
ORIGINAL ARTICLE

‘‘SPOCU’’: scaled polynomial constant unit activation function

Jozef Kisel’ák1,2 • Ying Lu3 • Ján Švihra4 • Peter Szépe5 • Milan Stehlı́k2,6,7

Received: 15 February 2019 / Accepted: 11 July 2020 / Published online: 25 July 2020

� The Author(s) 2020

Abstract

We address the following problem: given a set of complex images or a large database, the numerical and computational

complexity and quality of approximation for neural network may drastically differ from one activation function to another.

A general novel methodology, scaled polynomial constant unit activation function ‘‘SPOCU,’’ is introduced and shown to

work satisfactorily on a variety of problems. Moreover, we show that SPOCU can overcome already introduced activation

functions with good properties, e.g., SELU and ReLU, on generic problems. In order to explain the good properties of

SPOCU, we provide several theoretical and practical motivations, including tissue growth model and memristive cellular

nonlinear networks. We also provide estimation strategy for SPOCU parameters and its relation to generation of random

type of Sierpinski carpet, related to the [pppq] model. One of the attractive properties of SPOCU is its genuine normal-

ization of the output of layers. We illustrate SPOCU methodology on cancer discrimination, including mammary and

prostate cancer and data from Wisconsin Diagnostic Breast Cancer dataset. Moreover, we compared SPOCU with SELU

and ReLU on large dataset MNIST, which justifies usefulness of SPOCU by its very good performance.

Keywords Activation function � SPOCU � SELU � ReLU � Cancer discrimination � Percolation

Mathematics Subject Classification 60K35 � 82B43 � 92B20

1 Introduction

Neural computing and activations in neural networks are

multidisciplinary topics, which range from neuroscience to

theoretical statistical physics. Also, importantly enough,

one of the most important theoretical and practical topics in

neural networks and neural computing is choice of the

appropriate activation function. Activation function and its

nonlinear ability represent core of the neural networks,

both deep and shallow, with various architectures. In

standard problems with a reasonable nonlinearity, the sig-

moidal function is well justified; however, one faces the

inverse problem of specification of the underlying

& Milan Stehlı́k

Milan.Stehlik@jku.at

Jozef Kisel’ák

jozef.kiselak@upjs.sk

Ying Lu

ylu1@stanford.edu

Ján Švihra

svihra@jfmed.uniba.sk

Peter Szépe

peter.szepe@atlas.sk

1 Institute of Mathematics, Faculty of Science, P.J.Šafárik

University in Košice, Kosice, Slovak Republic

2 Linz Institute of Technology (LIT) and Department of

Applied Statistics, Johannes Kepler University in Linz, Linz,

Austria

3 School of Medicine, Stanford University, Stanford, USA

4 Department of Urology, Jessenius Faculty of Medicine,

Comenius University Bratislava, 03659 Martin, Slovak

Republic

5 Department of Pathological Anatomy, University Hospital

Martin, Kollárova 2, 036 59 Martin, Slovak Republic

6 Department of Statistics, University of Valparaı́so,

Valparaı́so, Chile

7 Department of Statistics and Actuarial Science, The

University of Iowa, Iowa City, USA

123

Neural Computing and Applications (2021) 33:3385–3401

https://doi.org/10.1007/s00521-020-05182-1 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2749-5990
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05182-1&domain=pdf
https://doi.org/10.1007/s00521-020-05182-1

parameters; otherwise, network may perform slowly.

Recently, several papers related to making a more adequate

activation function have appeared, mainly comparing

activation functions on large datasets. To illustrate some of

important contributions, the influence of the activation

function in the convolutional neural network (CNN) model

is studied in [24], improving a ReLU activation by con-

struction of a novel surrogate. Theoretical analysis about

gradient instability as well as the fundamental explanation

for the exploding/vanishing gradient and the performances

of different activation functions are given in [13].

The main contribution of this paper is the construction

and testing of novel scaled polynomial constant unit

(SPOCU) activation function. Such a novel activation

function relates to complexity patterns through phe-

nomenon of percolation, and thus, it can overcome already

introduced activation functions, e.g., SELU and ReLU. In

statistical physics and mathematics, percolation theory

describes the behavior of a network when nodes or links

are removed, or complex patterns are embedded to learning

process. Thus, SPOCU well contributes to fill the gap in the

theories and it is ‘‘picking up’’ the appropriate properties

for activation function directly from training of classifica-

tion on complex patterns, e.g., cancer images. Such efforts

can contribute to many applications. One example is the

generation of the artificial networks applied in the field of

the Touring pattern generators networks, since they require

the two-layer coupling (two ‘‘diffusion’’ mechanisms

having different diffusion coefficients) of resistor cou-

plings. Turing patterns are nonlinear phenomena which

appear in the reaction–diffusion systems based on the

memristive cell. For Turing patterns in the simplest

memristive cellular nonlinear networks (MCNNs), see [2],

where it is proposed a new MCNN model consisting in a

two-dimensional array of cells made by only two compo-

nents: a linear passive capacitor and a nonlinear active

memristor. In fact, cellular nonlinear networks are per-

fectly suited to fit the structure of reaction–diffusion sys-

tems, since they can be used to map partial differential

equations [8]. MCNNs are intrinsically related to percola-

tion; link to this relation is outlined in Sect. 3; for more,

see, e.g., Chapter 18 in [6].

The paper is organized as follows. In Sect. 2.1, we

introduce random fractal construction useful for our pur-

poses. We give an overview of the problem of generating

of random type of Sierpiński carpet, related to the [pppq]

model introduced by [9]. We emphasize importance of

using Kronecker product, which gives a simple and quick

possibility to generate random fractals. We also present

several useful results concerning fractal geometry and

‘‘average’’ fractal dimension. In Sect. 3, we deal with

percolation threshold, which is an important instrument for

SPOCU. By using of direct approach and logistic

regression, we derive estimations for this critical value in

the case of specific random models. In Sect. 4, we use basic

generator from random Sierpiński carpet as a new activa-

tion function SPOCU for self-normalizing neural network.

We study general activation functions, but with main focus

on SPOCU. As normalizing the output of layers is known

to be a very efficient way to improve the performance of

neural networks, we can conclude that SPOCU activation

function behaves very well. Further we provide theoretical

justification of the fact that SPOCU outperforms both

SELU and ReLU in several desirable properties, necessary

for the correct classification of complex images. The

SPOCU also gets uniformly better performance with

respect to generic properties on large MNIST database.

This is well illustrated in the last Sect. 6 on image-based

discrimination for cancer diagnostics. Therein we apply the

developed methodology to cancer discrimination problems;

namely, we consider image-based discrimination for

mammary cancer versus mastopathy and benign prostatic

hyperplasia or normal prostate versus prostate cancer. A

comparison of SPOCU, ReLU and SELU on the Wisconsin

Diagnostic Breast Cancer (WDBC) dataset justifies

SPOCU qualities. Technicalities and proofs are given in

‘‘Appendix A.’’

2 Random fractals, Kronecker product
and fractal dimension

Many of fractal constructs have random analogues; see

Chapter 15 in [6]. Here, we start with the natural motiva-

tion of the random Sierpiński carpet (SC). We introduce

simple computation of matrix expressing the form of

fractals, including random SC.

2.1 Random Sierpiński carpet

The Sierpiński carpet (SC) is the fractal, which can be

constructed by taking square ½0; 1�2, dividing it into nine

equal squares of side length 1/3 and removing the central

square. This procedure is then repeated for each of the

eight remaining squares and iterated infinitely many times.

The carpet is the resulting fractal and has Hausdorff

dimension df ¼ ln 8= ln 3. We can equivalently construct

this fractal by using string rewriting beginning with a cell 1

and iterating the rules

0 !
0 0 0

0 0 0

0 0 0

2

6

4

3

7

5
; 1 !

1 1 1

1 0 1

1 1 1

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

:

3386 Neural Computing and Applications (2021) 33:3385–3401

123

Here, cell 0 indicates the absence of generated square and

cell 1 indicates its presence. Its random variation (random

SC) can be defined by using of iterating the rules

0 !
0 0 0

0 0 0

0 0 0

2

6

4

3

7

5
; 1 !

B1;pn B2;pn B3;pn

B4;pn 0 B5;pn

B6;pn B7;pn B8;pn

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

ð1Þ

beginning again with a cell 1, whereas Bi;pn ; i ¼ 1; . . .; 8 are

mutually independent random variables generated in nth

iteration by the uniformly distributed random variable Ui;n

and prescribed value pn 2 ½0; 1� as

Bi;pn :¼
1; if Un[pn;

0; otherwise:

�

Thus, the random numbers result from a Bernoulli distri-

bution by usage of the inversion method. Notice that [pppq]

model, [9], is included to such construction. This notation

naturally generalizes it into ½p. . .pq� model and also

½p1. . .pn�1pn� model.

Remark 2.1 Notice also that in [5, Example 1.1] the

authors consider also a generalization of Mandelbrot’s

percolation process, but this approach is different from our

(depending on the set of indices generating zeros and ones).

With probability p, they generate zero 3� 3 matrix or

matrix with zero element in the middle with probability

1� p.

2.2 Fractals induced by Kronecker product

The Kronecker product (also direct matrix product) is a

special case of the tensor product. It is denoted by � and is

an operation on two matrices of arbitrary size resulting in a

block matrix; see ‘‘Appendix A.’’ The multiple Kronecker

product is defined in a recursive fashion as

br

i¼1
Ai :¼ br�1

i¼1
Ai

� �

� Ar, where b1

i¼1
Ai ¼ A1. Some

fractals, see examples in ‘‘Appendix A.2,’’ can be repre-

sented by multiple Kronecker product, [20, chap. 9]. In

[19], two methods for generating images of (approxima-

tions to) fractals and fractal-like sets are given: iterated

Kronecker products and iterated matrix-valued homomor-

phisms. For random alternative, we use the notation

Mp1;...;pr
r :¼br

i¼1
Xpi ;

where r is natural number and

Mp1;...;p1
r :¼b1

i¼1
Xpi ;

if it is infinity and Xpi means matrix involving values

generated by B�;pi . (This can be naturally generalized for

suitable random variable.) Obviously Mp1;...;pr
r can be

understood as an approximation of Mp1;...;p1
r . From a

dynamical point of view, random fractal can be understood

as follows

Y0 :¼ 1 ð2Þ

Yn :¼ Yn�1bXpn ; n� 1: ð3Þ

Since we assume mutual independence, we have

E Yn½ � ¼ E Yn�1bXpn

� �

¼ E Yn�1½ �bE Xpn

� �

¼bn

j¼0
E Xpj

� �

;

see [7]. We also define matrix Mp
r :¼ Mp;...;p

r , i.e., Mp
r ¼

br

i¼1
Xpi ; pi ¼ p for all i 2 f1; . . .; rg.

Lemma in ‘‘Appendix A.5’’ gives us the mean value of

retained elements since we know that in the deterministic

case the SC has exactly 23n elements in n�th iteration.

Therefore, the joint pdf of elements of Yn is 23n ~pn and we

have Nn ¼ 23n ~pn retained elements in average, which

reduces to ð8pÞn for case pj ¼ p. From that, we see the

balance threshold pb\
1
8
for which convergence to zero in

average is obtained. (Similar argumentation can be done

for modified SC with 9 random elements, and in the results,

23n has to be replaced by 33n.)

2.3 Geometry and dimension

Now we describe the model geometrically, similarly as [3].

Let A0 ¼ ½0; 1�2, and for 1� i; j� 3, let

Bij ¼ i�1
3
; i
3

� �

� j�1
3
; j
3

� �

. Moreover, we let

A1 ¼
[

i; j

Y
ij
1 ¼ 1

Bij:

To define A2, we repeat the last construction. More gen-

erally, we let Bn
ij ¼ i�1

3n
; i
3n

� �

� j�1
3n

; j

3n

� �

for 1� i; j� 3n and

An ¼
[

i; j

Y ij
n ¼ 1

Bn
ij:

Clearly fAkgk2N is a decreasing sequence of compact sets

so the limit A1 ¼ Tn2N An. The next theorem follows

directly from the average number of retained elements Nn

and the fact that we obtain a branching process in which

each particle has on the average 8p offspring.

Theorem 2.2 If pj does not change in time (pj ¼ p), then

A1 6¼ ; with positive probability if and only if p[1
8
.

This is closely related to the estimation of fractal

dimension; see [27]. Here, we deal with ‘‘average’’ fractal

dimension or fractal dimension in mean. We already have

Nn the average count of retained elements in An and denote

as sn the scale in nth step, i.e., in our case sn ¼ 3n. Now

Neural Computing and Applications (2021) 33:3385–3401 3387

123

using least square fitting on data fln si; lnNig, we obtain the
slope of the curve

ln ¼
n
Pn

i¼1 ðln si lnNiÞ �
Pn

i¼1 lnsi
Pn

i¼1 lnNi

n
Pn

i¼1 ln
2si �

Pn
i¼1 lnsi

� �2
; ð4Þ

whereas maxf0; slng is the nth approximation of fractal

dimension.

Theorem 2.3 If A1 6¼ ;, then
dimBðA1Þ ¼ dimHðA1Þ ¼ max

0;
ln 8

ln 3
þ 6

ln 3
lim
n!1

X

n

i¼1

ð2i� n� 1Þ
X

i

j¼1

ln pj

 !

nðn� 1Þðnþ 1Þ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

:

For constant case pj ¼ p, we have PðiÞ ¼ ip, and thus,

dimBðA1Þ ¼ dimHðA1Þ ¼ max
lnð8pÞ
ln 3

; 0
n o

; see also Fig. 2.

Naturally for p ¼ 1, this is in coincidence with the standard

(deterministic) Sierpiński carpet. See Fig. 1 where the

results of ½p1p2p3p4� model are plotted. Now denote as p

sequence (vector) of probabilities fpjgj2N. Notice that it

need not to be a probability vector since we do not require
P1

j¼1 pj ¼ 1. Consider now the case ‘‘Appendix A.4,’’ then

dimHðA1Þ ¼ max
lnð8 ffiffiffiffiffiffiffi

PQ
p Þ
ln 3

; 0

�

:

Fig. 2 plots the condition PQ[1
64
;, i.e., a hyperbola,

which determines whether A1 has a positive measure. This

means that if P is small, Q can ‘‘save’’ the situation.

Theorem 2.4 For any vector of probabilities p

0� dimBðA1Þ� df ¼
ln 8

ln 3
:

Moreover, for every value from this interval there exist a

vector of probabilities p.

Examples in ‘‘Appendix A.3’’ show that constant vector

and nonconstant vector may lead to a similar fractal

dimension. Now we introduce assertion related to expected

matrix.

Theorem 2.5

Mp1;...;pr
r

�

�

�

�

F
¼

ffi

Y

r

i¼1

tr X	
pi
Xpi

� �

s

:

For specific case of Bj;pi and under the assumption of

independence, we have

Z ¼ Mp1;...;pr
r

�

�

�

�

2

F
¼
Y

r

i¼1

X

8

j¼1

B2
j;pi

¼
Y

r

i¼1

X

8

j¼1

Bj;pi ¼
Y

r

i¼1

Binð8; piÞ:

Therefore, E½Z� ¼ Qr
i¼1 8pi;; in particular, it is ð8pÞr for

pi ¼ p (which means that for at least small pi the proba-

bility of Z value is close to zero). We have estimated this

probability Pall of event that matrix Mp
r is zero matrix

(empty) and probability Pcol of event that at least one

column of matrix Mp
r is zero. Probability Pall, i.e., that Z is

zero value is given by inclusion–exclusion principle. Both

are specific percolations, especially the latter, since we can

reach the bottom. The results are summarized in Table 6.

3 Percolation threshold

Percolation itself is a physically well-motivated phe-

nomenon and it is intrinsically related to memristor models

(see [22]); thus, it can be well involved in neural modeling

of memristive cellular nonlinear networks (MCNNs). The

combination of percolation theory and Monte Carlo simu-

lation provides a possible solution to model the ion

migration and electron transport in an amorphous system

even from the hardware perspective. The most known

mathematical percolation model is to take some regular

lattice, e.g., a square lattice N � N, and make it into a

random network by randomly ‘‘occupying’’ sites (vertices)

or bonds (edges) with a statistically independent random

variables. For example, each of the lattice sites is either

occupied (with probability p) or vacant (with probability

1� p). This is commonly known as the site percolation

problem. There exists also a related bond percolation

problem. It can be posed in terms of whether or not the

edges between neighboring sites are open or closed. It is

(a) (0.9, 0.7, 0.8, 0.7) .6, 0.6, 0.6, 0.6)(b) (0 (c) (0.5, 0.7, 0.8, 0.7)

Fig. 1 Random SC for

½p1p2p3p4� model

3388 Neural Computing and Applications (2021) 33:3385–3401

123

well known that there is a well-defined range of p for which

the probability of percolation decreases rapidly from one to

zero. It is centered on a critical value pc called percolation

threshold. Percolation clusters become self-similar pre-

cisely at the threshold density pc for sufficiently large

length scales, entailing the following asymptotic power

laws: MðLÞ
 Ldf at p ¼ pc and for large probe sizes,

L ! 1, i.e., fractal dimension df (e.g., Hausdorff dimen-

sion dimH) describes the scaling of the mass M of a critical

cluster within a distance L (it characterizes how the mass

M(L) changes with the linear size L of the system); see

[21]. This follows from the following idea: If we consider a

smaller part of a system of linear size bLðb\1Þ, then

M(bL) is decreased by a factor of bd , i.e.,

MðbLÞ ¼ bdMðLÞ. For example, for Sierpinski Gasket we

have functional equation MðL=2Þ ¼ MðLÞ=3 yielding

solution MðLÞ ¼ ALd
f
with df ¼ lnð3Þ= lnð2Þ:

Depending on the method for obtaining the random

network, usually one distinguishes between the site per-

colation threshold and the bond percolation threshold.

More general systems may have several probabilities p1,

p2, etc., and the transition is characterized by a critical

surface or a manifold. In the classical systems, it is

assumed that the occupation of a site or bond is completely

random. This is the so-called Bernoulli percolation. Here,

we want to emphasize that random SC does not fall under

them. In 1974, Mandelbrot [14] introduced a process in

½0; 1�2 which he called ‘‘canonical curdling.’’ It is nothing

else than the model from Remark ‘‘Appendix A.1’’ with

Bpij;n ¼ Bp: In paper [3], the authors study the connectivity

or ‘‘percolation’’ properties of such sets. They showed

there is a probability pc 2 ð0; 1Þ so that if p\pc then the set

is ‘‘dustlike,’’ whereas if p� pc opposing sides are

connected with positive probability. To be precise, we

introduce here the exact definition of pc. Let

Bn ¼ fx 2 An : xcan be connected to½0; 1�
� f0gand½0; 1� � f1gby paths inAng;

B1 ¼ Tn2N Bn and let X ¼ fB1 6¼ ;g. Notice that when X
occurs there is a up-to-down crossing of ½0; 1�2. Finally,
pc ¼ infpfPðXÞg. For example, from [3] we have that

Mandelbrot percolation is pc\0:9999. Here, we have to

emphasize that for approximation of A1 we cannot use this

kind of definition. We just set pc as the 1
2
threshold of

probability PðBn ¼ ;Þ.

3.1 Estimation of a single parameter p

Here, we consider ½p. . .p� model. We have used the flow

through the generated lattice (represented by the matrix)

and use a recursive depth first search (checking whether or

not the flow makes it to the bottom of the grid). The graphs

of a simulated data possess a sigmoidal shape which sig-

nals the presence of a threshold. Moreover, we have cate-

gorical dependent variable represented by the outcomes

pass/fail. These facts indicate that in order to determine the

threshold, we fit a logistic model (log-odds)

ln
p

1� p

�

¼ b0 þ b1x;

to simulated data and the threshold value for p (or 1� p) is

estimated such that p ¼ 1
2

implies 0 ¼ b0 þ b1x, and

therefore, estimation of pc equals � b0
b1
, i.e., minus quotient

of the intercept and the regression coefficient. Notice that

similarly the authors in [1] used logistic function to find

threshold in order to examine the effects of mixed dispersal

(a) dimH(A∞) depending on p. (b) dimH(A∞) depending on P and Q.

Fig. 2 Fractal dimension of A1

Neural Computing and Applications (2021) 33:3385–3401 3389

123

strategies on the spatial structure of a population consid-

ering a spatially explicit birth–death model. A discussion

on how different sigmoidal models can be applied to pre-

dict the percolation threshold of electrical conductivity for

ethylene vinyl acetate (EVA) copolymer and acrylonitrile

butadiene (NBR) copolymer conducting composite systems

filled with different carbon fillers is given in [17]. On the

other hand, an experiment using the phenomenon of per-

colation has been conducted to demonstrate the imple-

mentation of neural functionality in [16], where the curve

was found to be almost exactly described by the sigmoid

form.

In Table 1, we plot the results for specific r, see also

Figs. 3 and 4, where the simulations of percolation prob-

ability for given p are shown. The logistic model seems to

fit the curve very well. However, for r ¼ 1 (important

generator case) we can explicitly find the analytic form of

the model function. By going through all the possibilities,

we can directly find the polynomial

1� pð Þ8þ8 1� pð Þ7pþ 20 1� pð Þ6p2 þ 20 p3 1� pð Þ5

þ 10 p4 1� pð Þ4þ2 p5 1� pð Þ3;

which can be simplified to

PðpÞ ¼ ð1� pÞ3 ð1� pÞ5 � 2ð1� pÞ4 þ 2
h i

: ð5Þ

The threshold value PðpÞ ¼ 1
2
is given approximately as

0.341. See Fig. 3 for excellent fitting and notice that logit

model fits very closely with the value 0.3498.

3.2 Estimation of two parameters p and q

Here, we assume two parameters p and q, e.g., we

consider [pq] or [pppq] model. A binomial logistic model

ln
p

1� p

�

¼ b0 þ b1xþ b2y ð6Þ

is again fitted to simulated data and the threshold values for

p (or 1� p) and q are estimated such that p ¼ 1
2
implies

relationship 0 ¼ b0 þ b1pc þ b2qc, and therefore, estima-

tion of pc and qc is given by this (part of) line. This is

obviously a different result, since we have infinitely many

solutions unless some suitable constraint p ¼ f ðqÞ (such

that the intersection of the constraint curve and this line is

nonempty) is not given. Notice that even for a given con-

straint it can happen that more than one solution is

achieved. If we, for example, assume that f ¼ id, i.e.,

p ¼ q, we obtain one-parameter estimation model from the

previous section. Table 2 plots the results for constraint

p ¼ 2q; see also Figs. 5 and 6. For example, for [pq] model

we obtained that b0 ¼ 6:621; b1 ¼ �5:725; b2 ¼ �5:455,

for [ppq] model we obtained that b0 ¼ 9:053; b1 ¼
�8:188; b2 ¼ �5:492 and for [pqq] model we obtained

b0 ¼ 9:159; b1 ¼ �5:798; b2 ¼ �7:970. Here, we have to

emphasize the difference between [ppq] and [pqq] where

for the latter constraint p ¼ 2q is not suitable, since no

solution exists.

Notice, however, that if we add a mixed term into

regression

ln
p

1� p

�

¼ b0 þ b1xþ b2yþ b3xy; ð7Þ

then, e.g., for [pqq] model we obtained that b0 ¼
4:827; b1 ¼ 1:241; b2 ¼ �1:734 and b3 ¼ �10:745 which

yields hyperbolic curve. For better graphical illustration of

the difference (this difference is not obvious from standard

point of view), see Fig. 7. From a qualitative point of view,

there exists the difference, e.g., nonexistence of solution

for the mixed case even if such a solution exists for the

linear case.

4 Self-normalizing neural network

Self-normalizing neural networks (SNNs) are expected to

be robust to perturbations and not to have high variances in

their training errors. SNNs push neuron activations to zero

mean and unit variance, thereby leading to the same effect

as batch normalization, which enables to learn many layers

in a robust way. Here, we introduce our SNNs based on

percolation function (5).

For a neural network with activation function Ac, we

consider two consecutive layers connected by a weight

matrix W. We assume that all activations xi of the lower

layer have the same mean E½xi� ¼ l and variance V½xi� ¼
r2 and are mutually independent. A single activation y ¼
f ðzÞ in the higher layer has network input z ¼ wTx, mean

E½y� ¼ ~l and variance V½y� ¼ ~r2. From this, we can obtain

E½z� ¼Pn
i¼1 wiE½xi� ¼ l

Pn
i¼1 wi :¼ lx and V½z� ¼

Pn
i¼1 w

2
iV½xi� ¼ r2

Pn
i¼1 wi :¼ r2 s2: Central limit theo-

rem implies under the regularity conditions that

z
Nðlx; r2s2Þ, i.e., the pdf of z has the form

f ðzÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2s2
p e

�ðz�lxÞ2
2r2s2 . Consider now vector mapping g

that maps mean and variance of the activations from one

layer to mean and variance of the activations in the next

Table 1 Estimation of percolation threshold pc for given r

r 1 2 3

est. pc 0.3498 0.5246 0.6195

3390 Neural Computing and Applications (2021) 33:3385–3401

123

layer, i.e., g1ðl; r2Þ ¼ ~l and g2ðl; r2Þ ¼ ~r2. The following

definition recalls a self-normalizing neural network.

Definition 4.1 (Self-normalizing neural net) ([11]) We say

that a neural network is self-normalizing if it possesses a

mapping g : X ! X for each activation y that maps mean

and variance from one layer to the next and has a stable and

attracting fixed point depending on x and s2 in

X :¼ ½lmin; lmax� � ½r2min; r2max�. Furthermore, gðXÞ � X.

When iteratively applying the mapping g, each point within

converges to this fixed point.

pc = 0.3509

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

P
e

rc
o

la
ti
o

n
 P

ro
b

a
b

ili
ty

(a) Estimated logit model. (b) Exact polynomial function.

Fig. 3 Percolation probability

fitted to simulated data, r ¼ 1

pc = 0.52455

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

P
e

rc
o

la
ti
o

n
 P

ro
b

a
b

ili
ty

(a) r = 2

pc = 0.61946

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

P
e

rc
o

la
ti
o

n
 P

ro
b

a
b

ili
ty

(b) r = 3

Fig. 4 Percolation probability as

a function of parameter p

Table 2 Estimation of percolation threshold pc and qc for a given

model with constraint p ¼ 2q

Model [pq] [ppq] [pqq] [pqq]mix

est. pc 0.7833 0.828 0.9362 0.9833

est. qc 0.3917 0.4140 0.4681 0.4917

Fig. 5 Percolation probability for [pq] model

Neural Computing and Applications (2021) 33:3385–3401 3391

123

For arbitrary activation function Ac(z), the mapping g is

given by the relations

~lðl;x; r2; s2; aÞ ¼ Ef ½Acðz; aÞ� ð8Þ

and

~r2ðl;x; r2; s2; aÞ ¼ Ef ½Ac2ðz; aÞ� � ~l: ð9Þ

Obviously moments are given by integrals Ef ½Acðz; aÞ� ¼
R

R
f ðzÞAcðz; aÞ dz and Ef ½Ac2ðz; aÞ� ¼

R

R
f ðzÞAc2ðz; aÞ dz.

[11] proposed x ¼ 0 and s2 ¼ 1 for all units in the higher

layer for the weight initialization. If the Jacobian of g has a

norm smaller than 1 at the fixed point, then it is a con-

traction mapping and the fixed point is stable. The goal is

to find parameters a 2 A such that fixed point [0, 1] does

exist and that jjJf ½0; 1�jj\1: This problem is formulated as

to find a 2 A such that

0 ¼ Ef ðz;0;1Þ½Acðz; aÞ�;
1 ¼ Ef ðz;0;1Þ½Ac2ðz; aÞ�;

ð10Þ

jjJjj\1, where (here we omit parameters for the sake of

short notation)

J11 ¼ Ef ½z AcðzÞ�;

J12 ¼ Ef
z2 � 1

2
AcðzÞ

� �

;

J21 ¼ Ef ½z Ac2ðzÞ� � 2Ef ½AcðzÞ�Ef ½z AcðzÞ�;

J22 ¼ Ef
z2 � 1

2
Ac2ðzÞ

� �

� 2Ef ½AcðzÞ�Ef
z2 � 1

2
AcðzÞ

� �

;

which can be simplified to

J ¼
Ef ½z AcðzÞ� Ef

z2 � 1

2
AcðzÞ

� �

Ef ½z Ac2ðzÞ� Ef
z2 � 1

2
Ac2ðzÞ

� �

2

6

6

6

4

3

7

7

7

5

:

Thus, we can formulate the following problem. For a given

activation function Ac, find a 2 A such that Eq. (10) and

jjJ jj\1 hold. The next theorem follows directly from the

Hölder inequality for p ¼ 1 and q ¼ 1: It gives sufficient

condition for a stable and attracting fixed point [0, 1].

Theorem 4.2 If parameters a for activation function

Ac(x) are such that Eq. (10) are satisfied and

sup
x2R

fjAcðxÞj;Ac2ðxÞg\
ffiffiffiffiffi

pe

2

r

1

1þ ffiffiffi

e
p � 0:7801;

or

sup
x2R

fjAcðxÞjg þ sup
x2R

fAc2ðxÞg\
ffiffiffi

p

2

r

� 1:2533;

then the mapping g has a stable and attracting fixed point

[0, 1].

5 Scaled polynomial constant unit (SPOCU)
activation function

Here, we define ‘‘scaled polynomial constant unit’’

(SPOCU) as the novel, well-motivated activation function.

We also study its properties. The SPOCU activation

function is given by

sðxÞ ¼ a h
x

c
þ b

�

� a hðbÞ ð11Þ

where b 2 ð0; 1Þ; a; c[0 and

Fig. 6 Percolation probability for [ppq] model

Fig. 7 Relationship between p and q for logit (6) and (7), respectively

3392 Neural Computing and Applications (2021) 33:3385–3401

123

hðxÞ ¼
rðcÞ; x� c;

rðxÞ; x 2 ½0; cÞ;
0; x\0;

8

>

<

>

:

ð12Þ

with rðxÞ ¼ x3ðx5 � 2x4 þ 2Þ and 1� c\1. (We admit

c goes to infinity with rðcÞ ! 1.) Clearly s is continuous

sð0Þ ¼ 0 and s0ðxÞ ¼ a
c
h0 x

c
þ b

� �

. Notice that for c ¼ 1 one

has h0ð1þÞ ¼ h0ð1�Þ ¼ 0 and h0ð0þÞ ¼ h0ð0�Þ ¼ 0 which

implies that s0 is continuous too. (This is not true for the

second derivative.) For c ¼ 1, the range of function s is

Hs ¼ ½sð�b cÞ; sðð1� bÞ cÞ� ¼ ½�a rðbÞ; að1� rðbÞÞ�; rðbÞ
2 ½0; 1�.

5.1 Theoretical comparison

Let us first have a look at SNN of SPOCU. We selected

c ¼ 1 and c ¼ 1, and we computed numerically a ¼
2:1959; b ¼ 0:6641 from Eq. (10), whereas Jacobi matrix

is

J ¼ 0:8603 � 0:0098

�0:0269 0:1001

� �

with jjJjj\1: See Fig. 8 for the sigmoidal function s with

this choice of parameters. Notice that for these parameters

the conditions in Theorem 4.2 are not satisfied, which

confirms that theorem does not present a necessary con-

dition. Nevertheless, we have been able to find one triple of

parameters which yields SNN derived from SPOCU.

Notice that SNNs cannot be derived, e.g., with ReLU,

sigmoid units, tanh units and leaky ReLU. This gives an

advantage of SPOCU over ReLU, but not necessarily over

SELU. The same is true for another desired property. If

activation function is nonlinear, then a two-layer neural

network can be proved to be a universal function approx-

imator; see [4]. Gradient-based training methods tend to be

more stable if activation function has finite range, which is

true only for SPOCU. Further properties that give SPOCU

an advantage over ReLU and SELU are continuous dif-

ferentiability, which enables gradient-based optimization

methods, and the fact that it approximates identity near the

origin, i.e., s0ð0Þ ¼ a
c
r0ðbÞ ¼ 1. Then the neural network

will learn efficiently when its weights are initialized with

small random values; otherwise, a special care must be

used when initializing the weight; see [23]. In SPOCU

case, this is thanks to additional free parameter. Mono-

tonicity is the only common property for all three activa-

tion function. Thus, the error surface associated with a

single-layer model is guaranteed to be convex; see [26].

Table 3 summarizes the comparison. As we can see,

SPOCU has six out of seven desirable properties. In con-

trast, ReLU and SELU share only two out of seven and

three out of seven good properties, respectively.

5.2 Experimental comparison

Here, we show that SPOCU significantly outperforms other

two activation functions on simple two-layer DNN model.

We have used source code from iris_dnn.R, [28]. For

illustration, we use a small dataset, Edgar Anderson’s Iris

Data (iris), well-known built-in dataset in stock R for

machine learning. We have built two-layer DNN model,

and subsequently, it was tested. First we transformed the

data (into interval ½�b c; ð1� bÞ c�) by mapping

c x�min x
max x�min x

� b c with parameters given above, in order to

capture polynomial (sigmoidal) influence. Then the dataset

is split into two parts for training and testing. Then the

training set was used to train the model. See Fig. 9 for the

results about the data loss in train set and the accuracy in

test compared to SELU and ReLU. For both criteria,

SPOCU outperformed both SELU and ReLU.

5.3 SPOCU with c = ¥

Here, we illustrate SPOCU with c ¼ 1. Thus we consider

activation function (11) for c ¼ 1. For such SPOCU, the

range is infinite; thus, the training is generally more effi-

cient because pattern presentations significantly affect most

of the weights. The only property we lose here is mono-

tonicity. We computed numerically a ¼ 3:0937; b ¼
0:6653; c ¼ 4:437 from equations (10); moreover, Jacobi

matrix is

0:8331 � 0:1169

0:0874 0:5334

� �

:

See Fig. 8 for the graph of function S with these parame-

ters. See Fig. 10 for the results, the data loss in train set and

the accuracy in test compared to SELU and ReLU. Here,

the loss for SPOCU is uniformly better (moreover it falls

much faster) with respect to losses of both SELU and

ReLU. Moreover, also SPOCU accuracy is better uni-

formly until 950 steps; then, it may be a bit worse.

We also validated SPOCU at the MNIST database

(Modified National Institute of Standards and Technology

database, [12]) that is a large database of handwritten digits

that is commonly used for training various image pro-

cessing systems. It is also widely used for training and

testing in the field of machine learning. Each image in the

dataset has dimensions of 28x28 pixels and contains a

centered, grayscale digit. The model will take the image as

input, and it will output one of the ten possible digits (0

through 9). There are 70000 images in the data. It contains

60000 training images and 10000 testing images. We

normalized inputs in order to better facilitate training of the

network. We have worked within keras and tensor-

flow libraries (free and open-source software libraries for

Neural Computing and Applications (2021) 33:3385–3401 3393

123

dataflow and differentiable programming). A sequential

model is used, where each layer has exactly one input

tensor and one output tensor. A 2D convolution layer (e.g.,

spatial convolution over images) was used. This layer

creates a convolution kernel that is convolved with the

layer input to produce a tensor of outputs. A pooling layer

MaxPooling2D followed by regularization layer

Dropout was also used. Between the dropout and the

(a) Activation function s. (b) Activation function S.

Fig. 8 SPOCU activation

functions

Table 3 Comparison of the properties for three activation functions

Act. func. Range Smooth. Nonlin. Monot. Monot. deriv. Id. near 0 SNN

SPOCU ½�arðbÞ; að1� rðbÞÞ� C1 Yes Yes No Yes Yes

ReLU ½0;1Þ C0 Piecewise lin. Yes Yes No No

SELU ð�ka;1Þ C0 Yes Yes No No Yes

Fig. 9 Loss and accuracy for transformed dataset iris and activation function s

3394 Neural Computing and Applications (2021) 33:3385–3401

123

dense layers, there is the Flatten layer, which converts

the 2D matrix data to a vector. For results, see Figs. 11

and 12. Clearly SPOCU overcomes SELU in loss and

ReLU in both criteria. Moreover, SPOCU and SELU

reached comparable accuracy.

6 Application: cancer tissue discrimination

Developing of the algorithmic methods which can assist in

cancer risk assessment is an important topic nowadays.

Discrimination between mammary cancer and mastopathy

tissues plays a crucial role in a clinical practice; see [9].

Noninvasive techniques may produce generally an inverse

problems, e.g., estimating a Hausdorff fractal dimension

from boundary of examined tissue; see [10]. Main problem

here can be formulated as follows: ‘‘How can be cancer

tissue discriminated from healthy tissue?’’

Here, we study benign prostatic hyperplasia (BPH) and

normal prostate vs. prostate cancer (PC). We consider the

standard coloring of images, by hematoxylin and eosin, and

we consider two magnifications, namely 100� and 200�
of images; see Figs. 13. Moreover, carcinoma of the breast

and mastopathy are given in Fig. 14.

Here, we have used simple estimators, i.e., reduced

estimators NðkÞ ¼ ðk3pÞn, expressing retained elements in

average, of k3n ~pn with k ¼ 2 for standard SC and k ¼ 3 for

modified (9 elements instead of 8) from Sect. 2.2. This

implies p̂ ¼ N
1
n=3k, where N is the number of 1’s in mea-

sured matrix of data. Since we set the resolution of the

figures to 729� 729 and 729 ¼ 36, we have n ¼ 6. In our

case, modified SC is suitable, since otherwise data implies

estimation of p over 1. We had to use only two values—

binarization, i.e., each dark pixel was converted to 1, and if

it is clear, it was converted to 0. If the picture is not in

black and white, it was converted according to the formula

ðRþ Gþ BÞ=3[0:5: We see the results in Table 4. One

can see statistically significant difference between cancer

and noncancer images, whether we take probability

parameter p or fractal dimension dimH . Moreover, we can

also see that the package fractaldim cannot catch these

differences. This makes this result very valuable.

Notice that we cannot use directly more parameters

without obtain more information than resulting matrix.

This is quite interesting since it seems to happen that one

parameter is not enough, i.e., dimension of the problem is

more than one. We have also estimated values for ½p � q�
model based on theory of [9] (notice that 0 and 1 has

opposite meaning in their work). The obtained results

confirmed the same. We illustrate this for both CA and

MA; we obtained estimations p̂ ¼ 0:24447 and q̂ ¼
0:11515 for CA and p̂ ¼ 0:1934 and q̂ ¼ 0:09675 for MA.

An alternative from the perspective of inter-patient vari-

ability can be a multifractality (see [15]). Development of

such kind of techniques for analysis of several slices from

3D tissue body will be of interest for complicated cases of

the National Institutes of Health (NIH) databases, like [18].

This will be a valuable future research direction.

Fig. 10 Loss and accuracy for dataset iris and activation function S

Neural Computing and Applications (2021) 33:3385–3401 3395

123

6.1 The diagnosis of breast tissues (M =
malignant, B = benign).

Here, we compare modified SPOCU, ReLU and SELU on

the Wisconsin Diagnostic Breast Cancer (WDBC) dataset

[25]. We measured their classification test accuracy and

loss. The data, obtained from the University of Wisconsin

Hospitals, Madison from Dr. William H. Wolberg, contain

measurements on cells in suspicious lumps in a women’s

breast. In total, 357 observations (62.7%) indicate the

absence of cancer cells, and 212 (37.3%) show the pres-

ence of cancerous cell. The percent is unusually large; it

does not represents a typical medical analysis distribution.

Typically, we will have a considerable large number of

cases that represents negative vs. a small number of cases

that represents positives (malignant tumors). Data include

Fig. 11 Loss

Fig. 12 Accuracy

3396 Neural Computing and Applications (2021) 33:3385–3401

123

Fig. 13 PC versus BPH

Fig. 14 CA versus MA

Neural Computing and Applications (2021) 33:3385–3401 3397

123

ten real-valued features computed for each cell nucleus.

We deliberately focus only on variables of measured data

related to fractal properties (the mean and ‘‘worst’’ or lar-

gest (mean of the three largest values) of fractal dimension

we computed for each image—fdm and fdw), since cancer

tissue discrimination is our ultimate goal. In Fig. 15, one

can see relation between fdm and fdw; this confirms that

the clustering is by no means unambiguous. We built

DNNs with keras with 3 hidden layers. The number of

instances is 569, and we use 80% training samples. In

Fig. 16 and Table 5, we can see the results. SPOCU

achieved the best results, almost 80% of absolute accuracy

which means 96� 99% performance with respect to

benchmark developed in [9].

7 Conclusion

We introduced novel percolation-based activation function

SPOCU which is flexible, and in several important setups,

it overcame classical SELU or ReLU approaches. We

successfully validated SPOCU on both large and small

Table 4 Estimation of p and

dimH
Estimate PC 100 PC 200 BPH 100 BPH 200 CA MA

p̂ 0.2702146 0.2711992 0.2319127 0.222787 0.3097428 0.3296161

^dimH
1.808917 1.812227 1.669782 1.63324 1.933188 1.989792

Fractaldim 1.57355 1.570568 1.592969 1.553224 1.495512 1.502383

Fig. 15 fdm versus fdw for

Fig. 16 Loss and accuracy

Table 5 Comparison of three activation function at the final epoch

Loss Val_loss Acc Val_acc

SPOCU 0.1629 0.1537 0.7868 0.7807

SELU 0.1836 0.1891 0.7363 0.7018

RELU 0.2249 0.2321 0.6374 0.6140

3398 Neural Computing and Applications (2021) 33:3385–3401

123

datasets, including Wisconsin Diagnostic Breast Cancer

(WDBC) dataset and large dataset MNIST. We also pro-

vided careful theoretical comparisons of SPOCU to SELU

or ReLU competitors.

Acknowledgements Open access funding provided by Johannes

Kepler University Linz. We acknowledge LIT-2016-1-SEE-023 pro-

ject ‘‘Modeling complex dependencies: how to make strategic mul-

ticriterial decisions?/mODEC’’ and FONDECYT Regular N1151441.

Jozef Kisel’ák was partially supported by the Slovak Research and

Development Agency under the contract No. APVV-16-0337 and No.

APVV-17-0568. We acknowledge the professional support of Editor-

in-Chief Professor John MacIntyre, the unknown Associate Editor and

Referees for their constructive comments.

Compliance with ethical standards

Conflict of interest On behalf of all authors, I hereby attest that there

are no conflicts of interest regarding financial relationships, intel-

lectual property or any point mentioned under the publishing ethics.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Appendix A: Auxiliaries and proofs

Remark ‘‘Appendix A.1.’’ Naturally model (1) can be

generalized also in the following sense:

1 !
Bp13;n Bp23;n Bp33;n

Bp12;n Bp22;n Bp32;n

Bp11;n Bp21;n Bp31;n

2

6

4

3

7

5
;

i.e., probabilities vary not only in time n, but also in the

‘‘space’’ position for fixed time. Notice that p9;n ¼ 1

implies deterministic value 0 in the middle, which covers

our model.

Example ‘‘Appendix A.2.’’ The fractal given byb1
i¼1

X

can be thus represented by the ‘‘Matrix’’ X. We list several

known fractals.

a) Cantor set—X ¼ ð1; 0; 1ÞT
b) Sierpiński triangle (Pascal’s triangle mod 2)—

X ¼ 1 1

0 1

� �

c) Moiré-like pattern—X ¼ 1 0

0 1

� �

Let A be an m� n matrix and B be an r � s matrix. The

Kronecker product of them is defined as the ðm rÞ � ðn sÞ
matrix

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2

6

6

4

3

7

7

5

:

It is associative ðA� BÞ � C ¼ A� ðB� CÞ, distributive
ðAþ BÞ � C ¼ A� Cþ B� C, but noncommutative.

Example ‘‘Appendix A.3.’’ One can show that

1. dimHðA1Þ ¼ ln 8
ln 3

� 1:8928, if pj ¼ e
� 1

j2 , which equals

case pj ¼ 1,

2. dimHðA1Þ ¼ 8 ln 8�3
8 ln 3

� 1:5515, if pj ¼ e� cos4 j, which

equals case pj ¼ e�
3
8,

3. dimHðA1Þ ¼ 2 ln 8�1
2 ln 3

� 1:4377, if pj ¼ e� sin2 j, which

equals case pj ¼ e�
1
2,

4. dimHðA1Þ ¼ ln 8�1
ln 3

� 0:9826, if pj ¼ e�
j

jþ1, which

equals case pj ¼ e�1,

5. dimHðA1Þ ¼ ln 8�2
ln 3

� 0:0723, if pj ¼ e�2,

6. dimHðA1Þ ¼ 0, if pj ¼ e�j.

7. dimHðA1Þ ¼ 0, if we have negative binomial distribu-

tion, i.e., for j� 1

pj ¼
jþ r � 2

j� 1

�

qj�1ð1� qÞr for r 2 N; q 2 ð0; 1Þ:

Example ‘‘Appendix A.4.’’

pj ¼
P; jis even:

Q; jis odd;

�

where 0\P;Q\1. Since

6
X

n

i¼1

ð2i� n� 1Þ
X

i

j¼1

ln pj

 !

¼ cPn lnPþ cQn lnQ;

where cPn ¼ cQn ¼ n
2
ðn2 � 1Þ if n is odd and cPn ¼ n

2
ðn2 þ

2Þ; cQn ¼ n
2
ðn2 � 4Þ if n is even

Lemma ‘‘Appendix A.5.’’ For Xj
pi
¼ Bj;pi , ~pn ¼

Qn
j¼1 pj

and n� 1, we have

(I)

Yn ¼
0; if in resulted deterministic matrix is value 0

B�; ~pn otherwise

�

Neural Computing and Applications (2021) 33:3385–3401 3399

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

(II) for k 2 N, the k�th moment is

E ðYÞkn
h i

¼ 0; if in resulted deterministic matrix is value 0

~pn otherwise

�

Proof of Theorem 2.3 From (4), we have for PðiÞ :¼
ln ~pi\0 and skðnÞ :¼

Pn
i¼1 i

k

sln ¼
3 ln 2ðn s2ðnÞ � s21ðnÞÞ þ n

Pn
i¼1 i PðiÞ � s1ðnÞ

Pn
i¼1 PðiÞ

ln 3ðn s2ðnÞ � s21ðnÞÞ

¼ ln 8

ln 3
þ n

Pn
i¼1 PðiÞði� ðnþ1Þ

2
Þ

n2ðn�1Þðnþ1Þ
12

ln 3
;

which yields the result. h

Proof of Thoerem 2.4 Case when at least pj ¼ 0 is trivial.

Otherwise, it is sufficient to show that there exist n 2 N

such that
Pn

i¼1ð2i� n� 1ÞPðiÞ� 0. Indeed, clearly

PðiÞ\0 (for some i) and 2i� n� 1� 0 for every i� nþ1
2

� �

.

The second part follows directly from the relation-

ship p ! lnð8pÞ
ln 3

, which maps bijectively [1/8, 1] to

½0; ln 8= ln 3�. h

The next lemma is a generalization of the following

mixed-product property ðA� BÞðC� DÞ ¼ ðACÞ � ðBDÞ,
a proof of which is obvious.

Lemma ‘‘Appendix A.6.’’ If Ai;Bi; i ¼ 1. . .r, are

matrices of such size that one can form the matrix products

AiBi, then

�r
i¼1Ai

� �

�r
i¼1Bi

� �

¼ �r
i¼1AiBi

� �

ðA:1Þ

holds.

Proof of Theorem 2.5 Frobenius norm of the m� n matrix

can be defined in various ways:

kAkF ¼

ffi

X

m

i¼1

X

n

j¼1

jaijj2
v

u

u

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðA	AÞ
p

¼

ffi

X

minfm; ng

i¼1

r2i

v

u

u

t ;

where ri are the singular values of A and where A	 denotes
the conjugate transpose of A. Directly from the distribu-

tivity over Kronecker product ðA� BÞ	 ¼ A	 � B	, we

have

Mp1;...;pr
r

�

�

�

�

F
¼

ffi

tr ðMp1;...;pr
r Þ	Mp1;...;pr

r

� �

q

¼
ffi

tr br

i¼1
Xpi

� �	
br

i¼1
Xpi

� �

q

¼
ffi

tr br

i¼1
X	

pi
br

i¼1
Xpi

� �

r

:

Now from the generalization of the mixed-product property

(A. 1) and the fact that the trace of a Kronecker product of

square matrices is given by trðA� BÞ ¼ trA trB, we have

Mp1;...;pr
r

�

�

�

�

F
¼

ffi

tr br

i¼1
X	

pi
Xpi

� �

r

¼
ffi

Y

r

i¼1

tr X	
pi
Xpi

� �

s

:

h

See Table 6.

Table 6 Estimation of

probabilities Pall;Pcol for given

1� p and r with 105 (104 for

r[5) repetitions

1� pjr 1 2 3 4 5 6 7

0.9 0.4327 0.6764 0.8129 0.8971 0.9396 0.9666 0.9840

0.9854 0.9996 1 1 1 1 1

0.8 0.1651 0.3080 0.4217 0.5205 0.6011 0.6647 0.7300

0.9136 0.9932 0.9994 1 1 1 1

0.7 0.0584 0.1117 0.1631 0.2113 0.2563 0.3022 0.3480

0.7799 0.9549 0.9905 0.9973 0.9995 1 1

0.6 0.0163 0.0334 0.0508 0.0653 0.0820 0.0981 0.1160

0.6042 0.8484 0.9404 0.9776 0.9903 0.9956 0.9984

0.5 0.0035 0.0073 0.0119 0.0156 0.0194 0.0221 0.0340

0.4134 0.6617 0.8074 0.8910 0.9398 0.9622 0.9800

0.4 0.0007 0.0012 0.0018 0.0028 0.0033 0.0041 0.0060

0.2620 0.4624 0.6055 0.6994 0.7784 0.8455 0.8851

0.3 0.00001 0.0001 0.0002 0.0003 0.0003 0.0006 0.0010

0.1353 0.2560 0.3592 0.4497 0.5255 0.5995 0.6542

3400 Neural Computing and Applications (2021) 33:3385–3401

123

References

1. Achter JD, Webb CT (2006) Pair statistics clarify percolation

properties of spatially explicit simulations. Theor Popul Biol, 69

(2): 155 – 164, ISSN 0040-5809. https://doi.org/10.1016/j.tpb.

2005.07.003. URL http://www.sciencedirect.com/science/article/

pii/S0040580905000997

2. Bucolo M, Buscarino A, Corradino C, Fortuna L, Frasca M

(2019) Turing patterns in the simplest mcnn. Nonlinear Theory

Appl IEICE 10(4):390–398. https://doi.org/10.1587/nolta.10.390

3. Chayes JT, Chayes L, Durrett R (1988) Connectivity properties of

mandelbrot’s percolation process. Probab Theory Related Fields.,

pp 307–324. https://doi.org/10.1007/BF00319291 ISSN

1432-2064

4. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314. https://

doi.org/10.1007/BF02551274 ISSN 0932-4194; 1435-568X/e

5. Dekking FM, Meester RWJ (1990) On the structure of mandel-

brot’s percolation process and other random cantor sets. J Stat

Phys 58(5):1109–1126. https://doi.org/10.1007/BF01026566

ISSN 1572-9613

6. Falconer K (2013) Fractal geometry: mathematical foundations

and applications. Wiley. ISBN 9781118762868. URL https://

books.google.at/books?id=XJN7AgAAQBAJ

7. Ghazal GA, Neudecker H (2000) On second-order and fourth-

order moments of jointly distributed random matrices: a survey.

Linear Algebra Appl, 321 (1): 61 – 93. Eighth special issue on

linear algebra and statistics. ISSN 0024-3795. https://doi.org/10.

1016/S0024-3795(00)00181-6. URL http://www.sciencedirect.

com/science/article/pii/S0024379500001816

8. Goras L, Chua LO (1995) Turing patterns in CNNS. II. Equa-

tions and behaviors. IEEE Trans Circuits Syst I Fund Theory

Appl 42(10):612–626

9. Hermann P, Mrkvička T, Mattfeldt T, Minárová M, Helisová K,

Nicolis O, Wartner F, Stehlı́k M (2015) Fractal and stochastic

geometry inference for breast cancer: a case study with random

fractal models and quermass-interaction process. Stat Med 34

(18): 2636–2661, ISSN 1097-0258. https://doi.org/10.1002/sim.

6497. URL http://dx.doi.org/10.1002/sim.6497. sim.6497

10. Kisel’ák J, Pardasani KR, Adlakha N, Stehlı́k M, Agrawal M

(2013) On some probabilistic aspects of diffusion models for

tissue growth. Open Stat Probab J 5: 14–21. ISSN 1876-5270/e

11. Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-

normalizing neural networks. CoRR. arxiv:1706.02515

12. LeCun Y, Cortes C (2010) MNIST handwritten digit database.

URL http://yann.lecun.com/exdb/mnist/

13. Liu X, Zhou J, Qian H (2019) Comparison and evaluation of

activation functions in term of gradient instability in deep neural

networks. In: 2019 Chinese control and decision conference

(CCDC), pp 3966–3971

14. Mandelbrot BB (1974) Intermittent turbulence in self-similar

cascades: divergence of high moments and dimension of the

carrier. J Fluid Mech 62(2):331–358. https://doi.org/10.1017/

S0022112074000711

15. Nicolis O, Kisel’ák J, Porro F, Stehlı́k M (2017) Multi-fractal

cancer risk assessment. Stoch Anal Appl 35(2):237–256

16. Pignon D, Parmiter PJM, Slack JK, Hands MA, Hall TJ, van

Daalen M, Shawe-Taylor J (Feb 1996) Sigmoid neural transfer

function realized by percolation. Opt Lett 21(3):222–224.

10.1364/OL.21.000222. http://ol.osa.org/abstract.cfm?URI=ol-

21-3-222

17. Rahaman M, Aldalbahi A, Govindasami P, Khanam NP, Bhan-

dari S, Feng P, Altalhi T (2017) A new insight in determining the

percolation threshold of electrical conductivity for extrinsically

conducting polymer composites through different sigmoidal

models. Polymers, 9 (10), ISSN 2073-4360. https://doi.org/10.

3390/polym9100527. URL http://www.mdpi.com/2073-4360/9/

10/527

18. Roth HR, Farag A, Turkbey EB, Lu L, Liu J, Summers RM. Nih

pancreas-ct dataset. https://doi.org/10.7937/K9/TCIA.2016.

tNB1kqBU

19. Shallit J, Stolfi J (1989) Two methods for generating fractals.

Comput Gr 13 (2): 185–191. ISSN 0097-8493. https://doi.org/10.

1016/0097-8493(89)90060-5. URL http://www.sciencedirect.

com/science/article/pii/0097849389900605

20. Steeb W-H (2011) The nonlinear workbook. Chaos, fractals,

cellular automata, genetic algorithms, gene expression program-

ming, support vector machine, wavelets, hidden Markov models,

fuzzy logic with C??, Java and SymbolicC?? programs. 5th

ed. World Scientific, Hackensack, NJ. ISBN 978-981-4335-77-5/

hbk; 978-981-4335-78-2/pbk; 978-981-4335-79-9/ebook

21. Strelniker YM, Havlin S, Bunde A (2009) Fractals and Percola-

tion. Springer, New York, pp 3847–3858. ISBN 978-0-387-

30440-3. https://doi.org/10.1007/978-0-387-30440-3_227

22. Sun W, Gao B, Chi M et al (2019) Understanding memristive

switching via in situ characterization and device modeling. Nat

Commun 10(2):3453

23. Sussillo D, Abbott LF (2014) Random walk initialization for

training very deep feedforward networks. Neural Evolutionary

Computing. arXiv:1412.6558v3

24. Wang Y, Li Y, Song Y, Rong X (2020) The influence of the

activation function in a convolution neural network model of

facial expression recognition. Appl Sci 10 (5). URL https://www.

mdpi.com/2076-3417/10/5/1897

25. Wolberg WH, Street WN, Mangasarian OL (1992) Breast cancer

wisconsin (diagnostic) data set. UCI Mach Learn Repos.http://

archive.ics.uci.edu/ml/

26. Wu H (2009) Global stability analysis of a general class of dis-

continuous neural networks with linear growth activation func-

tions. Inf Sci 179 (19): 3432 – 3441, ISSN 0020-0255. https://doi.

org/10.1016/j.ins.2009.06.006. URL http://www.sciencedirect.

com/science/article/pii/S0020025509002539

27. Xue D, Zhu Y, Zhu G-X, Yan X (1996) Generalized kronecker

product and fractals. https://doi.org/10.1117/12.235499

28. Zhao P (2016) R for deep learning (i). URL https://github.com/

PatricZhao/ParallelR/blob/master/ParDNN/iris_dnn.R

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:3385–3401 3401

123

https://doi.org/10.1016/j.tpb.2005.07.003
https://doi.org/10.1016/j.tpb.2005.07.003
http://www.sciencedirect.com/science/article/pii/S0040580905000997
http://www.sciencedirect.com/science/article/pii/S0040580905000997
https://doi.org/10.1587/nolta.10.390
https://doi.org/10.1007/BF00319291
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF01026566
https://books.google.at/books?id=XJN7AgAAQBAJ
https://books.google.at/books?id=XJN7AgAAQBAJ
https://doi.org/10.1016/S0024-3795(00)00181-6
https://doi.org/10.1016/S0024-3795(00)00181-6
http://www.sciencedirect.com/science/article/pii/S0024379500001816
http://www.sciencedirect.com/science/article/pii/S0024379500001816
https://doi.org/10.1002/sim.6497
https://doi.org/10.1002/sim.6497
http://dx.doi.org/10.1002/sim.6497
http://arxiv.org/abs/1706.02515
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1017/S0022112074000711
http://ol.osa.org/abstract.cfm?URI=ol-21-3-222
http://ol.osa.org/abstract.cfm?URI=ol-21-3-222
https://doi.org/10.3390/polym9100527
https://doi.org/10.3390/polym9100527
http://www.mdpi.com/2073-4360/9/10/527
http://www.mdpi.com/2073-4360/9/10/527
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.1016/0097-8493(89)90060-5
https://doi.org/10.1016/0097-8493(89)90060-5
http://www.sciencedirect.com/science/article/pii/0097849389900605
http://www.sciencedirect.com/science/article/pii/0097849389900605
https://doi.org/10.1007/978-0-387-30440-3_227
http://arxiv.org/abs/1412.6558v3
https://www.mdpi.com/2076-3417/10/5/1897
https://www.mdpi.com/2076-3417/10/5/1897
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
https://doi.org/10.1016/j.ins.2009.06.006
https://doi.org/10.1016/j.ins.2009.06.006
http://www.sciencedirect.com/science/article/pii/S0020025509002539
http://www.sciencedirect.com/science/article/pii/S0020025509002539
https://doi.org/10.1117/12.235499
https://github.com/PatricZhao/ParallelR/blob/master/ParDNN/iris_dnn.R
https://github.com/PatricZhao/ParallelR/blob/master/ParDNN/iris_dnn.R

	‘‘SPOCU’’: scaled polynomial constant unit activation function
	Abstract
	Introduction
	Random fractals, Kronecker product and fractal dimension
	Random Sierpinacuteski carpet
	Fractals induced by Kronecker product
	Geometry and dimension

	Percolation threshold
	Estimation of a single parameter p
	Estimation of two parameters p and q

	Self-normalizing neural network
	Scaled polynomial constant unit (SPOCU) activation function
	Theoretical comparison
	Experimental comparison
	SPOCU with c\eq \infty

	Application: cancer tissue discrimination
	The diagnosis of breast tissues (M = malignant, B = benign).

	Conclusion
	Acknowledgements
	Appendix A: Auxiliaries and proofs
	References

