authenticated with public-
key certificates.

3.1.1 Split Message Notation

The messages shown in Figure 2 can be fully notated as:

Cli
Mix1
−−−→ Agg : SID, X

Cli
Mix2
−−−→ Agg : SID, R or 〈seed, l〉

(3)

For readability, however, we use the notation:

Cli
Mix1
−−−→ Agg : M

Cli
Mix2
−−−→ Agg : M

(4)

Or, equivalently:

Cli
Mix1
−−−→
Mix2

Agg : M (5)

Here, the underline denotes the split of message M (either
X, or R / 〈seed, l〉, it does not matter which). SID is
omitted, and is understood to have been sent. Therefore,
messages (4) or (5) may be read to mean “Cli sends split
messages of M to Agg via Mix1 and Mix2”.

More generally, Cli may send Agg a message with multiple
fields, some of which are XOR-encrypted (i.e., split fields),
and some of which are clear-text. This is denoted as:

Cli
Mix1
−−−→
Mix2

Agg : Fs1, · · · , Fsn, Fc1, · · · , Fcm (6)

Here, Fs1, · · · , Fsn are split fields, and Fc1, · · · , Fcm are
clear-text fields.

3.2 Query Buckets
SplitX supports the SQL query language (and potentially

other query languages). While queries formulated by ana-
lysts can be complex, the results of a query are expressed
as counts within histogram buckets, where each bucket rep-
resents one possible answer value. The client’s answer to a
query is in the form of a ‘1’ or a ‘0’ per bucket, depending
on whether or not the answer falls within that bucket.

There are two types of queries: numeric queries, and
non-numeric (string) queries. For numeric queries, buck-
ets are specified as numeric ranges. An example of numeric
ranges is age. An analyst could learn the age distribution
among males with an SQL query, such as “SELECT age FROM

splitx WHERE gender=‘male’” by defining, for instance, 5
buckets as follows: ‘age 0∼19’, ‘age 20∼39’, ‘age 40∼59’,
‘age 60∼79’, and ‘age≥80’. If a given male user is 30 years
old, the client answers ‘1’ for the second bucket, and ‘0’ for
all other buckets.

For non-numeric (string) queries, each answer bucket is
specified by a regular expression. One such example is the
websites visited. An analyst could learn the popularity of
websites within users in the US with an SQL query, such as
“SELECT website FROM splitx WHERE location=‘US’”with
hundreds of thousands of buckets defined as, for instance,
‘*.google.com’, ‘*.facebook.com’, ‘*.yahoo.com’, and so on.
For each website such a user has visited, the client places a
‘1’ in the corresponding bucket, and a ‘0’ in others.

Cli Agg

Mix1

Mix2 Query1,

Query2, . . .

Ana

AID

Query1,Query2, ...

Figure 3: Query publish/subscribe. AID is analyst iden-

tifier. Underline denotes split message.

3.3 Differential Privacy
Differential privacy [11,12,14] is a privacy mechanism that

protects user privacy by making it very hard to determine
whether or not an individual user’s record is in a queried
database. A computation C achieves (ǫ, δ)-differential pri-
vacy [13] if, for any two data sets S1 and S2 that differ on
at most one record, and for all outputs O ⊆ Range(C):

Pr[C(S1) ∈ O] ≤ exp(ǫ) × Pr[C(S2) ∈ O] + δ (7)

That is, the probability that a computation generates a
given output is almost independent of the presence of any
individual record in the data set. There are two privacy pa-
rameters, ǫ and δ, in expression (7). They control the trade-
offs between the accuracy of a computation and the strength
of its privacy guarantees. They also allow the amount of pri-
vacy leakage to be quantified and controlled [13].

Differential privacy is achieved by adding noise to the out-
put of a computation. More specifically, the SplitX system
generates some number of additional random answers as the
differentially private noise, and randomly shuffles them with
the real answers produced by clients. This is done indepen-
dently for each query bucket. It is shown in [9] that adding
n random answers achieves (ǫ, δ)-differential privacy:

n = ⌊
64 ln(2c)

ǫ2
⌋ + 1 (8)

Here, c is the number of clients answering the query, and
ǫ is the privacy parameter which mainly controls the ac-
curacy/privacy tradeoff [13]. In SplitX, the noise is added
blindly, i.e., the system adds noise without knowing how
much noise is added (see §4.2). The blind noise addition
prevents the system from determining the noise-free aggre-
gate result if, for instance, the noisy aggregate result were
publicly released.

4. SPLITX SYSTEM DESIGN
With the technical building blocks in place, this section

gives the detailed system design of SplitX.

4.1 Query Publish/Subscribe
Figure 3 illustrates how clients (Cli) anonymously request

queries from analysts (Ana). Each analyst has an ana-
lyst identifier AID. Each analyst transmits its set of queries
Query1, · · · , Queryn to the aggregator (Agg). Each client
requests the queries associated with a given analyst by trans-
mitting the split AID via the mixes:

Cli
Mix1
−−−→
Mix2

Agg : AID (9)

The aggregator joins (i.e., XOR-decrypts) the AID, and
retrieves the AID’s associated queries. Then, the aggregator

318

Cli Agg

Mix1

Mix2

Ana

QID, answer

QID, answer array

(per client)

(all clients, with noise, shuffled)

QID, answer counts

Figure 4: Simple but incomplete design for answer-
ing queries. QID is query identifier. The client sends its split

answers each to one of the two mixes. Each mix adds split noisy

answers, shuffles them with clients’ split answers, and sends all

split answers as an array to the aggregator. Aggregator reports

the aggregate result to the appropriate analyst.

splits these queries, and transmits them to the client via the
two mixes:

Agg
Mix1
−−−→
Mix2

Cli : Query1, · · · , Queryn (10)

In SplitX, each query consists of the following fields:

Query := 〈QID, SQL, B1→b, ǫ, Tend〉 (11)

The query identifier QID uniquely identifies the query
among all queries that the SplitX system may handle during
the same time period. The QID may be composed of the
analyst identifier AID concatenated with a value unique to
the analyst.

SQL denotes the SQL query itself. B1→b denotes the b
buckets which represent all possible answer values to the
query. Examples of SQL queries and associated query buck-
ets can be found in §3.2.

In addition, each query also contains a privacy parameter
ǫ indicating how much differentially private noise should be
added (see §3.3), as well as a query end time Tend indicating
when answers to this query will no longer be accepted.

Note that the aggregator runs a sanity check over all the
fields in the query. Most importantly, it ensures that the
privacy parameter ǫ does not exceed the maximum allowable
privacy level. It may also check to ensure that buckets do not
overlap, and that the query end time Tend has not expired.
Clients run a similar check.

4.2 Answering Queries
For descriptive clarity, this section starts with a simple

but incomplete design, as shown in Figure 4. This design
lacks some privacy properties. Subsequent sections (§4.2.1,
§4.2.2, and §5) complete the design.
Step A1: Query Answering. Each client maintains its
own data in a local database. How this database is obtained
is outside the scope of this paper, though in our imple-
mentation we used database features of the Google Chrome
browser. When a client receives a query from the analyst
(see §4.1), it queries its local database and generates an an-
swer. The client then maps the answer into b buckets, re-
sulting in a ‘1’ or a ‘0’ per bucket, depending on whether
or not the answer falls within that bucket. This answer is
efficiently encoded as a bit-vector, with one bit per bucket,
in the order that the buckets were received in the query.

Answer := 〈B1, B2, · · · , Bb〉 (12)

The client splits the answer, and sends the split answers
to the two mixes, respectively:

Cli → Mix1 : QID, Answer
Cli → Mix2 : QID, Answer

(13)

Step A2: Answer Collection. Upon reception of a client’s
split answer, the mix stores the answer locally. If the mix has
not seen the query identifier QID before, the mix requests
the associated query from the aggregator. As a result, the
mix knows the query’s privacy parameter ǫ and the query
end time Tend.

1

Step A3: Mix Synchronization. After Tend expires for
a given query identified by QID, both mixes must add noisy
answers to the set of answers so far received, and randomly
shuffle all answers (both noisy and real). Note that the mixes
are working on split answers, not clear-text answers. There-
fore, for each split noisy answer added by one mix, the other
mix must add a corresponding split noisy answer. Later the
aggregator will join each bit from each split answer. For this
to work properly, the two mixes must be perfectly synchro-
nized during this operation. This synchronization requires
that:

1. The mixes agree on the exact set of real client answers
they use2, and

2. The mixes agree on a seed value of the pseudo-random
number generator (PRNG), used for the synchronized
operations in noise addition (step A4) and answer shuf-
fling (step A5).

To achieve the first requirement, one of the two mixes
takes the role of master. The master mix sends its com-
plete list L1 of all received SIDs (i.e., split identifiers of the
received split answers) to the slave mix. The slave mix com-
pares L1 with its own set of SIDs, and removes all those that
are not in L1. The slave mix then returns to the master the
list L2 of split identifiers that the master has but the slave
does not have. The master will remove these from its own
SIDs. At the end of this exchange, the two mixes agree on
the exact set of SIDs.

To achieve the second requirement, the master mix gen-
erates a cryptographically strong random seed s, and trans-
mits it to the slave mix during the mix synchronization.
Then, both master and slave mixes can initialize a PRNG
with the synchronized seed s. We call this synchronized
PRNG as PRNGsync. In addition, for generating random
noisy answers in step A4, each mix initializes another PRNG
with a locally generated (unsynchronized) random seed, called
PRNGlocal.
Step A4: Noise Addition. According to equation (8)
in §3.3, each mix determines n, i.e., the number of noisy
answers that need to be added to achieve the required dif-
ferential privacy. Using PRNGlocal, each mix generates n
split answers, with a uniformly random ‘1’ or ‘0’ for each
bucket in each split answer. Then, using PRNGsync, each
mix generates the same set of n split identifiers SIDs, and
assigns each of them to one of these n locally generated split
noisy answers.
1With this simple design, the mixes can at this point asso-
ciate QID with clients, and thus, learn which analysts each
client is associated with. This is a violation of our privacy
goals. We extend the design in §4.2.1 to solve this problem.
2It is possible that one mix receives a split answer while the
other mix does not receive the pairing split answer.

319

B1B2B3..Bb B1B2B3.. Bb

SIDa a1 a2 a3 ..ab c1 b2 c3 .. eb

SIDb b1 b2 b3 .. bb a1 c2 e3 .. ab

SIDc c1 c2 c3 .. cb d1 z2 d3 .. zb

SIDd d1 d2 d3 ..db b1 e2 a3 .. cb

SIDe e1 e2 e3 .. eb z1 d2 z3 .. bb

..
SIDz z1 z2 z3 .. zb e1 a2 b3 .. db

Figure 5: Answer shuffling. The left two-dimensional array

is before answer shuffling, and the right two-dimensional array is

after answer shuffling.

Note that later the aggregator will join each pair of these
split noisy answers to obtain the non-split noisy answers.
However, since neither mix knows the split noisy answers
generated by the other mix, neither mix can know the re-
sulting noisy answers at the aggregator. In this way, the
mixes are able to add differentially private noise blindly.
Step A5: Answer Shuffling. At this point, the two mixes
agree on the complete set of c+n split answers, c from clients,
and n from added noise. To shuffle the split answers, each
mix creates a two-dimensional array of bucket values (see
Figure 5). The rows of the array are split answers, in the
order of lowest SID to highest SID. The columns of the array
are buckets. Using the synchronized PRNGsync, each mix
goes through each column and randomly shuffles the values
in the column. Note that, since both mixes use PRNGsync

to shuffle, each bit position in their respective shuffled arrays
corresponds to the same answer value.

Figure 5 illustrates this answer shuffling. The left array
shows all the split answers in their original form. After the
shuffling (i.e., in the right array), each column is still pop-
ulated with the split answers for the corresponding bucket,
but randomly shuffled. In doing so, the bucket values of
each split answer have been completely de-correlated. This
makes it prohibitively difficult to link a set of bucket values
to a given client.

Finally, each mix transmits the shuffled split answer array
to the aggregator. Since the two mixes effectively add n ran-
dom noisy answers to the real client answers, this introduces
the differentially private noise with a mean of n/2 to each
individual bucket. For the final aggregate result adjustment,
each mix also informs the aggregator of n:

Mix1 → Agg : QID,n, AnswerArray
Mix2 → Agg : QID,n, AnswerArray

(14)

Step A6: Noisy Answer Tabulation. Upon reception
of the two split answer arrays, the aggregator generates the
non-split answer array by joining each bit position in the
two split answer arrays. The aggregator then sums together
the values for each bucket, and subtracts n/2 to produce
the final noisy count for how many clients fall within each
bucket. Finally, the aggregator transmits the noisy counts
to the appropriate analyst.

4.2.1 Anonymity and Unlinkability at the Mixes

The problem with the design as so far stated is that the
mixes can associate QID with client in step A2, which vio-
lates our privacy goals. For instance, if there is an analyst
per website, the mixes can learn which websites a client visits
by monitoring which QID values are issued by which ana-
lysts. This section enhances the design to solve this problem.

Cli

Mix2

Mix1

E (QID,answer)

Mixes as Proxies

Mix1

Mix2

E (QID,answer)1

2

Figure 6: Mixes as proxies based on transport layer
security. E1(M) and E2(M) denote the TLS encryption of

message M destined to Mix1 and Mix2, respectively.

Cli

Mix2

Mix1

Mixes and aggregator

as Proxies

Mix1

Mix2

Agg

Agg

QID,answer

QID,answer

Figure 7: Mixes and aggregator as proxies based on
double-splitting.

The specific goal here is to deliver the client’s split an-
swer (see expression 13) to the mix anonymously and un-
linkably. Anonymous means that the mixes cannot identify
which client sent a given split answer. Unlinkable means
that the mixes cannot determine if any two split answers
came from the same client or from different clients.

A straightforward solution would be to interpose prox-
ies between clients and mixes, and to run transport layer
encryption (i.e., TLS) between clients and mixes. Indeed,
since we have two mixes, they can each operate as a proxy
on behalf of the other (see Figure 6). Here, each client must
establish a separate TLS session for every split answer (along
with the associated QID); otherwise, the mix could use the
TLS session to link an (anonymous) client to multiple split
answers, and in turn to multiple QIDs. With auxiliary in-
formation, this set of QIDs could be used to de-anonymize
a client especially when the client answers only a part of
received queries.

While this approach works, we can exploit XOR encryp-
tion to make it much more efficient. This is because XOR en-
cryption avoids the expensive per-answer TLS session estab-
lishment. Since XOR encryption requires a pair of proxies,
we can additionally use the aggregator as one of the proxies
in each pair (see Figure 7). Here, the client double-splits the
message. In other words, it takes each of the original split
messages (destined to Mix1 and Mix2 acting as mixes), and
splits each again. The complete message contents, including
the SID of the original split, are covered in the double split:

Cli
Mix2
−−−→

Agg
Mix1 : QID,Answer

︸ ︷︷ ︸

double-split answer

Cli
Mix1
−−−→

Agg
Mix2 : QID,Answer

︸ ︷︷ ︸

double-split answer

(15)

320

While there are four double-split messages in total, only
one of them needs to be the full size of the client answer.
That is because one of the original split messages contains
〈SID, seed, l〉 as described in §3.1, and the two splits of that
message are likewise small. Note that double-splitting does
not fully eliminate the need for TLS: the client needs to
establish TLS sessions with proxies so that eavesdroppers
cannot join messages. However, these per-proxy TLS ses-
sions can be long-lived, and so session establishment is rare.

4.2.2 Preventing Traffic Analysis

In SplitX, there are opportunities for eavesdroppers and
proxies (i.e., mixes and aggregator acting as proxies) to an-
alyze encrypted traffic and deduce which queries are being
answered by which clients. To prevent this, standard traffic
analysis mitigation techniques are used as follows.
Fixed-Size Messages. All transmitted messages are fixed
at one of a set of exponentially growing message sizes. Very
long queries (e.g., those with millions of buckets) are par-
titioned into multiple smaller queries, each with the same
SQL but different bucket definitions. Small queries from the
same analyst are bundled into a single message, and their
answers are likewise bundled together. This not only makes
traffic analysis harder, but improves the system efficiency.
All messages are padded to the next bigger fixed size.
Delay and Reordering. Proxies randomly delay and re-
order messages. Each message must be delayed long enough
that it can be randomly reordered with some 100’s of other
messages of the same size.

5. POLLUTION ATTACK AND DEFENSE
In the design as described in §4, no system components

can detect which queries are being answered by which clients.
This leaves SplitX open to an answer pollution attack whereby
a client simply answers the same query many times. With-
out the mechanism described in this section, such an attack
would go unnoticed.

A simple defense is for the system proxies to limit a client
to some fixed rate of answers. While this is simple, it is
already a significant improvement over several previous sys-
tems [20,26,28], where even a single malicious client with a
single answer can substantially distort the aggregate result.

Unfortunately, a client may legitimately answer queries
for hundreds of analysts in a given query time period, for
instance, one for each website the user visited, and each ap-
plication the user installed. This section presents a mecha-
nism that detects duplicate answers received from any given
IP address, removes those answers, and tags IP addresses
that associate with duplicate answers.

5.1 Duplicate Detection Mechanism
Figure 8 shows the system topology with the duplicate

detection mechanism. Compared to Figure 7, an additional
split is added between the client and the aggregator-as-
proxy. The purpose of this split is to create a setup whereby
three system components can cooperate to blindly perform
duplicate detection. That is, none of the three system com-
ponents can de-anonymize or link client data. Specifically,
as shown in Figure 8, the three components are the ones ex-
plicitly labeled “Proxy” (i.e., Mix1), “Mix” (i.e., Mix2), and
“Agg”which lies between them. Hereafter, we will use Proxy,
Mix, and Agg to represent these three specific components.

Mix1

Mix1

Mix2

Agg

Agg

Mix1

Mix2

¨Proxy¨

¨Mix¨

r ,pIP

r ,pIP

r ,pIP

. . .
3

1

2

1

1

2

Cli Agg

r ,pQID

r ,pQID

r ,pQID

. . .
3

1 1

1

22

Mix2

¨Agg¨

Figure 8: System topology based on triple splitting,
with messages used for duplicate answer detection.
ri is a unique answer identifier. pIPj is a pseudonym for the client

IP address. pQIDk is a pseudonym for the query identifier.

The purpose behind this setup is to create 1) a compo-
nent (i.e., Proxy) that knows the client IP address but not
the query identifier QID, 2) a component (i.e., Mix) that
knows the QID but not the client IP address, and 3) a com-
ponent (i.e., Agg) that knows neither. We now describe the
duplicate detection mechanism.

The Proxy and Mix establish a TLS-encrypted channel
between them. This channel allows the Proxy to send en-
crypted message fields to the Mix without the interven-
ing Agg being able to read them. The Proxy assigns a
pseudonym pIP to each client IP address. The Mix assigns
a pseudonym pQID to each QID.

Step D1: The Proxy assigns a unique random number
r to each (triple-split) answer message received from client.
The Proxy encrypts r, and sends it along with the answer
message to the Agg. After joining the two triple-split mes-
sages from the Proxy and Mix2, the Agg attaches the en-
crypted r to the joined (double-split) message, and sends it
to the Mix.

Step D1’: After a random delay, the Proxy also sends
the 〈r, pIP〉 tuple to the Agg. This tuple informs the Agg
that r is associated with an answer received from a client
with the pseudonym pIP.

Step D2: Upon reception of the (double-split) message
from the Agg in step D1, the Mix decrypts r. After joining
this message with another (double-split) message received
from Mix1, the Mix knows the QID (see §4.2.1), and there-
fore its associated pseudonym pQID. As a result, the Mix
can generate a tuple 〈r, pQID〉, indicating that r is associ-
ated with an answer to a query with the pseudonym pQID.

Step D3: After a given query expires, but before the
mix synchronization process (i.e., step A3 in §4.2), the Mix
transmits all 〈r, pQID〉 tuples to the Agg. The Agg matches
tuples with the same r to create a list of 〈r, pIP, pQID〉
tuples. Any such tuples with the same pIP and pQID repre-
sent a duplicate answer. That is, a client answered the same
query more than once.

Step D4: The Agg returns the r values of all duplicate
answers to both the Mix and the Proxy. The Mix removes
these from its list of split answers, and then continues with
the mix synchronization process. The Mix also uses the
information to detect whether an analyst may be under a

321

pollution attack (i.e., an unusually high percentage of dupli-
cate answers). The Proxy likewise uses the information to
tag suspicious clients that are sending too many duplicates.

5.2 Mitigating Linkability
While the duplicate detection mechanism so far described

provides anonymity, without additional measures it suffers
from linkability. In the mechanism, the Agg can link a pIP
with a pQID. If the Agg can deduce the QID associated
with each pQID, then it can link the QID to (anonymous)
clients. Without the following mechanisms, the Agg could
derive QID from pQID by examining the query end time
and the number of answers for each pQID.
Synchronized Query Epochs. Time is divided into epochs.
Queries’ start and end times are synchronized to those epochs,
i.e., queries are synchronized with other queries so that their
start and end times are the same. This makes it hard for
the Agg to deduce the QID based on the query’s start and
end times.
Fixed-Number Query Answers. In step D1, the Proxy
routinely generates unique random numbers r, and then uses
them to generate some number of extra 〈r, pIP〉 tuples. The
Proxy sends these extra tuples to the Agg, and sends the
encrypted r’s to the Mix. The Mix decrypts those encrypted
r’s. Based on those r’s, the Mix transmits some number of
fake 〈r, pQID〉 tuples to the Agg, such that the total number
of tuples for pQID is fixed at one of a set of exponentially
growing sizes. In doing so, many queries associate with the
same number of 〈r, pIP, pQID〉 tuples. As a result, the Agg
cannot derive the QID from the pQID based on the number
of tuples associated with pQID.

5.3 Discussion
The duplicate detection mechanism removes all duplicate

answers received from any given IP address. This may have
the effect of biasing the query result, for instance, against
business users where many users may operate behind a sin-
gle NAT box. To mitigate this bias, the Agg in step D4 can
choose to report the r values of all but k randomly selected
duplicate answers. There is a tradeoff of choosing k. If k
is too high, then a malicious client could answer the same
query k times without detection; on the other hand, if k is
too low, this may introduce bias. The best strategy depends
on the application domain. Note also that, in a mobile en-
vironment, each client may have an authenticated unique
identity, e.g., the IMEI number. We can use this identity
(rather than the IP address) as the client identifier to solve
the problem associated with NAT, as well as the problem
with clients changing IP addresses.

Recall from the trust assumptions in §2.4 that the aggre-
gator is honest but curious. However, if it is malicious, the
aggregator could operate fake clients in an attempt to link
clients to analysts by exhibiting a unique signature of an-
swers for a known set of queries. For instance, a fake client
operated by the aggregator could generate 100 duplicate an-
swers for QID1, 200 duplicate answers for QID2, and so on.
By looking for this signature in 〈r, pIP, pQID〉 tuples, the
aggregator could reverse-engineer the “pQID↔QID” map-
ping, and in turn link (anonymous) clients to analysts. One
possible approach against the malicious aggregator could be
to randomly remove some client answers and add additional
fake answers in order to break the signature. The effective-
ness of such an approach is a topic for future study.

6. PRIVACY ANALYSIS
This section analyzes the privacy properties for all SplitX

system components.

6.1 Analyst
Analysts are considered potentially malicious, and may

try to violate individual users’ privacy by learning their real
answers. In SplitX, the analyst interacts with clients either
directly, or indirectly via the aggregator (see §2.1). Even in
the case of a direct interaction, only the queries are sent from
the analyst to clients; the (split) answers are always sent
through the mixes and aggregator; thus, the analyst receives
only aggregate results with differentially private noise.

The analyst may try to manipulate its query’s fields, i.e.,
〈QID, SQL, B1→b, ǫ, Tend〉 in expression (11). However, no
setting of these fields prevents the mixes from adding dif-
ferentially private noise to the aggregate result. Of course,
the analyst may set a large ǫ in an attempt to lower down
the differentially private noise being added to the aggregate
result. However, both the aggregator and the clients will
run a sanity check to discard those queries (see §4.1).

6.2 Aggregator
The aggregator sees the analyst identifier in the query

request (see §4.1). However, it does not know which client
made that request, because the mixes interpose between the
clients and the aggregator (see Figure 3).

The aggregator (not acting as proxy) receives split answers
for a query from the two mixes after the query end time.
These split answers contain differentially private noise, so
that the aggregate result produced from these answers does
not violate the privacy of any individual client. Further-
more, the bucket values in these received split answers are
randomly shuffled at the mixes (step A5 in §4.2). This shuf-
fling prevents the aggregator from identifying a client based
on a set of bucket values.

6.3 Mix
The mix (not acting as proxy) can join a pair of double-

split answers to recreate a split answer which includes the
query identifier. However, it cannot determine which client
sent this split answer. This is because the double-split an-
swers are interposed by the other two system components
acting as proxy.

Each mix adds split noisy answers. However, neither mix
knows the split noisy answers added by the other mix, such
that they do not know how much differentially private noise
is added to the aggregate result (step A4 in §4.2). What
each mix knows is only that the noise added is enough to
achieve the required differential privacy. As a result, even
if the noisy aggregate result were publicly released, neither
mix can subtract the noise to produce the noise-free result.

6.4 Proxy
The aggregator and mixes act as proxies for each other,

providing clients with anonymity. Furthermore, each proxy
only sees one out of a pair of (double- or triple-) split mes-
sages. The proxy cannot link any two of these split messages.
This is because each pair of split messages has a unique split
identifier, and it is unlinkable to other pairs, even to those
that are sent by the same client. This provides the unlinka-
bility property for SplitX. Any traffic analysis attempts by
the proxy will be thwarted by the “fixed-size messages” and

322

Table 1: Microbenchmarks (# query buckets / second). The public-key crypto schemes use a 1024-bit key.

Splitting / Encryption Joining / Decryption

Chrome Smartphone
Server

Chrome Smartphone
Server

(client) (client) (client) (client)
SplitX 51,336,008 1,565,240 139,028,952 91,246,848 6,194,472 445,571,096

PDDP [9] 25,989 823 20,569 — — 6,097
Akkus et al. [4] 1,441 57 9,814 — — 668

100 1000 10000 100000

1

10

100

1000

10000

100000

1000000

1E7

B
a

n
d

w
id

th
 O

v
e

rh
e

a
d

 (
M

B
)

Buckets

 SplitX

 PDDP

 Akkus et al. (A = 1)

 Akkus et al. (A = 10)

 Akkus et al. (A = 100)

Figure 9: Bandwidth overhead at the aggregator.
For SplitX, the seed value and split identifier are 128-bit and 64-

bit long; the privacy parameter ǫ=1.0. For PDDP and Akkus et

al.’s systems, the public key length is 1024-bit, and the privacy

parameter ǫ=1.0.

the “delay and reordering” mechanisms (see §4.2.2). Note
that as a general rule, such chaff is never perfect, and over
time the traffic analysis may link some clients to some an-
alysts. In the extreme, one could deploy SplitX such that
the proxies are not re-purposed mixes and aggregator, but
rather completely separate entities. Such an approach would
require as many as nine distinct entities (see Figure 8).

6.5 Client
Clients are considered potentially malicious with a goal of

polluting the aggregate result. A malicious client may send
duplicate answers for the same query, but these answers will
be detected and discarded (see §5.1). Consequently, to by-
pass detection and pollute the aggregate result, an attacker
must use a botnet. This case is not different from the sit-
uation today where, for instance, an attacker could build a
botnet to produce false web visits in an attempt to distort
the result produced by a service like Google Analytics.

A malicious client may also send unpaired split messages,
or send only one split message but withhold the pairing split
message to consume resources. These unpaired messages can
easily be discarded after a joining operation or a timeout.

7. IMPLEMENTATION & EVALUATION

7.1 Implementation
We implemented the SplitX system. The client is a Google

Chrome extension consisting of 1.7K lines of JavaScript code.

100 1000 10000 100000

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

1000

10000

100000

T
im

e
 t

o
 J

o
in

/D
e

c
ry

p
t

A
n

s
w

e
rs

 (
H

o
u

rs
)

Buckets

 SplitX

 PDDP

 Akkus et al. (A = 1)

 Akkus et al. (A = 10)

 Akkus et al. (A = 100)

Figure 10: Computational overhead at the aggrega-
tor. For SplitX, the seed value and split identifier are 128-bit

and 64-bit long; the privacy parameter ǫ=1.0. For PDDP and

Akkus et al.’s systems, the public key length is 1024-bit, and the

privacy parameter ǫ=1.0.

The extension captures webpages browsed, searches made
and extensions installed, and stores them into a local database
with timestamps. In principle, the extension can be ex-
tended to capture any user activity within the browser.

All other system components were implemented in Java.
In total, they consist of 5K lines of code. The interfaces
between all system components were defined by 116 lines of
code in the Apache Thrift interface description language [1],
producing 19K and 5K lines of Java and JavaScript code,
respectively. Apache Thrift enables SplitX to seamlessly
support potential clients implemented in various languages.

7.2 Microbenchmarks
A major performance bottleneck in private analytics sys-

tems is the overhead of crypto operations. We compare
SplitX with two recent systems, PDDP [9] and Akkus et
al. [4], because they both are resistant to answer pollution
and they both add noise in the infrastructure rather than at
the client, making them most comparable to SplitX.

The crypto primitives of SplitX, PDDP, and Akkus et al.
are splitting/joining operations, Goldwasser-Micali crypto
operations [17, 18], and RSA operations, respectively. To
evaluate the performance of these operations, we conducted
microbenchmarks on a desktop computer with Intel dual
core 3GHz running Linux 3.2.24, as well as on a smartphone
with a 1GHz CPU running Android 2.3. In particular, we
measure the number of query buckets that the three systems
can process per second.

323

Table 3: Browsing activity of clients on a given day. Noisy counts are given for each bucket.
Date 0 1∼10 11∼20 21∼50 51∼100 101∼200 201∼500 501∼1000 >1000 Total

Jan 27 123 47 27 43 8 0 0 1 1 250
searches Jan 28 102 51 43 44 12 8 -2 2 -1 259
made Jan 29 80 82 39 33 19 3 0 1 -1 256

Jan 27 101 3 9 10 21 20 56 21 8 249
webpages Jan 28 76 9 6 20 14 32 60 27 11 255
visited Jan 29 45 13 7 14 24 42 61 43 13 262

unique Jan 27 98 31 26 63 28 3 -1 -3 3 248
websites Jan 28 77 32 39 70 28 5 -1 -1 2 251
visited Jan 29 45 49 43 83 37 6 1 0 1 265

Table 2: Queries used in our deployment.
Query # buckets Type

Extensions/Apps installed 46.5K String
Websites visited 400K String
Product keywords used for search 400K String
searches made (daily) 9 Numeric
webpages visited (daily) 9 Numeric
unique websites visited (daily) 9 Numeric

The client microbenchmark is written in JavaScript. We
measure two types of clients: the Google Chrome browser on
the Linux machine and the WebKit browser on the smart-
phone. Table 1 shows, not surprisingly, that encryption at
the client in SplitX is three or more orders of magnitude
faster than that in PDDP and Akkus et al. SplitX is also
extremely efficient for decryption at the client. PDDP and
Akkus et al.’s systems are not designed to provide anonymity
and unlinkability for query requests; thus, they do not need
decryption at the client.

The server microbenchmark is written in Java and run on
the Linux machine. Table 1 shows, again not surprisingly,
that SplitX’s crypto operations at the server are four or more
orders of magnitude faster than the other systems.

7.3 System Overheads
To illustrate SplitX’s performance gains and show the

scalability of these systems, we compare SplitX with PDDP
and Akkus et al. in terms of their bandwidth and computa-
tional overheads at the aggregator, which is the bottleneck of
private analytics systems. We modeled a scenario, in which
query answers are received from 50K clients for a query with
a varying number of buckets from 100 to 500K. The band-
width overhead at the aggregator is related to the number
of messages received and the length of each received mes-
sage. The computational overhead is the time required for
the aggregator to obtain the aggregate result by joining or
decrypting all received answer messages (including the client
answers as well as the noisy answers).

Figures 9 and 10 show the aggregator’s bandwidth and
computational overheads, respectively. Akkus et al.’s sys-
tem achieves its performance gains primarily by limiting the
number of buckets that a client reports (i.e., A) to a small
fixed value. In contrast, PDDP reports every bucket value
like SplitX.

Regarding bandwidth, SplitX is similar to Akkus et al.
with A=1, and one and two orders of magnitude more effi-
cient than Akkus et al. with A=10 and A=100, respectively.
Compared to PDDP, SplitX is at least two, and often three
orders of magnitude more efficient.

Regarding computation, SplitX is more than three orders

Table 4: Top 15 most visited websites and most used
extensions/apps by the clients.

Website
Noisy count

Type
of clients

www.google.com 148 Website
www.facebook.com 144 Website
www.mturk.com 137 Website
www.youtube.com 127 Website
www.amazon.com 118 Website
www.surveymonkey.com 61 Website
www.imdb.com 52 Website
www.linkedin.com 50 Website
www.google.co.in 43 Website
www.ebay.com 40 Website
www.ehow.com 39 Website
www.reddit.com 34 Website
www.huffingtonpost.com 34 Website
www.yelp.com 33 Website
www.thefreedictionary.com 29 Website

Gmail 158 App
Youtube 148 App
Google Drive 81 App
AdBlock 39 Extension
Angry Birds 26 App
Turkopticon 25 Extension
Adblock Plus 20 Extension
Google Chrome to Phone 16 Extension
Reddit Enhancement Suite 14 Extension
IDM Integration 14 Extension
Google Calendar 14 App
LastPass 13 Extension
Poppit 12 App
Adblock for Youtube 11 Extension
Entanglement 11 App

of magnitude more efficient than Akkus et al.’s system even
with A=1. SplitX is over five orders of magnitude more
efficient than PDDP.

7.4 Deployment
Before we deployed SplitX at scale, we first tested it on a

set of local machines. Since we had access to the data on the
local machines, we knew the true answers of the clients run-
ning on those local machines. In doing so, we could verify
the correctness of SplitX. To further demonstrate the fea-
sibility, we then deployed SplitX across 416 unique clients
via friends and Amazon Mechanical Turk (AMT). Our ex-
periment lasted during January 21-31, 2013. There were
between 225 and 313 active clients each day. Table 2 lists
the queries we issued throughout our experiment. For string
queries, we obtained their respective bucket values from 1)
Chrome Web Store, 2) Alexa, and 3) a set of product de-
scriptions gathered from the Amazon, shopping.com, and

324

Google product APIs. For our queries, we used the privacy
parameter ǫ=5, which for our client population generates
around 16 noisy answers per query, and produces a normal
distribution with the standard deviation σ=2, such that the
noise in each bucket is within 2, 4, and 6 with probabilities
of 68%, 95%, and 99.7%, respectively [9]. Note that in a
commercial analytics setting with far more clients, a smaller
ǫ would be used, leading to more noise being added. The
increased noise would give clients better privacy without af-
fecting the accuracy of the aggregate result, because it would
be relatively small compared to the number of clients.

Table 3 shows the clients’ browsing activity. Many clients
were fairly active, having made up to 50 searches, browsed
more than 50 webpages, and visited up to 100 unique web-
sites on a day. Table 4, interestingly, reflects our AMT-
based user population. Besides popular websites and apps
one would normally expect, mturk.com has the third high-
est count among websites, and Turkopticon, an extension
for feedback on AMT requesters, has the sixth highest count
among extensions and apps.

7.5 Lessons Learned
While our experience with gathering user aggregates was

positive, two lessons are worth mentioning. First, for the
browsing activity query, we were not initially sure what
ranges to set for the buckets. To avoid making multiple“end-
to-end” (analyst to client) queries, we developed a protocol
whereby the aggregator examines received bucket counts,
merges buckets with low counts, and re-requests new noisy
bucket counts from the mixes. This approach is both faster
than re-querying clients, and avoids differential privacy leak-
age to the analyst. This protocol is not further discussed for
lack of space.

Second, we found that querying for product-related search
terms did not yield meaningful results. There are probably
multiple reasons: the vocabulary was too big, the number of
product-related searches was too small, and the vocabulary
consisted of single terms rather than phrases. For queries
like this, it would be more useful if the system could discover
the appropriate vocabulary, rather than the analyst having
to select it in advance. This is a topic for future research.

8. RELATED WORK
There is a massive literature on database privacy that

assumes a trusted database, including [11,22,31] (see [16] for
a survey). SplitX, by contrast, prevents any single system
component (except for the user’s own device) from viewing
individual user data.

A number of systems utilize the XOR operation [8,29,33],
or matrix multiplication [21] to achieve low-cost anonymiza-
tion without public-key operations. These systems, however,
support applications other than distributed differential pri-
vacy, and cannot be directly used.

Other systems target gathering data from distributed users
in an anonymous and privacy-preserving way, but without
using differential privacy. Applebaum et al. [5] uses a two-
server architecture, in which one server provides anonymity
to participants and obliviously blinds keys, and the other
server aggregates blinded keys’ values. The goal of prevent-
ing participants from learning other participants’ keys cre-
ates a need for strong crypto operations, causing large over-
head to each participant and preventing scalability in our
setting. Anonygator [25] assumes that the content of the

data collected is not going to leak the privacy of users. Sim-
ilarly, P3 [23] requires an algorithm to determine which data
would be safe to contribute a priori. Both of these systems
also assume that the users are using an anonymity network
to hide the source identity. In contrast, SplitX provides users
with differential privacy guarantees that are independent of
the content of messages.

A number of prior systems provide differential privacy in
distributed settings. Some of these systems rely on complex
crypto operations at the clients, causing high overheads [13].
To reduce this complexity, others deploy servers to distribute
keys [26, 28]. The key distribution, however, suffers from
client churn, which is inevitable in large-scale environments,
rendering these systems unsuitable for our purposes. To deal
with client churn, and still provide differential privacy in
such environments, Hardt et al. [20] utilize two honest-but-
curious servers, which cooperatively obtain the noisy aggre-
gate result after the clients add noise. Unfortunately, these
systems [20, 26, 28] allow a single answer by a single mali-
cious client to pollute the query result substantially, whereas
SplitX defeats this attack via duplicate detection.

P4P [10] prevents malicious clients from polluting the re-
sult with relatively efficient zero-knowledge proofs. How-
ever, this scheme is still computationally too costly to be
practical in a commercial setting. In a more efficient way,
PDDP [9] and Akkus et al. [4] prevent such malicious clients
via buckets, similar to SplitX. In PDDP, one honest-but-
curious proxy adds differentially private noise blindly. How-
ever, the proxy always knows which clients answer which
analysts’ queries, breaking unlinkability. Letting all clients
answer all queries solves this problem, but this approach
becomes unscalable and impractical very quickly. Akkus et
al. [4] overcome this problem by utilizing the publisher (i.e.,
analyst for web analytics) as the proxy. Both systems, how-
ever, still require public-key crypto operations; thus, they
are not nearly as scalable as SplitX.

Some systems store user data in an encrypted form and
perform queries over that data [24, 27, 30]. These systems
have different goals than SplitX. In particular, they produce
exact results, allowing a malicious analyst to perform queries
revealing individual user data. By contrast, SplitX produces
differentially private results.

9. CONCLUSION AND FUTURE WORK
We designed and built SplitX, a system for distributed

differential privacy, that is typically two to three orders of
magnitude more efficient in bandwidth, and from three to
five orders of magnitude more efficient in computation than
previous comparable systems. We believe that this brings us
one step closer to the goal of a practical and widely deployed
private analytics system. SplitX assumes an honest-but-
curious but nevertheless realistic trust model, and can scal-
ably accommodate a large number of analysts, each working
with different client segments. However, there are still sig-
nificant research problems that need to be solved.

First of all, we would like to better explore the space of
defending against a malicious aggregator. We should explore
methods to make it harder for the aggregator to link clients
and analysts, even under the assumption that the malicious
aggregator can operate fake clients (see §5.3). We should
also better understand the cost and effectiveness of these
attacks and defenses, and analyze their security properties.

Currently, we cannot use SplitX in cases where the ana-

325

lysts do not know in advance the strings they wish to use
as bucket values in string queries (see §7.5). A system that
could automatically discover and report string values while
still providing differential privacy guarantees would be valu-
able. This system could be used, for instance, in a search
setting where the analyst cannot predict in advance what
users may search for.

Finally, it is common in analytics systems that user data
is constantly changing. As a result, it is necessary that ana-
lysts repeat the same query, e.g., daily or weekly. We would
like to develop mechanisms that, if possible, minimize the
theoretical privacy loss as defined by differential privacy, and
if not possible, at least practically minimize the real risk
of privacy loss. Two simple examples of such mechanisms
would be to have clients refrain from answering a repeated
query if the answer has not been changed, and have the sys-
tem refrain from reporting results if too few clients answer.

10. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers and our shep-

herd, Nina Taft, for their insightful comments. We also
thank Sebastian Probst Eide, Alexey Reznichenko, and Nan
Zheng for their valuable feedback on drafts of this work.
We acknowledge Saikat Guha who suggested the bandwidth
optimization scheme. Finally, we would like to thank the
volunteers for anonymously helping us exercise our system.

11. REFERENCES
[1] Apache Thrift. http://thrift.apache.org/.

[2] Directive 2009/136/EC of the European Parliament
and of the Council. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:

0011:0036:en:PDF.

[3] Web Tracking Protection. http://www.w3.org/
Submission/web-tracking-protection/.

[4] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and
J. Gehrke. Non-tracking web analytics. In CCS, 2012.

[5] B. Applebaum, H. Ringberg, M. J. Freedman,
M. Caesar, and J. Rexford. Collaborative,
Privacy-Preserving Data Aggregation at Scale. In
Privacy Enhancing Technologies, 2010.

[6] M. Backes, A. Kate, M. Maffei, and K. Pecina.
ObliviAd: Provably Secure and Practical Online
Behavioral Advertising. In IEEE Symposium on
Security and Privacy, 2012.

[7] C. Castelluccia and A. Narayanan. Privacy
considerations of online behavioural tracking. In
European Network and Information Security Agency
(ENISA), 2012.

[8] D. Chaum. The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceability. J.
Cryptology, 1(1):65–75, 1988.

[9] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke.
Towards Statistical Queries over Distributed Private
User Data. In NSDI, 2012.

[10] Y. Duan, J. Canny, and J. Z. Zhan. P4P: Practical
Large-Scale Privacy-Preserving Distributed
Computation Robust against Malicious Users. In
USENIX Security Symposium, 2010.

[11] C. Dwork. Differential Privacy. In ICALP, 2006.

[12] C. Dwork. Differential Privacy: A Survey of Results.
In TAMC, 2008.

[13] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our Data, Ourselves: Privacy Via
Distributed Noise Generation. In EUROCRYPT, 2006.

[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating Noise to Sensitivity in Private Data
Analysis. In TCC, 2006.

[15] J. Freudiger, N. Vratonjic, and J.-P. Hubaux. Towards
Privacy-Friendly Online Advertising. In W2SP, 2009.

[16] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu.
Privacy-preserving data publishing: A survey of recent
developments. ACM Comput. Surv., 42(4), 2010.

[17] S. Goldwasser and S. Micali. Probabilistic Encryption
and How to Play Mental Poker Keeping Secret All
Partial Information. In STOC, 1982.

[18] S. Goldwasser and S. Micali. Probabilistic Encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.

[19] S. Guha, B. Cheng, and P. Francis. Privad: Practical
Privacy in Online Advertising. In NSDI, 2011.

[20] M. Hardt and S. Nath. Privacy-aware personalization
for mobile advertising. In CCS, 2012.

[21] S. Katti, J. Cohen, and D. Katabi. Information Slicing:
Anonymity Using Unreliable Overlays. In NSDI, 2007.

[22] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-Diversity: Privacy Beyond
k-Anonymity. In ICDE, 2006.

[23] A. Nandi, A. Aghasaryan, and M. Bouzid. P3: A
Privacy Preserving Personalization Middleware for
Recommendation-based Services. In HotPETS, 2011.

[24] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In SOSP, 2011.

[25] K. P. N. Puttaswamy, R. Bhagwan, and V. N.
Padmanabhan. Anonygator: Privacy and Integrity
Preserving Data Aggregation. In Middleware, 2010.

[26] V. Rastogi and S. Nath. Differentially private
aggregation of distributed time-series with
transformation and encryption. In SIGMOD, 2010.

[27] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song,
and A. Perrig. Multi-Dimensional Range Query over
Encrypted Data. In IEEE Symposium on Security and
Privacy, 2007.

[28] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-Preserving Aggregation of
Time-Series Data. In NDSS, 2011.

[29] E. G. Sirer, S. Goel, M. Robson, and D. Engin.
Eluding carnivores: file sharing with strong
anonymity. In ACM SIGOPS European Workshop,
2004.

[30] D. X. Song, D. Wagner, and A. Perrig. Practical
Techniques for Searches on Encrypted Data. In IEEE
Symposium on Security and Privacy, 2000.

[31] L. Sweeney. k-Anonymity: A Model for Protecting
Privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[32] V. Toubiana, A. Narayanan, D. Boneh,
H. Nissenbaum, and S. Barocas. Adnostic: Privacy
Preserving Targeted Advertising. In NDSS, 2010.

[33] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Dissent in Numbers: Making Strong
Anonymity Scale. In OSDI, 2012.

326

