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Abstract

Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the

search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs

from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech

data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper

presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation

campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with

Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their

start and end times within the appropriate speech file, along with a score value that reflects the confidence given to

the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which

comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation

metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups

took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term

rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search

term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and

in-language/foreign terms).
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Introduction
The enormous amount of information stored in audio

and audiovisual repositories promotes the development of

efficient methods that aim at retrieving the stored infor-

mation. For audio content search, significant research has

been conducted in spoken document retrieval (SDR), key-

word spotting, spoken term detection (STD), and query-

by-example. Spoken term detection aims at finding a list of

terms (composed of individual words or multiple words)

within audio archives, and has been receiving much inter-

est for years from the likes of IBM [1–3], BBN [4], SRI
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andOGI [5–7], BUT [8–10],Microsoft [11], QUT [12, 13],

JHU [14–16], Fraunhofer IAIS/NTNU/TUD [17], NTU

[18, 19], IDIAP [20], etc. In addition, several evaluations

including SDR, STD, and query-by-example STD have

been recently proposed [21–31].

Given the increasing interest in STD evaluations around

the world, we organized an international evaluation of

STD in the context of the ALBAYZIN 2014 evaluation

campaign. This campaign is an internationally open set of

evaluations supported by the Spanish Network of Speech

Technologies (RTTH [32]) and the ISCA Special Interest

Group on Iberian Languages (SIG-IL [33]), which have

been held every 2 years since 2006. The evaluation cam-

paigns provide an objective mechanism to compare differ-

ent systems and are a powerful way to promote research
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on different speech technologies (e.g., speech segmenta-

tion [34], speaker diarization [35], language recognition

[36], query-by-example spoken term detection [37], and

speech synthesis [38] in the ALBAYZIN 2010 and 2012

evaluation campaigns). This year, this campaign has been

held during the IberSPEECH 2014 conference [39].

Introduction to spoken term detection technology

Spoken term detection relies on a text-based input, com-

monly the orthographic transcription of the search term.

Spoken term detection systems are typically composed of

two main stages: indexing by an automatic speech recog-

nition (ASR) subsystem, and then search by a detection

subsystem, as depicted in Fig. 1. The ASR subsystem

decodes the input speech signal in terms of word/subword

lattices. The detection subsystem integrates a term detec-

tor and a decision maker. The term detector searches

for putative detections of the terms in the word/subword

lattices. The decision maker decides whether each detec-

tion is reliable enough to be considered as a hit or

should be rejected as a false alarm (FA). Finally, a tool

provided by the National Institute of Standards and

Technology (NIST) is commonly used for performance

evaluation [40].

There are two main approaches to STD: the word-

based approach [6, 41–45] that searches for terms in the

output of a large vocabulary continuous speech recogni-

tion (LVCSR) system, and the subword-based approach

which searches for subword representations of search

terms within the output of a subword speech recognition

system. The word-based STD approach typically obtains

better performance than the subword-based approach

thanks to the lexical information it employs. However,

the subword-based approach has the unique advantage

that it can detect terms that consist of words that are

not in the recognizer’s vocabulary — out-of-vocabulary

(OOV) terms — whereas the word-based approach

can only detect in-vocabulary (INV) terms. Several

subword unit types have been employed in the subword-

based approach, including word fragments [46], particles

[47, 48], acoustic words [49], graphones [6, 7], multi-

grams [9, 50], syllables [51–53], and graphemes [54],

although phonemes are the most commonly used due

to their simplicity and natural relationship with spoken

languages [41, 55–59]. In order to exploit the relative

advantages of the word and phoneme-based approaches,

it has been proposed to combine these two approaches by

using the word-based approach to detect INV terms and

the subword-based approach to detect OOV terms, e.g.,

[41, 56, 60–64]. A hybrid approach that fuses word

and subword lattices and then searches for both INV

terms and OOV terms in the hybrid lattices has also

been proposed [11, 65]. Another hybrid approach uses

word/subword mixed lexica and language models to gen-

erate hybrid lattices [7, 10, 66]. A recent hybrid approach

employs word confusion networks (WCNs) during ASR

decoding and next incorporates a probabilistic phonetic

retrieval (PPR) framework to deal with OOV terms

[67]. Kaldi STD system [68–70] employs a word-based

approach for term detection and a method based on proxy

words (i.e., replacing the OOV term by the most similar

in-vocabulary term/terms) to detect OOV terms [71].

Spoken term detection under the IARPA BABEL program

and Open KWS

Significant research has been conducted on STD under

the IARPA BABEL program [72]. This program was

born in 2011 and aims at developing fully automatic and

noise-robust speech recognition systems in limited time

(e.g., 1 week) and with limited amount of transcribed

training data, so that they can be applied to any lan-

guage in order to process massive amounts of speech

data recorded in challenging real-world situations. Spo-

ken term detection perfectly fits within the scope of this

program, which includes keyword search algorithms and

low resource languages within its research areas. This

Fig. 1 Standard STD system architecture and evaluation. The standard spoken term detection system architecture and evaluation
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program supports research in the following languages,

corresponding to base period, option period 1, and option

period 2 releases: Cantonese, Pashto, Tagalog, Turkish,

Vietnamese, Assamese, Bengali, Haitian Creole, Lao, Zulu,

Tamil, Kurmanji Kurdish, Tok Pisin, Cebuano, Kazakh,

Telugu, Lithuanian, and Swahili. Since 2013, NIST has

been organizing an annual open STD evaluation called

NIST Open Keyword Search (KWS), which is closely

related to the BABEL program but open to other research

groups besides BABEL participants (more information in

“Comparison to other evaluations” section). In this

section, we will review some relevant results arisen from

research in this framework, which focuses on OOV term

detection, score normalization, and system combination.

The work presented in [73] focused on OOV term

detection from different recognition units (word, syllable,

and word fragment) and two search strategies (whole unit

fuzzy search and phone fuzzy search) from the lattices

obtained during the ASR process. For the phone fuzzy

search, each recognition unit is first split into phones.

Experimental results showed that (1) phone-based search

outperformed the whole unit-based search for OOV

terms, and whole-word search performed the best for

INV terms; (2) the syllable models outperformed the word

fragment models for the phone search; and (3) system

combination from different recognition units and search

strategies performed better than each individual system.

Wang and Metze [74] focused on score normalization

and proposed a term-specific threshold that uses the con-

fidence scores assigned to all the detections of the given

term to compute the final score for each detection.

Karakos et al. [75] presented a new score normalization

approach based on the combination of an unsupervised

linear fit method and a supervised linear model method

(Powell’s method [76]) from several input features such as

posterior probability, keyword length, false alarm proba-

bility, etc.

Chiu and Rudnicky [77] proposed a score normalization

based on word burst (i.e., words of interest that occur near

each other in the speech content) by penalizing the term

detections that do not occur near other detections of the

same term.

Deep neural networks (DNNs) as input for a Hidden

Markov Model (HMM)-Gaussian Mixture Model (GMM)

classifier have also shown their potential [78–81].

Language-independent and unsupervised training-

based approaches have also been considered within this

program aiming at building a system for an unknown

language [82]. The limited data corresponding to some

languages covered in the program (Cantonese, Pashto,

Turkish, Tagalog, Vietnamese, Assamese, Bengali, Haitian

Creole, Lao, and Zulu) were used for system training. The

system is based on multi-lingual bottle-neck DNNs and

Hidden Markov Model Toolkit (HTK) [83] for training

and decoding and the IBM keyword search system for

term detection [84]. Results showed that INV term

performance is good for languages (e.g., Haitian Creole)

whose phonetic structure is similar to that of the

languages used for system training.

Various subword unit types (syllable, phone, grapheme,

and automatically discovered) were investigated in [85] in

the framework of lattice- and consensus network-based

exact match term detection. Experimental results showed

that (1) the automatically discovered units performed the

best in isolation, (2) the combination of all the subword

unit types for detection fusion significantly outperformed

each subword unit type, and (3) fusion of the phone-

and grapheme-based systems performed better than each

individual system.

Lee et al. [86] investigated graph-based re-ranking tech-

niques for scoring detection in STD systems for low-

resource languages (Assamese, Bengali, and Lao). A node

in the graph represents a hypothesized region of the given

term, and connections are created from acoustically sim-

ilar hypothesized regions. The STD system is based on

fuzzy matching and different word/subword units (word,

syllable, morpheme, and phoneme).

Ma et al. [87] proposed a combined approach for

detection re-scoring from linear interpolation of a

rule-based detection re-scoring system, a logistic

regression-based detection re-scoring system, and a

rank learning-based detection re-scoring system. The

detection re-scoring system based on word-burst fea-

tures (e.g., number, strength, and proximity of neighbor

hypothesis, etc.), consensus network features (e.g., pos-

terior probability, number of hit arcs, number of average

arcs per bin, etc.), and acoustic features (e.g., pitch,

number of unvoiced frames, jitter, etc.).

Chiu et al. [88] proposed combining finite state

transducer- and confusion network-based STD systems

from DNN, bottle-neck, and perceptual linear prediction

(PLP) acoustic features.

A novel two-stage discriminative score normaliza-

tion method was presented in [89]. The term detector

employed word lattices obtained from an LVCSR sys-

tem to output term detections. Next, the discriminative

score normalization method relies on a multi-layer per-

ceptron (MLP)-based confidence measure from two novel

features. These novel features are the ranking score, com-

puted as the rank of the posterior probability of the

detection compared to the posterior probability of all the

arcs in the lattice where the detection resides and the rel-

ative posterior probability of the detection compared to

the maximum posterior probability within the arcs in the

lattice where the detection resides. The new confidence

score is then taken by an ATWV-oriented score normal-

ization in the second stage, which optimizes the final score

for the evaluation metric.
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Wegmann et al. [90] presented a system where detec-

tions of several ASR systems were combined. ASR sys-

tems were built from HTK [83] and Kaldi [68] tools and

employed PLP and bottle-neck acoustic features. More

interestingly, this work also made an analysis of the

ATWV performance from different approaches. The first

approach consisted on setting the optimal threshold for

each term from the ground-truth information. This anal-

ysis showed that there are important performance gaps

in ATWV due to the thresholding algorithm employed,

suggesting that a better threshold selection will produce

significant performance gains. The second approach is

based on bootstrapping techniques to show the ATWV

results of randomly selected groups of terms. The differ-

ent distribution of the ATWV performance across the dif-

ferent term groups showed that ATWV heavily depends

on the selected terms, and even that small changes in the

ASR system accuracy can cause large changes in the STD

performance.

Several score normalization and system combination

approaches were presented in [91]. Score normalization

based on term-dependent thresholding, rank normaliza-

tion and mapping back to posteriors, sum-to-one nor-

malization, and machine learning. The term-dependent

thresholding simply re-scores the detection by consider-

ing the confidence scores of all the detections of the given

term in the ATWV formulation. The rank normalization

is based on the false alarm rate for the given term as

score normalization value for each term detection. The

mapping back to posteriors approach relies on the aver-

age posteriors of the detections of all the terms except

that being detected that are ranked in the same position

within the detection list for the given term. The sum-to-

one approach normalizes the score of the detection by the

sum of all the scores of the detections of the given term.

Themachine learning approach is based on a linear model

by applying the Powell’s method [76] to maximize ATWV

performance from several input features (e.g., rank nor-

malization, mapping back to posteriors, term length, etc.).

System combination merged the detections from differ-

ent STD systems that rely on different approaches (e.g.,

GMM-based and DNN-based HMMs) and combined the

detection scores from Powell’s method.

Su et al. [53] proposed syllable-weighted finite state

transducer (WFST) for speech indexing and direct search

on syllable- and word-WFST for term detection. The

word-WFST is obtained by syllable-to-word mapping

from the original syllable-WFST. Experiments showed

that the system combination from word- and syllable-

WFST at detection level significantly outperforms each

individual system.

Chen et al. [92] presented a novel subword unit-based

approach that focused on pronunciation prediction. To

get the optimal set of subword units, the pronunciation

prediction is first based on syllables, which are then con-

verted to a more specific subword units (similar to mor-

phemes), according to a certain lexicon segmentation that

obtains the highest language model score for each pro-

nunciation in the lexicon. For OOV term detection, the

phoneme transcription of the terms is obtained with the

sequitur grapheme-to-phoneme tool [93], which is next

mapped to subword units. The novel subword approach

outperformed the system performance of word-, syllable-,

and phoneme-based units. In addition, system combina-

tion from word, novel subword, syllable, and phoneme

units showed significant performance gains over each

individual system.

Trmal et al. [94] proposed system combination from dif-

ferent ASR systems that employ different configurations

in terms of acoustic features and acoustic models (e.g.,

subspace GMMs (SGMMs), DNNs, and bottle-neck fea-

tures). Kaldi STD system [68–70] was used for term detec-

tion in all the systems. A syllable-based lexicon expansion

was proposed for OOV keyword search. Point process

models (PPMs) were also employed for keyword search.

These are based on whole-word, event-based acoustic

modeling and phone-based search [95, 96]. Since they are

phone based, OOV term detection is not an issue for the

PPM-based STD systems. Experimental results showed

that (1) the combination of PPM-based STD and Kaldi-

based STD effectively improved the STD performance,

and (2) the lexicon expansion generally outperforms the

system performance.

Keyword spotting under the DARPA RATS program

The DARPA Robust Automatic Transcription of Speech

(RATS) program also includes keyword spotting within

its research areas. Different to the BABEL program,

DARPA RATS program mainly focuses on speech recog-

nition under highly noisy communication channels, where

typically speech signals of less than 10 dB are speci-

fied. Two main languages have been employed in this

program: Levantine Arabic and Farsi. For these lan-

guages, significant research has also been carried out in

keyword spotting. In this section, we will try to sum-

marize the most significant research in this program,

which mainly focuses on score normalization and system

combination.

A keyword spotting system was presented in [97] with

a score normalization approach based on the false alarm

probability of the given term. In addition, a white list-

based approach in the ASR system was also presented.

This approach modifies the beam pruning produced

at recognition, by keeping alive (using a wider beam)

those states that form a detection of a term in the

white list. Since the white list contains all the search

terms, all the term detections are very unlikely to be

pruned.
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The system presented in [98] used also the white list

approach presented in [97] and focused on system com-

bination from word lattices and phone confusion net-

works. Both word lattices and phone confusion networks

were generated from different ASR systems that employed

different configurations (Mel-frequency cepstral coeffi-

cient (MFCC), PLP, GMM, SGMM, etc.). Detections of

the different ASR systems were combined using logistic

regression.

Deep neural networks have also been employed for

developing keyword spotting systems under the DARPA

RATS program [99]. In this work, several word- and

subword-based systems were combined with the system

combination approach presented in [91]. A similar work

based on DNNs, GMMs, and convolutional neural net-

works (CNNs) for acoustic modeling and various signal

processing features (standard cepstral and filter-bank fea-

tures, noise-robust features, and MLP features) was pre-

sented in [100]. This employs word- and phone-based

ASR systems to produce a set of term detections that

are next fused with the logistic regression-based approach

presented in [98].

Mangu et al. [101] employed CNNs, DNNs, and GMMs

as acoustic modeling, audio segmentation based on

GMMs and DNNs, word lattices as ASR output, phone-

WFST for keyword search, and system combination. Sys-

tem combination took the output of the different ASR

systems and merged the detections of all the systems.

Detection scores are normalized by the sum of all the

scores of the detections of the given term. Experimental

results showed that (1) CNNs perform very well for key-

word search, (2) audio segmentation plays a very impor-

tant role in keyword search, and (3) system combination

yields significant performance gains.

Seigel et al. [102] employed a system combination

approach based on word and grapheme ASR. Word- and

grapheme-based lattices are first produced and then used

for term search. Conditional random field (CRF) models

are used for detection scoring in a discriminative confi-

dence scoring framework. The input features to the CRF

are related to the lattice information, contextual posterior

features, and unigram prior features.

Mitra et al. [103] focused on system combination

from word lattices. The word lattices are obtained from

different GMM-HMM speech recognition systems that

employ different sets of acoustic features (e.g., PLP,

normalized modulation cepstral coefficients, and mod-

ulation of medium duration speech amplitude), along

with various feature combination and dimensionality

reduction techniques (principal component analysis, het-

eroscedastic linear discriminant analysis, and nonlin-

ear autoencoder network). Experiments showed that

the feature combination (prior combination) and the

detection combination from individual ASR systems

(posterior combination) yield significant performance

gains.

The rest of the paper is organized as follows: the

next section presents the STD evaluation and includes

an evaluation description, the metric used, the database

released for experimentation, a comparison with previous

evaluations, and the participants involved in the evalu-

ation. Next, we present the different systems submitted

to the evaluation. Results along with discussion are pre-

sented in a separate section, and finally conclusions are

presented.

Spoken term detection evaluation

STD evaluation overview

This evaluation involves searching a list of terms within

speech content. Therefore, the evaluation is designed for

research groups working on speech indexing and retrieval

and speech recognition as well. In other words, the STD

evaluation focuses on retrieving the appropriate audio

files, with the occurrences and timestamps, which contain

any of those terms.

The evaluation consists of searching a train-

ing/development term list within training/development

speech data and searching a test term list within test

speech data. The evaluation result ranking is based on

the system performance when searching the test terms

within test speech data. Participants can use the train-

ing/development data for system training and tuning, but

any additional data can also be employed.

Participants could submit a primary system and up to

4 contrastive systems. No manual intervention is allowed

for each system developed to generate the final output

file, and hence all the developed systems must be fully

automatic. Listening to the test data or any other human

interaction with the test data is forbidden before all the

evaluation results in terms of the performance of the sys-

tems in test data (i.e., evaluation result ranking) have been

sent back to the participants. The standard XML-based

format corresponding to the NIST STD 2006 evaluation

[22] has been used for building the system output file.

Evaluation metric

In STD, a hypothesized occurrence is called a detection;

if the detection corresponds to an actual occurrence, it is

called a hit, otherwise it is a false alarm. If an actual occur-

rence is not detected, this is called a miss. The ATWV

proposed by NIST [22] has been used as the main metric

for the evaluation. This metric integrates the hit rate and

false alarm rate of each term into a single metric and then

averages over all the terms:

ATWV =
1

|�|

∑

K∈�

(

NK
hit

NK
true

− β
NK
FA

T − NK
true

)

, (1)
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where � denotes the set of terms and |�| is the number

of terms in this set. NK
hit and NK

FA represent the numbers

of hits and false alarms of term K, respectively, and NK
true

is the number of actual occurrences of K in the audio. T

denotes the audio length in seconds, and β is a weight fac-

tor set to 999.9, as in the ATWV proposed by NIST [4].

This weight factor causes an emphasis placed on recall

compared to precision in the ratio 10:1.

ATWV represents the TWV for the threshold set by

the STD system (usually tuned on development data). An

additional metric, called maximum term weighted value

(MTWV) [22] can also be used to evaluate the perfor-

mance of an STD system. This MTWV is the maximum

TWV achieved by the STD system for all possible thresh-

olds and hence does not depend on the tuned threshold.

Therefore, this MTWV represents an upper-bound of the

performance obtained by the STD system. Results based

on this metric are also presented to evaluate the system

performance with respect to threshold selection.

In addition to ATWV and MTWV, NIST also proposed

a detection error tradeoff (DET) curve [104] to evaluate

the performance of an STD system working at various

miss/FA ratios. Although DET curves were not used for

the evaluation itself, they are also presented in this paper

for system comparison.

The NIST STD evaluation tool [40] was employed to

compute MTWV, ATWV, and DET curves.

Additionally, precision, recall, and F-measure values are

also presented in this paper to evaluate system perfor-

mance. Whereas the original ATWV metric proposed

by NIST gives more emphasis to recall than to preci-

sion (in other words, it is more important a miss than a

false alarm), F-measure assigns the same cost to preci-

sion and recall values. Therefore, F-measure allows us to

compare the system performance in a different way. How-

ever, it must be noted that the systems submitted to the

evaluation were tuned and optimized towards ATWV.

Database

The database used for the evaluation consists of a set of

talks extracted from the MAVIR workshops [105] held

in 2006, 2007, and 2008 (corpus MAVIR 2006, 2007, and

2008) that contain speakers from Spain and Latin Amer-

ica (henceforth MAVIR corpus or database). The MAVIR

corpus contains 3 recordings in English and 10 recordings

in Spanish, but only the recordings in Spanish were used

for the evaluation.

TheMAVIR Spanish data consist of spontaneous speech

files, each containing different speakers, which amount

to about 7 h of speech and are further divided for the

purpose of this evaluation into training/development and

test sets. There are 20 male and 3 female speakers in the

MAVIR Spanish database. The data were also manually

annotated in an orthographic form, but timestamps were

only set for phrase boundaries. To prepare the data for

the evaluation, we manually added the timestamps for the

roughly 6000 occurrences of spoken terms used in the

training/development and test evaluation sets.

The speech data were originally recorded in several

audio formats (PCM mono and stereo, MP3, 22.05 KHz.,

48 KHz., etc.). All data were converted to PCM, 16 KHz.,

single channel, 16 bits per sample using SoX tool [106].

Recordings were made with the same equipment, a Digital

TASCAM DAT model DA-P1, except for one recording.

Different microphones were used for the different record-

ings. They mainly consisted of tabletop or floor standing

microphones, but in one case a lavalier microphone was

used. The distance from the mouth of the speaker to the

microphone varies and was not particularly controlled,

but in most cases the distance was smaller than 50 cm.

All the speech contain real and spontaneous speech of

MAVIR workshops in a real setting. Thus, the record-

ings were made in large conference rooms with capacity

for over a hundred people and a large amount of people

in the conference room. This poses additional challenges

including background noise (particularly babble noise)

and reverberation. The realistic settings and the differ-

ent nature of the spontaneous speech in this database

make it appealing and challenging enough for our eval-

uation. Table 1 includes some database features such as

the number of word occurrences, duration, and signal-to-

noise ratio (SNR) [107] of each speech file in the MAVIR

Spanish database.

Training/development data amount to about 5 h of

speech extracted from 7 out of the 10 speech files

of the MAVIR Spanish database and contain 15 male

and 2 female speakers. This material was made avail-

able to the participants including the orthographic tran-

scription and the timestamps for phrase boundaries

[108]. However, there is no constraint in the amount

of training/development data beyond the MAVIR corpus

that can be employed to build the systems. The train-

ing/development term list consists of 346 terms. Each

term can be composed of a single word or multiple words

and its length varies between 5 and 25 phonemes. Ground

truth labels and evaluation tools were provided to the

participants by the date of the release. There are 4192

occurrences of those terms in the training/development

data. Table 2 includes information related to the train-

ing/development term list, and Fig. 2 shows the histogram

with the number of terms that contain a certain number

of phonemes.

Test data amount to about 2 h of speech extracted

from the other 3 speech files of the MAVIR Spanish

database not used as training/development data and con-

tain 5 male and 1 female speakers. The test term list

consists of 202 terms. Each term can be composed of

one or multiple words and its length varies between 5
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Table 1 MAVIR database characteristics. “train/dev” stands for training/development, “occ.” stands for occurrences, “min” stands for

minutes, “SNR” for signal-to-noise ratio, and “dB” for decibels

File ID Dataset # word occ. Duration (min) # speakers SNR

MAVIR-02 train/dev 13432 74.51 7 (7 male) 2.1 dB

MAVIR-03 train/dev 6681 38.18 2 (1 male, 1 female) 15.8 dB

MAVIR-06 train/dev 4332 29.15 3 (2 males, 1 female) 12.0 dB

MAVIR-07 train/dev 3831 21.78 2 (2 males) 10.6 dB

MAVIR-08 train/dev 3356 18.90 1 (1 male) 7.5 dB

MAVIR-09 train/dev 11179 70.05 1 (1 male) 12.3 dB

MAVIR-12 train/dev 11168 67.66 1 (1 male) 11.1 dB

MAVIR-04 test 9310 57.36 4 (3 males, 1 female) 10.2 dB

MAVIR-11 test 3130 20.33 1 (1 male) 9.2 dB

MAVIR-13 test 7837 43.61 1 (1 male) 11.1 dB

ALL train/dev 53979 320.23 17 (15 males and 2 females) -

ALL test 20277 121.3 6 (5 males and 1 female) -

and 23 phonemes. No ground truth labels correspond-

ing to the test data were given to the participants until

the organizers have sent them back the evaluation results.

There are 2054 occurrences of the test terms in the

test data. Table 3 includes information related to the

Table 2 Twenty most and less occurrence terms of the

training/development term list along with the number of

phonemes (# phonemes) and the number of occurrences in the

training/development data

Term # occurrences Term # occurrences

(# phonemes) (# phonemes)

Información (11) 153 mercurio (8) 1

También (7) 113 música pop (9) 1

Mercado (7) 111 mystic (6) 1

Internet (8) 74 nostradamus (11) 1

Empresas (8) 71 pacífico (8) 1

Importante (10) 69 patagonia (9) 1

Ustedes (7) 66 real alcázar (11) 1

Investigación (13) 52 reino unido (10) 1

Momento (7) 50 repsol (6) 1

Imágenes (8) 46 salamanca (9) 1

Simplemente (11) 46 sudamérica (10) 1

General (7) 43 suecia (6) 1

Motores (7) 43 taiwán (6) 1

Noventa (7) 39 torres quevedo (11) 1

Primero (7) 39 valencia (8) 1

Después (7) 38 venezuela (9) 1

Utilizar (8) 38 verity (6) 1

Siempre (7) 36 windows mobile (13) 1

Trabajo (7) 36 zaragoza (8) 1

Proyectos (9) 34 zurich (5) 1

test term list, and Fig. 3 shows the histogram with

the number of terms that contain a certain number of

phonemes.

Table 4 includes some information related to the train-

ing/development and test data files used in the evaluation

such as the number of term occurrences and the aver-

age number of term occurrences per minute, the number

of different terms, and the average number of different

terms and their occurrences per minute. It must be noted

that, although the length of the speech data used for train-

ing/development is greater than that of the test data, the

average number of occurrences per minute in both sets is

similar.

All the terms selected for both sets (training/ devel-

opment and test) aimed at building a realistic scenario

for STD, by including high occurrence terms, low occur-

rence terms, foreign terms, single-word and multi-word

terms, in-vocabulary and out-of-vocabulary terms, and

different length terms. Each training/development term

has one or more occurrences in the training/development

speech data and each test term has one or more occur-

rences in the test speech data. Table 5 includes some

features of the training/development and test term lists

such as the number of in-language and foreign terms, the

number of single-word and multi-word terms, and the

number of in-vocabulary and out-of-vocabulary terms,

along with the number of occurrences of each set in

the speech data. A term is considered OOV if this

does not appear in the training/development speech data

provided by the organizers. It must be noted that a

multi-word term is considered OOV in case any of the

words that form the term is OOV. Therefore, in case

the OOV terms appear in the vocabulary of the ASR

systems, these have been added to the ASR system vocab-

ulary from other sources (web, newspapers, other speech

databases, etc.).



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:21 Page 8 of 27

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Term length

N
u
m
b
e
r
 
o
f
 
t
e
r
m
s

Fig. 2 Histogram of the training/development term list. Histogram of the number of terms in the training/development term list with respect to the

term length (in phonemes)

Comparison to other evaluations

In the last years, several evaluations in the field of spo-

ken term detection have taken place. In this section, we

review the former evaluations mainly to highlight the

differences with the evaluation presented in this paper.

The National Institute of Standards and Technology of

the USA organized in 2006 the NIST STD evaluation

Table 3 Twenty most and less occurrence terms of the test term

list along with the number of phonemes (# phonemes) and the

number of occurrences in the test data

Term # Term #

(# phonemes) occurrences (# phonemes) occurrences

También (7) 93 flebitis (8) 1

Información (11) 92 gómez (5) 1

Ejemplo (7) 54 iberoamericanas (15) 1

Sistemas (8) 46 infecciones urinarias (19) 1

Respuestas (10) 44 latinoamericano (15) 1

Usuarios (8) 40 luis rodrigo (11) 1

Trabajar (8) 39 marcin (6) 1

Hipótesis (8) 38 nueva gales del sur (16) 1

Entonces (8) 37 open directory (13) 1

Implicación (11) 31 pablo serrano (11) 1

Nosotros (8) 30 paz iglesias (11) 1

Entidades (9) 28 península ibérica (16) 1

Idiomas (7) 27 pepsi twist (10) 1

Imágenes (8) 26 potter (5) 1

Bastante (8) 22 reino unido (10) 1

Distintos (9) 21 río tajo (7) 1

Resultados (10) 21 sinamed (7) 1

Encontrar (9) 19 strathclyde (10) 1

Formularios (11) 19 víctor (6) 1

Importante (10) 19 webometrics (10) 1

[22]. The data contained speech in English, Mandarin

Chinese, and Modern Standard and Levantine Arabic.

In this evaluation, the nature of the speech included

conversational telephone speech (CTS), broadcast news

(BNews) speech, and speech recorded in roundtablemeet-

ing rooms (RTMeet) with distantly placed microphones

(this last type is used only for English). Of the three dif-

ferent types of speech, the last one is the most similar

to the nature of the speech in our evaluation, although

there are some differences in terms of the size of the

room, larger in our case, which has a negative impact on

the system performance due to the reverberation; also,

the use of amplification of the audio in the conference

rooms is not present in the case of a roundtable meet-

ing. The NIST STD 2006 evaluation results are publicly

available [109], and are a very interesting result to ana-

lyze the influence of the language and the nature of speech

on STD results. Table 6 presents the best results obtained

by the evaluation participants for each condition. With

respect to the type of speech, it is clear from Table 6

that results using microphone speech, particularly distant

microphones in less controlled settings than in audiovi-

sual studios (such as in broadcast news) or close-talking

conversational telephone data, are definitely much more

limited. With respect to the language, English is the lan-

guage with more resources and for which more research

has been done so far. When applying similar technology

to languages for which less specific research has been

conducted, performance decreases are observed.

NIST has also carried out a new set of evaluations called

NIST Open KWS in the last years [30, 31]. These eval-

uations, named Open KWS 2013 and Open KWS 2014,

are very similar to the former NIST STD 2006 evalua-

tion. These were integrated within the BABEL program

and aimed at building STD systems in a limited time for

low-resource languages (Vietnamese and Tamil). These

new evaluations were only conducted on CTS data on a
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Fig. 3 Histogram of the test term list. Histogram of the number of terms in the test term list with respect to the term length (in phonemes)

surprise language that was announced only a few (4 or

less) weeks before the evaluation. Best performance in

the NIST Open KWS 2013 evaluation is ATWV=0.6248

[110] under the Full Language Pack (FullLP) condition, for

which 20 h of word-transcribed scripted speech, 80 h of

word-transcribed CTS, and a pronunciation lexicon were

given to participants. In the works describing systems on

the surprise language (i.e., Tamil) of the Open KWS 2014

evaluation [53, 92, 94, 111–117], ATWV=0.5802 is the

best performance obtained under the FullLP condition,

for which 60 h of transcribed speech and a pronunciation

lexicon were given to participants.

In our evaluation, the audio contains microphone

recordings of real talks in real workshops, in large con-

ference rooms with public. Microphones, conference

rooms, and even recording conditions change from one

recording to another. Microphones are not close-talking

microphones but mainly tabletop and ground standing

microphones. This difference in the evaluation conditions

makes our evaluation pose different challenges and makes

it difficult to compare the results obtained in our evalua-

tion to those of the previous NIST STD evaluations.

Additionally, a new round of STD evaluations has been

organized within NTCIR conferences [23, 28, 29]. Data

used in these evaluations contained spontaneous speech

in Japanese provided by the National Institute for Japanese

language and spontaneous speech recorded during seven

editions of the Spoken Document Processing Workshop.

These evaluations also provide the manual transcription

of the speech data and the output of an LVCSR system to

the participants. Table 7 presents the best result obtained

in each individual evaluation, where the F-measure was

used as the evaluation metric. Although our evaluation

could be similar in terms of speech nature to these

NTCIR STD evaluations (speech recorded in real work-

shops), we do not provide any kind of information apart

from the speech content, the list of terms, and the train-

ing/development ground-truth files to the participants.

Table 4 MAVIR training/development and test data file characteristics. “train/dev” stands for training/development, “occ.” stands for

occurrences, and “min” stands for minutes

File ID Dataset # occ. # occ./min # different terms # different terms/min

MAVIR-02 train/dev 1016 13.6 203 2.7

MAVIR-03 train/dev 653 17.1 153 4.0

MAVIR-06 train/dev 446 15.3 126 4.3

MAVIR-07 train/dev 296 13.6 104 4.8

MAVIR-08 train/dev 200 10.6 76 4.0

MAVIR-09 train/dev 910 13.0 199 2.8

MAVIR-12 train/dev 671 9.9 129 1.9

MAVIR-04 test 1026 17.9 167 2.9

MAVIR-11 test 414 20.4 70 3.4

MAVIR-13 test 614 14.1 98 2.2

ALL train/dev 4192 13.1 346 1.1

ALL test 2054 16.9 202 1.7
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Table 5 Training/development and test term list characteristics.

“train/dev” stands for training/development, “IN-LANG” refers to

in-language terms, “OUT-LANG” to foreign terms, “SINGLE” to

single-word terms, “MULTI” to multi-word terms, “INV” to

in-vocabulary terms, “OOV” to out-of-vocabulary terms, and “occ.”

stands for occurrences

Term list # IN-LANG/OUT-LANG # SINGLE/MULTI # INV/OOV

terms (occ.) terms (occ.) terms (occ.)

Train/dev 330 (4061)/16 325 (4166)/21 346 (4192)/0

(131) (26) (0)

Test 189 (2020)/13 185 (2032)/17 150 (1840)/52

(34) (22) (214)

In addition, our evaluation makes use of other lan-

guage, employs a larger list of terms, and defines disjoint

training/development and test term lists to measure the

generalization capability of the systems. The evaluation

presented here is, to the best of our knowledge, the first

STD evaluation that deals with the Spanish language.

Participants

Six different systems were submitted from four dif-

ferent research groups to the spoken term detection

ALBAYZIN 2014 evaluation. Participants are listed in

Table 8. About 3 months were given to the participants

for system development, and hence the STD evaluation

focuses on building STD systems in limited time. The

training/development and test data were released to the

participants in different periods. Training/development

data (i.e., training/development speech data, train-

ing/development term list, training/development ground-

truth labels, orthographic transcription and timestamps

for phrase boundaries in the training/development speech

data, and evaluation tools) were released at the end of June

2014. The test data (i.e., test speech data and test term list)

were released at the beginning of September 2014. The

final system submission was due at the end of September

2014. Final results were discussed at IberSPEECH 2014

conference at the end of November 2014.

Additional considerations for the STD evaluation design

The first STD evaluation, which was born in 2006 and was

held by NIST [22], aimed at finding a set of terms within

Table 6 Best performance (in terms of actual term weighted

value, ATWV) obtained by the different participants of the NIST

STD 2006 evaluation in the different conditions: “CTS” stands for

conversational telephone speech, “BNews” for broadcast news,

and “RTMeet” for speech recorded in roundtable meeting rooms

Language CTS BNews RTMeet

English 0.8335 0.8485 0.2553

Arabic 0.3467 -0.0924 N/A

Mandarin 0.3809 N/A N/A

Table 7 Best performance (in terms of F-measure) obtained by

the different participants in the NTCIR STD evaluations

Evaluation F-measure

NTCIR STD-09 0.3660

NTCIR STD-10 0.7944

NTCIR STD-11 0.6140

huge audio archives. In 2000, Garofolo claimed that the

information extraction in large audio repositories was a

solved problem by means of the LVCSR systems [118]. In

this way, a search of the terms of interest within their out-

put would be enough for practical applications. However,

these LVCSR systems suffer from the OOV problem, since

OOV terms are impossible to retrieve by standard LVCSR

systems. In addition, Logan showed that about 10 % of

the user queries to a spoken information retrieval system

contain OOV terms [119]. Therefore, it is reasonable that

STD evaluations focus on OOV term detection. Our eval-

uation also considers the OOV term detection in a great

extent, by incorporating some terms that do not appear

in the training/development speech data to the test term

list. The systems need to deal with these OOV terms so

that the final performance is not degraded. On the one

hand, they can incorporate these OOV terms to their

LVCSR system vocabulary, in case significant amount of

training/development material is obtained from external

sources (e.g., web, newspapers, broadcast news, etc.). Oth-

erwise, systems must rely on some other approach (e.g.,

subword-unit ASR) to retrieve them. Moreover, by incor-

porating INV and OOV terms in the test term list, orga-

nizers greatly encouraged the participants to build hybrid

systems from the combination of word- and subword unit-

based STD systems. Since both phone and syllable sets in

Spanish language are well defined [120], these two types

of subword units can effectively deal with the OOV terms.

The MAVIR database chosen for the evaluation con-

sists of highly spontaneous speech from real workshops.

Given this database condition, there is an inherent diffi-

culty for term detection. In addition, STD and, in gen-

eral, ASR systems significantly degrade their performance

when training/development data belong to a different

Table 8 Participants in the spoken term detection ALBAYZIN

2014 evaluation along with the systems submitted

Team ID Research institution Systems

GTM AtlantTIC Research Center, Fusion, WL-Kaldi

University of Vigo, Spain

GTH University Politécnica W1B-HTK

of Madrid, Spain

ATVS-GEINTRA University Autónoma of WL-ATWV-Kaldi,

Madrid - University of Alcalá, Spain WL-WER-Kaldi

VivoLab University of Zaragoza, Spain P1B-HTK



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:21 Page 11 of 27

domain or pose different acoustic conditions to those

of the test data. To alleviate this problem in the STD

evaluation, organizers paid special attention in preparing

limited training/development data from the same domain

and with similar acoustic conditions (microphone speech

from workshops) to that of the test data. This mate-

rial could be used by the participants to train and tune

their systems (see “Database” section). However, it must

be noted that different microphones were used for each

recorded file in the MAVIR database, and hence the

acoustic conditions slightly vary from one file to another.

Moreover, the limited training/development data, which

amount to 5 h of speech, adds another challenge to the

evaluation, aiming at building STD systems with limited

data that match the test data conditions.

Systems
In this section, we describe the systems submitted to the

STD evaluation. The systems appear in the same order

that they are ranked in Tables 9–17. A summary of the

systems is presented in Table 9.

Fusion-based STD system (fusion)

This system consists of the fusion of two different LVCSR-

based STD systems, as depicted in Fig. 4; specifically,

Kaldi-based and UVigo LVCSR-based STD systems were

developed, which are described next.

Kaldi-based STD system

The Kaldi-based STD system comprises two different sub-

systems, as depicted in Fig. 5: An ASR subsystem is used

to decode the speech utterances into word lattices; an STD

subsystem integrates a term detector that searches for the

input terms within the word lattices and a decision maker

that ascertains reliable detections.

The ASR subsystem employs the Kaldi speech recog-

nizer [68] to obtain word lattices from the input wave-

forms. Thirteen-dimensional PLP coefficients were used

as acoustic features, and a state-of-the-art maximum

likelihood (ML) acoustic model training strategy was

employed. This training starts with a flat-start initializa-

tion of context-independent phonetic HMMs and ends

with a speaker adaptive training (SAT) of state-clustered

triphone HMMs with GMM output densities. After the

ML-based acoustic model training stage, a universal back-

ground model (UBM) is built from speaker-transformed

training data, which is next used to train an SGMM

employed in the decoding stage to generate the word

lattices.

The aforementioned acoustic models were trained using

the Spanish data from 2006 TC-STAR automatic speech

recognition evaluation campaign [121]. Specifically, the

training data from the European Parliamentary Plenary

Sessions (EPPS) and the Spanish Parliament Sessions,

which were manually transcribed, were used for acoustic

model training [122]. All the non-speech parts, the speech

parts corresponding to transcriptions with pronunciation

errors, incomplete sentences, and short speech utterances

from the speech data were discarded. The training data

amount to about 79 h of speech.

The language model (LM) was trained using a text

database of 160 million words extracted from several

sources: transcriptions of the European and Spanish

Parliaments of the TC-STAR database, subtitles, books,

newspapers, online courses, and the transcriptions of the

MAVIR sessions included in the training/development

data provided by the organizers [123]. For development

experiments, a different LM was created for each MAVIR

session, using the transcription of the session to obtain

the optimum mixture of the partial LMs. The LM and

the corresponding vocabulary created from all the train-

ing/development data files except one were then used

to compute the detections of that file in a leave-one-out

strategy. For the test data, the LM was generated using

a normalized average of the weights obtained from the

development sessions. It must be noted that the vocabu-

lary was selected at the last stage of the LM training, once

the partial LMs and their weights were computed. A tri-

gram word LM trained with a vocabulary of 60k words

and a Kneser-Ney discount strategy was used for the ASR

subsystem.

The STD subsystem integrates the Kaldi term detector

[68–70], which searches for the input terms within the

word lattices obtained in the previous step. The lattice

indexing technique, described in [124], first converts the

word lattices of all the utterances in the speech data from

Table 9 System summary in terms of the ASR subsystem and STD subsystem employed. “prob.” stands for probability

System ID ASR subsystem STD subsystem

Fusion word lattices, word N-best Fusion: Kaldi/search in word N-best term detector + posterior prob.-based decision maker

WL-Kaldi word lattices Kaldi term detector + posterior prob.-based decision maker

W1B-HTK word 1-best search in word 1-best + log likelihood-based decision maker

WL-ATWV-Kaldi word lattices Kaldi term detector + Kaldi decision maker

WL-WER-Kaldi word lattices Kaldi term detector + Kaldi decision maker

P1B-HTK phone 1-best, phone lattices search in phone 1-best + fusion-based decision maker
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Fig. 4 Architecture of the fusion system

individual WFSTs to a single generalized factor trans-

ducer structure that stores the start-time, end-time, and

the lattice posterior probability of each word token as a

three-dimensional cost. This factor transducer represents

an inverted index of all the word sequences contained

in the lattices. Thus, given a search term, a simple finite

state machine that accepts the term is created and com-

posed with the factor transducer in order to obtain all the

occurrences of the term in the speech data. The posterior

probabilities of the lattice corresponding to all the words

of the search term are accumulated, assigning a confi-

dence score to each detection. The decision maker simply

removes those detections with a confidence score below a

predefined threshold.

The Kaldi spoken term detection system [68–70] han-

dles OOV term search by means of a method called proxy

words [71]. This method essentially consists of substitut-

ing each OOV word of the search term with acoustically

similar INV proxy words, getting rid of the need of a

subword-based system for OOV term search. However,

this method was not used within this system, causing

those terms containing any OOVwords not to be detected

at all.

The entire Kaldi-based STD system (both ASR and

STD subsystems) was run on training/development data

for parameter tuning, with the leave-one-out strategy

explained before for LM building in the ASR subsystem.

Next, the optimal parameters were used to hypothesize

the detections corresponding to the test data.

UVigo LVCSR-based STD system

The UVigo LVCSR-based STD system is composed of

two different subsystems, as depicted in Fig. 6: the ASR

subsystem, which employs the UVigo LVCSR system

[122], is used to decode the speech utterances in terms

of word N-best hypotheses; the STD subsystem integrates

a term detector that first obtains word meshes from the

N-best hypotheses and then searches for the term within

these word meshes, and a decision maker that ascertains

reliable detections.

The UVigo LVCSR system comprises three different

stages: audio segmentation, acoustic model selection, and

ASR decoding. Thirteen MFCCs augmented with their

delta and acceleration coefficients were used as acoustic

features.

On the first stage, the audio is segmented (i.e., the input

speech files are divided into more manageable speech seg-

ments). This segmentation is carried out by combining the

output of the speaker segmentation strategy described in

[125] with an energy-based voice activity detector (VAD).

The speaker segmentation strategy divides the input audio

signal into speech and non-speech segments, and speech

segments are also divided into shorter segments according

to their speaker. The energy-based VAD is then applied on

these speaker-homogeneous segments in order to detect

silence intervals, dividing each speaker turn into shorter

chunks.

On the second stage, acoustic model selection is per-

formed. Given a speech segment, the UVigo decoder [126]

is used to conduct phone recognition using different sets

of acoustic models to obtain a likelihood for each set.

The set of acoustic models that obtained the highest like-

lihood was chosen, as it was considered to be the most

suitable for decoding the corresponding speech segment.

The set of acoustic models consists of 24 two-state demi-

phone acoustic models. Fourteen of the acoustic models

were trained using the TC-STAR data described before,

and they consist of gender-independent and gender-

dependent acoustic models obtained from different par-

titions of the data. The remaining acoustic models were

Fig. 5 Architecture of the Kaldi-based STD system of the fusion system
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Fig. 6 Architecture of the UVigo LVCSR-based STD system of the fusion system. “utt.” stands for utterance

obtained by adapting the TC-STAR models from differ-

ent combinations ofMAVIR training/development speech

data.

The third stage employs the UVigo decoder to extract

N-Best hypotheses for each speech segment; this decoder

uses the token-passing algorithm with language model

look-ahead and an A* stack strategy-based N-Best re-

scoring [126]. It must be noted that the acoustic model

used for decoding is that selected in the acoustic model

selection stage. As language model, the system employs

the same as the Kaldi-based STD system.

The STD subsystem takes the word N-Best hypotheses

produced by the LVCSR system as input for the lattice

tool of the SRI-LM toolkit [127] and converts them to

word meshes with posterior probabilities. Next, a search

of the given termwithin the wordmesh produces the term

detections and outputs a posterior probability as score for

each detection. The decision maker simply removes those

detections whose posterior probability remains below a

predefined threshold.

It must be noted that terms that do not appear in the

LVCSR system vocabulary cannot be detected with this

system.

As in the Kaldi-based STD system, the entire systemwas

run on training/development data for parameter tuning.

The optimal parameter set is next applied on test data.

System fusion

System fusion combines the output of the two systems

described above to produce a more discriminative and

better-calibrated score for each detection, aiming at taking

advantage of the strengths of the individual approaches

[128]. First, the optimal operating point was calculated on

training/development data and applied to each individual

system. After this, a global minimum zero-mean and unit-

variance normalization was applied to prevent the scores

of the individual systems to be in different ranges and to

obtain term-independent scores. Finally, Bosaris toolkit

[129] was used to construct a fusion scheme based on

logistic regression; this procedure results in a new score

for each detection, which is used by the decision maker of

this system to output the final detections. The overlapping

detections, i.e., detections of different terms on the same

time interval, were removed by keeping the search term

with the highest score.

Word lattice-based Kaldi STD system (WL-Kaldi)

This system is the Kaldi-based STD system described in

the fusion system.

Word 1-best-based HTK STD system (W1B-HTK)

This system comprises two different subsystems, as

depicted in Fig. 7: The ASR subsystem consists of an

LVCSR system that produces a 1-best word sequence for

each speech file. The STD subsystem consists of a word-

based term detector and a decision maker that outputs

reliable detections.

The ASR subsystem is built from the HTK tool [83].

First, the VAD of the Voicebox [130] tool is applied to

segment the speech signal into speech segments. These

speech segments are next decoded by the HTK tool to

produce a 1-best word sequence as output. The ASR

subsystem employs 39-dimensional PLP coefficients as

acoustic features and three-state cross-word triphone

models as acoustic models. The acoustic models have

been trained from the Spanish partition of the EPPS cor-

pus, which amounts to about 99 h of speech [131], and all

the training/development data provided by the organizers

except theMAVIR-02, MAVIR-07, andMAVIR-09 speech

files. MAVIR-07 speech file was used as development file

for parameter tuning, and the two other speech files were

removed from the acoustic model training material since

the STD performance on that development file degrades

when both were used for acoustic model training. In total,

about 101.5 h of speech were employed for acoustic model

training. As a language model, a word trigram LM has

Fig. 7 Architecture of the W1B-HTK system
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been employed. The LM was trained with the SRI-LM

toolkit [127] from different text sources: (1) the Span-

ish Parliament partition (PARL) of the EPPS corpus used

to train the acoustic models, which amounts to 17.5k

words, (2) the training/development data provided by the

organizers which amount to 5k words, and (3) data cor-

responding to different web pages whose topic relates to

that of theMAVIR corpus (sentiment analysis, data crawl-

ing, etc.), and through web pages related to companies

mentioned in the training/development data (daedalus,

bitext, isoco, etc.), which amount to 7.2k words. In total, a

vocabulary of 30k words has been used for LM training.

The STD subsystem comprises an edit distance-based

term detector, which treats the term search in one way

or another depending on the number of words the term

consists of, and a decision maker that ascertains reliable

detections. For term detection, an exact match in the

1-best word sequence is conducted in case the term is

composed of a single or two words. For a term composed

of three or more words, this is detected in case two of

its words appear in the 1-best word sequence. For single-

word and double-word terms, the start and end times of

each detection are assigned the initial time of the first

word and the end time of the last word, respectively. For

terms with more than two words, the start and end times

of the detection consider all the words, even those that

are wrongly recognized. The confidence score for each

detection is the sum of the scores given by the HTK tool

to all the words of the term that are correctly recog-

nized, divided by the number of words that are correctly

recognized.

This system does not integrate a method to handle

OOV terms, and hence terms absent from the HTK-based

speech recognizer vocabulary cannot be detected.

For parameter tuning, this system employed the

MAVIR-07 speech file from the training/development

dataset. To do so, the entire STD system was first built

and next applied on this file to obtain the optimal parame-

ter set of the ASR and STD subsystems. Next, the optimal

parameter set is applied on the test data to hypothesize the

detections of the test term list.

Word lattice-based Kaldi ATWV-based STD system

(WL-ATWV-Kaldi)

This system comprises two different subsystems, as

depicted in Fig. 8: The ASR subsystem employs a Kaldi-

based speech recognizer [68] to decode speech utterances

and produce word lattices. The STD subsystem consists

of the Kaldi term detector [68–70] to search for the input

terms within the word lattices and the Kaldi decision

maker [42] to output reliable detections.

For the ASR subsystem, a word-based speech rec-

ognizer using Kaldi toolkit [68] has been constructed.

First, an energy-based VAD implemented in SoX has

been employed to remove non-speech segments. For

word-based speech recognition, 13-dimensional MFCCs

with cepstral mean and variance normalization (CMVN)

applied were used as acoustic features. The normalized

MFCC features then pass a splicer which augments each

frame by its left and right four neighboring frames. A

linear discriminant analysis is then employed to reduce

the feature dimension to 40, and a maximum likeli-

hood linear transform (MLLT) is applied to match the

diagonal assumption in GMM. These acoustic modeling

training stages were chosen to maximize ATWV perfor-

mance on training/development data. As acoustic mod-

els, context-dependent phone GMM/HMMs were trained

with the training part of the Fisher Spanish corpus (about

268 h of conversational telephone speech) and the train-

ing/development data provided by the organizers (about

5 h of speech). For English words that appear in the Fisher

Spanish corpus, a letter-to-sound module has been used

to build the phone transcription of these words using

Spanish phones. In total, about 273 h of speech have been

used for acoustic model training. These acoustic models

were augmented with some non-speech events present in

the Fisher Spanish corpus-like background noise, laugh,

breath, cough, sneeze, and lip-smack events, which were

modeled as context-independent acoustic models. As a

language modeling, a word trigram trained with a vocab-

ulary of 30k words has been employed. This language

model has been trained from the same data used to train

the acoustic models.

The STD subsystem integrates the Kaldi term detector

[68–70], as described in the fusion system, and the Kaldi

decision maker [42]. This decision maker conducts the

YES/NO decision for each detection based on the confi-

dence score computed according to Eq. 2:

p >
Ntrue

T
β

+
β−1
β

Ntrue

, (2)

Fig. 8 Architecture of the WL-ATWV-Kaldi system
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where p is the confidence score of the detection, Ntrue is

the sum of the confidence score of all the detections of the

given term, β is set to 999.9, and T is the length of the

audio in seconds.

This system does not incorporate any mechanism to

deal with the OOV terms.

This system employed all the training/development data

for ASR subsystem training. Therefore, the parameter

tuning was carried out as follows: First, the ASR subsys-

tem was trained (acoustic and language models) with the

Fisher Spanish corpus and five training/development files

of the training/development data (all except MAVIR-02

andMAVIR-03). These two files (MAVIR-02 andMAVIR-

03) were used for parameter tuning. Therefore, the entire

STD system was run on MAVIR-02 and MAVIR-03

speech files and the optimal parameter set was obtained,

including the type of acoustic models to use, which was

chosen to maximize ATWV performance. This param-

eter set, along with the acoustic models, were finally

used to hypothesize detections of the test term list. It

must be noted that, as explained before, all the train-

ing/development data were used for acoustic and language

model training in the ASR subsystem of the final system

submitted. This aimed at building a more robust set of

models for the evaluation.

Word lattice-based Kaldi WER-based STD system

(WL-WER-Kaldi)

This system is the same as the WL-ATWV-Kaldi, with

the only difference that acoustic models were optimized

for word error rate (WER) performance on Fisher Spanish

data. Acoustic modeling also includes maximum like-

lihood linear regression (MLLR) and speaker adaptive

training (SAT) to improve model robustness. In addition,

a discriminative training approach based on the maxi-

mum mutual information (MMI) criterion was employed

to produce the final acoustic models used in the ASR

subsystem.

Phone 1-best-based HTK STD system (P1B-HTK)

This system comprises two different subsystems, as

depicted in Fig. 9: The ASR subsystem consists of a

phone-based speech recognizer that decodes the speech

utterances to generate phone lattices and 1-best phone

sequences. The STD subsystem consists of a phone 1-

best-based term detector and a fusion-based decision

maker to output reliable detections.

The ASR subsystem is an HTK-based phone recogni-

tion system [83] (and therefore, not a word-based ASR

system as the rest of the systems described before), which

produces a phone lattice and a 1-best phone sequence

for each speech file. The ASR subsystem employs 39-

dimensional MFCCs as acoustic features with cepstral

mean compensation and histogram equalization applied.

Three-state context-dependent phone models have been

trained from different speech sources: (1) the noise-free

phonetically-balanced data of the ALBAYZIN database

[132], which amount to 12.8 h of speech, (2) the close-talk

microphone speech data from Speech-Dat-Car database

[133], which amount to 18.85 h of speech, (3) data

recorded with the close talk microphone and one of the

lapel microphones of the Domolab database [134], which

amount to 9.33 h of speech, and (4) data corresponding to

the Spanish parliament sessions of the TC-STAR database

[135], which amount to 111.89 h of speech. In total, about

153 h of speech have been used for acoustic model train-

ing. The text transcriptions of these speech sources have

been used to train the phone trigram LMwith the SRI-LM

toolkit [127]. In total, there are about 500k words in the

text material and about 3 million phones that are finally

used to train the phone trigram.

The STD subsystem employs a term detector to out-

put putative detections from the 1-best phone sequence

and a fusion-based decision maker to ascertain reliable

detections. For term detection, the 1-best phone sequence

is used as source text for an edit distance search. In the

search, each detection could be any substring which has

a phone edit distance with the search term of less than

50 % of its length. Start and end times of each detection

are assigned the start time of the first phone that is cor-

rectly recognized in the phone substring and the end time

of the last phone that is correctly recognized in the phone

substring. Detections that overlap in time are removed by

keeping the best one (i.e., the one with the minimum edit

distance). Once all the detections have been obtained, two

different scores are assigned to each: one derived from the

edit distance computed during term search, and an acous-

tic confidence measure obtained from the lattice. The

former is computed from standard substitution, insertion,

Fig. 9 Architecture of the P1B-HTK system
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and deletion errors in the 1-best phone sequence and nor-

malized by the length of the term. To obtain the acoustic

confidence measure, the following steps are conducted:

(1) the lattice is determinized with HTK tool [83], (2)

an acoustic mesh graph of the phone lattice is obtained

using the lattice tool of the SRI-LM toolkit [127], and (3)

the confidence calculated in the acoustic mesh graph is

used in a modified edit distance algorithm where, instead

of all costs equal to 1, the confidence of the matching

phones (those that are correctly recognized in the phone

lattice) with the search term are accumulated. Then, the

score of a detection is the sum of the confidences of

the matching phones through the acoustic mesh of the

search term between the time limits where the detection

resides. This score is also normalized by the length of the

term. The decision maker fuses these two scores with the

Bosaris toolkit, produces the final confidence score for

each detection, and ascertains reliable detections.

The entire set of training/development data was

employed for parameter tuning. Therefore, the whole STD

system was first built, and next this was run on train-

ing/development data to obtain the optimal parameter set.

This optimal parameter set was next applied to hypothe-

size the detections corresponding to the test data.

It must be noted that this system is based on phone

ASR and hence allowing for fast search and OOV term

detection.

Results and discussion
System results are presented in Tables 10 and 11 for

training/development and test data respectively. They

show a different behavior, in terms of result ranking.

The best performance on training/development data is

obtained by the WL-WER-Kaldi system, whereas the best

performance on test data is obtained by the WL-Kaldi

system. Paired t-tests show that the best performance

of the WL-WER-Kaldi system on training/development

data is statistically significant compared to the rest of the

systems (p<10−10) for ATWV. This better performance

is due to the use of the training/development data for

acoustic and language model training, which causes this

system to be clearly biased towards these data. This is con-

firmed by the STD performance on training/development

data obtained by the WL-ATWV-Kaldi system, which

just differs from the WL-WER-Kaldi system in a few

acoustic model training techniques. However, the WL-

Kaldi system does not employ the training/development

data for acoustic model training, and the language model

does not include the decoded sentence, hence resulting

in an unbiased system towards the training/development

data. On the other hand, the P1B-HTK system, which

employs a phone recognition-based STD system, obtains

the worst performance on both sets of data, due to the

absence of lexical information in the ASR subsystem. The

rest of the systems significantly outperform the perfor-

mance of this P1B-HTK system for training/development

data (p<10−14) and test data (p<10−4) for ATWV.

WL-ATWV-Kaldi and WL-WER-Kaldi systems obtain

different result ranking on both sets of data. The lat-

ter outperforms the former on training/development

data and the contrary occurs on test data. Paired t-

tests show that the better performance of the WL-

WER-Kaldi system over the WL-ATWV-Kaldi system

on training/development data is statistically significant

(p<10−12) for ATWV, and the better performance of the

WL-ATWV-Kaldi system over the WL-WER-Kaldi sys-

tem is also statistically significant (p<10−5) for test data

for ATWV. This is again, partially, due to the bias intro-

duced in these systems with the use of the training/

development data for acoustic and language model train-

ing. Although the WL-WER-Kaldi system employs more

robust ASR techniques than the WL-ATWV-Kaldi sys-

tem, these techniques only improved theWER of the ASR

subsystem and obtained a worse STD performance on a

subset of the training/development data provided by the

organizers used for STD parameter tuning. This is also

causing the worse performance on test data compared

with the WL-ATWV-Kaldi system.

This difference in result ranking is also observed for

W1B-HTK and WL-ATWV-Kaldi systems. On train-

ing/development data, the WL-ATWV-Kaldi system is

biased towards these data (in terms of acoustic model and

language model training), and hence better performance

is obtained. This improvement on training/development

data is statistically significant (p< 10−9) for ATWV for

a paired t-test. However, the W1B-HTK system, which

Table 10 Results of the STD ALBAYZIN 2014 evaluation on training/development data

System ID MTWV ATWV p(FA) p(Miss) Precision Recall F-measure

Fusion 0.5676 0.5676 0.00007 0.363 0.8704 0.7385 0.7991

WL-Kaldi 0.5816 0.5816 0.00008 0.341 0.8604 0.7543 0.8039

W1B-HTK 0.4634 0.4622 0.00006 0.472 0.8483 0.5854 0.6927

WL-ATWV-Kaldi 0.6287 0.6233 0.00004 0.331 0.9391 0.6990 0.8014

WL-WER-Kaldi 0.8327 0.8155 0.00002 0.144 0.9773 0.8519 0.9103

P1B-HTK 0.0746 0.0746 0.00003 0.893 0.7093 0.1269 0.2153
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Table 11 Results of the STD ALBAYZIN 2014 evaluation on test data

System ID MTWV ATWV p(FA) p(Miss) Precision Recall F-measure

Fusion 0.4872 0.4868 0.00003 0.483 0.9666 0.6207 0.7560

WL-Kaldi 0.5451 0.5350 0.00008 0.374 0.9104 0.7473 0.8209

W1B-HTK 0.2026 0.1980 0.00016 0.642 0.7981 0.4927 0.6093

WL-ATWV-Kaldi 0.2018 0.1972 0.00007 0.731 0.8829 0.3194 0.4691

WL-WER-Kaldi 0.1389 0.1316 0.00003 0.828 0.8498 0.2561 0.3936

P1B-HTK 0.0391 0.0297 0.00004 0.917 0.7275 0.1222 0.2093

employs more sources that augment the variability in lan-

guage model training and less training/development data

for acoustic model training, results in a less biased system

towards the training/development data. This causes sim-

ilar performance for W1B-HTK and WL-ATWV-Kaldi

systems on test data at the ATWV operating point. More-

over, for test data, the performance gap between both

systems is not statistically significant (p ≈ 0.9) for ATWV.

WL-Kaldi system performs the best on test data. This is

due to two reasons: (1) it has the most robust ASR sub-

system of those presented by the participants in terms

of ASR techniques (SGMM for acoustic modeling), the

type of the speech data (spontaneous speech) used for

acoustic model training is very similar to that of the eval-

uation files, and the text material used for language model

training comes from a large variety of text sources. (2)

All the test terms were included within the ASR subsys-

tem vocabulary, hence getting rid of the OOV term issue.

Table 12 shows the OOV rate of the systems (i.e., the

number of test terms that do not appear in the ASR sub-

system vocabulary), which shows that the OOV rate plays

an important role in system performance. Paired t-tests

show that the best performance of theWL-Kaldi system is

statistically significant compared to the rest of the systems

(p<10−9) except the fusion system for ATWV. The fusion

of this WL-Kaldi system with the other system presented

in the fusion system yields the worse STD performance

than the best system in isolation (WL-Kaldi system). This

performance gap is statistically significant for a paired t-

test (p < 10−2) for ATWV. This suggests that a better

fusion strategy is necessary.

Table 12 OOV rate of the word-based systems on test data. The

P1B-HTK system is not presented in this table since it employs

phone-based ASR

System ID OOV rate (%)

Fusion 0 %

WL-Kaldi 0 %

W1B-HTK 12.87 %

WL-ATWV-Kaldi 13.86 %

WL-WER-Kaldi 13.86 %

It can also be observed in Table 10 that some systems

show a slight degradation on training/development data

when MTWV and ATWV are compared. This is because

of the optimal threshold in the decision maker that was

calculated from a subset of the training/development data

and next applied to the whole set.

In terms of the F-measure values presented in Tables 10

and 11, similar trends are observed. The systems that

obtained the best performance for ATWV metric are

also the best for F-measure metric, with similar signifi-

cance levels. The only difference in terms of result ranking

relates to WL-Kaldi and WL-ATWV-Kaldi systems on

training/development data. Whereas for ATWV the WL-

ATWV-Kaldi system outperforms the WL-Kaldi system,

the contrary occurs for F-measure. The improvement

obtained by the WL-ATWV-Kaldi system for ATWV is

statistically significant (p < 10−2), and the improvement

obtained by the WL-Kaldi system for F-measure is not

statistically significant (p ≈ 0.7). This difference in terms

of system ranking is due to the different weight given to

precision and recall in the ATWV and F-measure metrics.

In addition, the improvement obtained by the W1B-HTK

system over the WL-ATWV-Kaldi system on test data

is statistically significant (p < 10−4) for F-measure.

Again, the different behavior of both metrics (ATWV and

F-measure) is causing this discrepancy.

DET curves are presented in Figs. 10 and 11 for

training/development data and test data, respectively.

They show the system performance working at differ-

ent miss/FA ratios. On test data, fusion and WL-Kaldi

systems clearly outperform the rest of the STD systems

for almost every operating point, as expected from the

ATWV results. The fusion system outperforms the WL-

Kaldi system for low FA rates and the contrary occurs

for low miss rates. This means that the fusion system is

still giving some benefit for low miss rates. The P1B-HTK

system performs the worst for almost every operating

point, except for low FA rates, where the W1B-HTK sys-

tem (based on an HTK recognizer and a 1-best word

search) performs the worst. When comparing the DET

curves based on the ASR output (i.e., the term detec-

tion input), it can be seen that STD systems that employ

word lattices (fusion, WL-Kaldi, WL-ATWV-Kaldi, and
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Fig. 10 DET curves of the STD systems for training/development data

WL-WER-Kaldi) outperform the 1-best word search of

the W1B-HTK system, and the latter outperforms the

phone recognition-based STD of the P1B-HTK system

for most of the region. This is expected, since word lat-

tices are able to keep more hypotheses for term detection

than the 1-best word/phone sequences, despite of the

better ATWV obtained by the W1B-HTK system over

WL-ATWV-Kaldi andWL-WER-Kaldi systems. On train-

ing/development data, the bias observed in the ATWV

results forWL-ATWV-Kaldi andWL-WER-Kaldi systems

is clearly causing their best performance for every oper-

ating point. The P1B-HTK system, as in test data, also

performs the worst on these data.

Fig. 11 DET curves of the STD systems for test data

Comparison to previous STD evaluations

Although our evaluation results cannot be directly com-

pared to those obtained in previous NIST and NTCIR

STD evaluations because the database/language/metric

set used in our case is different, we can shed some

light with respect to performance comparison to other

STD evaluations held across the world. On the one

hand, we can mention that our results are better than

those reported for Arabic and Mandarin languages on

the NIST STD 2006 evaluation (see Table 6). One pos-

sible reason for these results is that Spanish could be

an easier language than Arabic and Mandarin from an

ASR perspective (Spanish has very regular grapheme-

to-phoneme mapping [120], Mandarin is a tonal lan-

guage [136], which adds more complexity to the ASR

system, diacritization in Arabic [137] adds more com-

plexity to Arabic ASR systems). Other clearer reason is

that the performance of the best system presented in

this paper corresponds to a word-based system with no

OOV terms. For English language and probably easier

domains compared to that of the Spanish MAVIR cor-

pus (telephone speech and broadcast news vs. oral talks

in real workshops), the performance of those systems is

better than that obtained in this evaluation. However,

when the domain difficulty increases (roundtable meet-

ing rooms for English) and all the terms are INV, system

performance for Spanish on spontaneous speech (MAVIR

corpus) is better than for English on meeting domain.

Certainly, this is not the common scenario, and typically,

OOV terms considerably degrade system performance.

The systems presented here that have OOV terms are

obtaining worse results than those obtained in the English

roundtable meeting domain and the Arabic (except for

broadcast news) and Mandarin languages in the NIST

STD 2006 evaluation. This is mainly due to the diffi-

culty inherent to the acoustic database conditions and the

list of terms (containing foreign terms) employed in this

evaluation.

On the other hand, the best systems submitted

to the different NTCIR STD and Open KWS eval-

uations show, in general, similar performance rates

(in terms of F-measure and ATWV metrics) to

those obtained in our Spanish STD evaluation (see

Tables 7 and 11 and “Comparison to other evaluations”

section).

All these findings suggest that STD systems in

highly difficult domains (e.g., real workshops) for

Spanish language are, at least, as effective as for other

languages/domains.

Performance analysis of STD systems based on term length

An analysis of the performance of the STD systems based

on the length (in number of phonemes) of the test terms

has been conducted and results are shown in Table 13.
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Table 13 Results of the STD ALBAYZIN 2014 evaluation on test data based on the term length. “SHORT” denotes short-length terms,

“MEDIUM” denotes medium-length terms, and “LONG” denotes long-length terms. The term length considers the number of

phonemes of the given term

System ID SHORT (< 8 phonemes) MEDIUM (8–10 phonemes) LONG (> 10 phonemes)

MTWV ATWV MTWV ATWV MTWV ATWV

Fusion 0.4194 0.4194 0.5423 0.5415 0.4648 0.4648

WL-Kaldi 0.4929 0.4805 0.5841 0.5595 0.5576 0.5569

W1B-HTK 0.1440 0.1417 0.1794 0.1607 0.3457 0.3457

WL-ATWV-Kaldi 0.1685 0.1532 0.2250 0.2192 0.2256 0.2103

WL-WER-Kaldi 0.1540 0.1490 0.1345 0.1237 0.1521 0.1248

P1B-HTK 0.0638 0.0435 0.0375 0.0265 0.0199 0.0181

Test terms have been divided into three categories: short-

length terms (terms with up to 7 phonemes), medium-

length terms (terms between 8 and 10 phonemes), and

long-length terms (terms with more than 10 phonemes).

In general, longer terms should exhibit better perfor-

mance than shorter terms, since these are naturally more

confusable within speech data. However, this is not always

the case.

For the word-based STD systems, it is clear from

Table 13 that themedium-length term performance is bet-

ter than that of the short-length terms. However, the STD

performance degrades, in general, for long-length terms

compared to medium-length terms. It must be noted that

most of the long-length terms involve multi-word terms,

which are more difficult to detect, in general, in STD

(these can contain some OOV words, or some of their

words are wrongly recognized in the ASR subsystem).

A more detailed analysis for medium- and long-length

terms composed of single- andmulti-word terms is shown

in Table 14. It is clear from Table 14 that the worse

overall performance obtained by the long-length terms

compared to medium-length terms is caused by those

that contain two or more words. When comparing the

medium- and long-length terms that contain only one

word, the performance for long-length terms is better

than for medium-length terms, which is the trend in STD

for single-word terms.

From Table 13, the WL-Kaldi system performs the best

for short-, medium-, and long-length terms, as expected

from the overall STD results. Paired t-tests show that

the improvement of this system over the rest is, in

general, statistically significant for short-length terms

(p<10−2 over the fusion system and p< 10−6 over the

rest), for medium-length terms (p < 10−6 over all the

systems except the fusion system), and for long-length

terms (p < 10−4 over the fusion system, p < 10−3

over the W1B-HTK system, and p < 10−5 over the

rest).

When comparing the results of Table 14 across the

systems, it is shown that, in general, the WL-Kaldi sys-

tem also performs the best. Paired t-tests show that

the improvement of this system over the rest is statisti-

cally significant (p< 10−6 for all the systems except the

fusion system for medium-length single-word terms, and

p< 10−4 for all the systems for long-length single-word

terms). However, for terms involving multiple words,

paired t-tests do not show any statistical difference

between systems.

For the phone-based STD system (P1B-HTK), the per-

formance degrades when the length of the term increases.

Table 14 Results of the STD ALBAYZIN 2014 evaluation on test data for single-word medium- and long-length terms and multi-word

medium- and long-length terms. “MEDIUM-SINGLE” denotes medium-length terms that are composed of a single word, “LONG-SINGLE”

denotes long-length terms that are composed of a single word, “MEDIUM-MULTI” denotes medium-length terms that are composed

of two or more single words, and “LONG-MULTI” denotes long-length terms that are composed of two or more single words

System ID MEDIUM-SINGLE LONG-SINGLE MEDIUM-MULTI LONG-MULTI

MTWV ATWV MTWV ATWV MTWV ATWV MTWV ATWV

Fusion 0.5664 0.5655 0.5813 0.5813 0 0 0.1250 0.1250

WL-Kaldi 0.6081 0.5789 0.7060 0.7050 0.1250 0.1250 0.1250 0.1250

W1B-HTK 0.1873 0.1679 0.4214 0.4214 0 0 0.1250 0.1250

WL-ATWV-Kaldi 0.2350 0.2290 0.3029 0.2824 0 0 0 0

WL-WER-Kaldi 0.1405 0.1292 0.2043 0.1676 0 0 0 0

P1B-HTK 0.0392 0.0277 0.0124 0.0100 0 0 0.0417 0.0417
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First of all, it must be noted that for phone-based STD

systems, there is no difference between single- and multi-

word terms, since the detection subsystem relies on a

phone sequence. The edit distance method employed in

the P1B-HTK system for term detection causes that longer

terms are more difficult to keep half of their phones in

the 1-best phone sequence. Therefore, longer terms were

more difficult to detect than shorter terms, despite these

could generate more FAs.

Performance analysis of STD systems based on

single/multi-word terms

A similar analysis based on the number of words of the

test terms has been conducted and results are shown

in Table 15. Similar conclusions to those mentioned in

the previous section regarding single-word and multi-

word terms are obtained. In general, for STD experi-

ments on word-based systems, multi-word terms produce

more errors in term detection. On the one hand, the

OOV word problem affects in a greater extent multi-word

terms. On the other hand, the word confusability inherent

to ASR systems plays a more important role for multi-

word terms, since these are composed of more than one

word.

WL-Kaldi system performs the best both for single-

word and multi-word term detection, as expected from

the overall STD results. For single-word term detection,

paired t-tests show that the improvement of this system

over the rest is statistically significant (p < 10−9 for all the

systems except the fusion system, and p < 10−4 for this).

However, for multi-word term detection, paired t-tests

show that the improvement of this system is only statis-

tically significant compared with WL-ATWV-Kaldi and

WL-WER-Kaldi systems (p < 10−2). This shows the diffi-

culty of multi-word term detection, even for word-based

STD systems.

This analysis looses part of its meaning for phone-based

STD systems such as P1B-HTK, since for these systems

words do not exist, and hence single- and multi-word

terms are just phone sequences.

Performance analysis of STD systems based on

in-vocabulary/out-of-vocabulary terms

An analysis of the performance of the STD systems based

on in-vocabulary/out-of-vocabulary terms has been con-

ducted and results are shown in Table 16. Typically, OOV

terms are those absent from the ASR system vocabu-

lary. However, since participants were allowed to use

additional resources to train their systems, these may

include OOV terms in the ASR component, in case these

terms are learned from other sources. In case the tradi-

tional definition for OOV terms is applied in our case,

systems would have different OOV terms, and hence

a fair comparison would not be possible. In our case,

in-vocabulary terms are those that appear in the train-

ing/development speech data provided by the organizers,

and out-of-vocabulary terms are those that do not. It is

clear from Table 16 that the system performance degrades

for terms that do not appear in the training/development

speech data. The only exception is the P1B-HTK sys-

tem, which employs a phone-based ASR subsystem, and

hence both in-vocabulary and out-of-vocabulary terms

are treated equally (since the training/development data

are provided by the organizers, and thus the in-vocabulary

terms have not been used for acoustic model and phone-

based language model training).

WL-Kaldi system achieves the best overall STD per-

formance. Moreover, this system also obtains the best

performance for in-vocabulary terms. Paired t-tests show

that this improvement is statistically significant (p < 10−8

for all but fusion system, and p < 10−2 for fusion system).

Therefore, it is clear that having the more robust ASR

subsystem also plays a very important role in the overall

performance, since all the in-vocabulary terms also appear

in the ASR vocabulary of the rest of the systems.

It can be seen that theWL-ATWV-Kaldi system outper-

forms the W1B-HTK system for in-vocabulary terms and

the contrary occurs for out-of-vocabulary terms. How-

ever, the improvement of the WL-ATWV-Kaldi system

over the W1B-HTK system on in-vocabulary terms is

not statistically significant for a paired t-test (p ≈ 0.5),

Table 15 Results of the STD ALBAYZIN 2014 evaluation on test data for single-word terms and multi-word terms. “SINGLE” denotes

single-word terms (i.e., terms that are composed of a single word) and “MULTI” denotes multi-word terms (i.e., terms that are

composed of two or more single words)

System ID SINGLE MULTI

MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

Fusion 0.5184 0.5180 0.00003 0.450 0.1471 0.1471 0 0.853

WL-Kaldi 0.5790 0.5680 0.00009 0.333 0.1765 0.1765 0 0.824

W1B-HTK 0.2132 0.2081 0.00017 0.617 0.0882 0.0882 0 0.912

WL-ATWV-Kaldi 0.2203 0.2153 0.00007 0.707 0 0 0 1

WL-WER-Kaldi 0.1516 0.1437 0.00004 0.812 0 0 0 1

P1B-HTK 0.0346 0.0243 0.00005 0.917 0.0882 0.0882 0 0.912
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Table 16 Results of the STD ALBAYZIN 2014 evaluation on test data for in-vocabulary terms and out-of-vocabulary terms. “INV”

denotes in-vocabulary terms and ‘OOV’ denotes out-of-vocabulary terms

System ID INV OOV

MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

Fusion 0.5641 0.5636 0.00004 0.398 0.2652 0.2652 0.00001 0.730

WL-Kaldi 0.6189 0.6060 0.00010 0.282 0.3357 0.3304 0.00001 0.659

W1B-HTK 0.2243 0.2136 0.00020 0.572 0.1530 0.1530 0.00002 0.831

WL-ATWV-Kaldi 0.2518 0.2463 0.00008 0.668 0.0652 0.0556 0.00002 0.916

WL-WER-Kaldi 0.1800 0.1690 0.00009 0.732 0.0322 0.0237 0.00003 0.939

P1B-HTK 0.0366 0.0248 0.00005 0.916 0.0477 0.0436 0.00004 0.915

so both systems can be said to yield similar perfor-

mance for in-vocabulary term detection. On the other

hand, the improvement of the W1B-HTK system over

the WL-ATWV-Kaldi system for OOV terms is statisti-

cally significant for a paired t-test (p<10−2). Given that

in-vocabulary terms appear in the ASR subsystem vocab-

ulary, both systems can detect them. However, the lower

OOV rate of the W1B-HTK system compared to the

WL-ATWV-Kaldi system (see Table 12) causes out-of-

vocabulary term detection degrade in a greater extent in

the WL-ATWV-Kaldi system. In addition, the bias of the

WL-ATWV-Kaldi system towards training/development

data can be enhancing the in-vocabulary term detection.

This is confirmed by the degradation of the WL-

WER-Kaldi system from in-vocabulary terms to out-of-

vocabulary terms on test data, which is also caused by that

bias.

Performance analysis of STD systems based on

in-language/out-of-language terms

An analysis of the performance of the STD systems

in terms of Spanish (in-language) and foreign (out-of-

language) test terms has been conducted and results are

shown in Table 17. As expected, performance degrada-

tion is observed in foreign term detection. However, this

degradation is not constant across the systems. fusion

and WL-Kaldi systems yield the best performance for

foreign terms, since these appear in the ASR subsystem

vocabulary. Paired t-tests show that the WL-Kaldi system

significantly improves (p < 10−2) the rest of the systems

except the fusion system (p ≈ 0.3) for foreign term detec-

tion. The WL-ATWV-Kaldi system also maintains a rel-

atively good performance for foreign terms compared to

that obtained for in-language terms. All these foreign

terms are in English, and this system used the English

words that appear in the Fisher Spanish corpus for sys-

tem training. This is clearly giving some benefit for foreign

term detection. The WL-WER-Kaldi system has been

trained with the same data. However, its worse overall

performance compared to the WL-ATWV-Kaldi system

is also producing worse performance in foreign term

detection.

For in-language terms, the best performance is obtained

by the WL-Kaldi system, as expected from the overall

STD results. Paired t-tests show that the WL-Kaldi sys-

tem significantly outperforms the rest of the systems for

in-language term detection (p < 10−9 for all the systems

except the fusion system and p < 10−3 for this).

Performance analysis of STD systems based on specific

terms

Finally, an additional analysis of the performance of the

STD systems for specific search terms has been conducted

and results are shown in Tables 18 and 19. Table 18 shows

the results of a randomly selected set of three terms with

different length, being in-language, in-vocabulary, and

Table 17 Results of the STD ALBAYZIN 2014 evaluation on test data for in-language and out-of-language (foreign) terms. “IN-LANG”

refers to Spanish terms and “OUT-LANG” refers to foreign terms

System ID IN-LANG OUT-LANG

MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

Fusion 0.5030 0.5025 0.00003 0.466 0.2575 0.2575 0.00001 0.732

WL-Kaldi 0.5580 0.5475 0.00008 0.364 0.3651 0.3545 0.00003 0.603

W1B-HTK 0.2139 0.2097 0.00016 0.623 0.0393 0.0287 0.00004 0.918

WL-ATWV-Kaldi 0.2094 0.2045 0.00007 0.723 0.1339 0.0916 0.00001 0.855

WL-WER-Kaldi 0.1458 0.1382 0.00003 0.820 0.0389 0.0353 0.00002 0.940

P1B-HTK 0.0418 0.0317 0.00005 0.911 0 0 0 1
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Table 18 Results of the STD ALBAYZIN 2014 evaluation on test data based on term length for specific search terms. “Term 1” is

short-length, “Term 2” is medium-length, and “Term 3” is long-length. All are single-word, in-vocabulary, and in-language terms. ‘OCC’

stands for the OCC value for each given term computed with the NIST STD evaluation tool

System ID Term 1 (short) Term 2 (medium) Term 3 (long)

OCC Precision Recall OCC Precision Recall OCC Precision Recall

Fusion 0.665 0.9730 0.6667 0.738 0.8571 0.7500 0.843 0.8571 0.8571

WL-Kaldi 0.735 0.9302 0.7407 0.850 0.7778 0.8750 0.986 0.8750 1

W1B-HTK 0.480 0.9630 0.4815 0.738 0.8571 0.7500 0.843 0.8571 0.8571

WL-ATWV-Kaldi 0.331 0.9474 0.3333 0.613 0.8333 0.6250 0.843 0.8571 0.8571

WL-WER-Kaldi 0.348 0.9048 0.3519 0.487 0.8000 0.5000 0.557 0.8000 0.5714

P1B-HTK 0.165 0.9000 0.1667 0.113 0.5000 0.1250 0.000 0 0

single-word terms. The results show that long single-word

terms are much more easily detected with the word-based

systems than with the phone-based system (P1B-HTK)

submitted to the evaluation. On the contrary, for the P1B-

HTK system, long terms are more difficult to detect due

to the search on the 1-best phone sequence, which poses

more difficulties in finding hits. This confirms the findings

observed from the results presented in Tables 13 and 14.

In the same way, longer terms exhibit better performance

than shorter terms (medium- and short-length terms)

for word-based systems, as observed from the results in

Tables 13 and 14.

Table 19 shows the system behavior for some term

properties, which are varied from one term to another.

In this case, we concentrate on medium-length terms,

and the in-language/out-of-language, single-word/multi-

word, and in-vocabulary/out-of-vocabulary properties are

varied one at each time. These results show that OOV,

multi-word terms are the most difficult to detect, even

for word-based systems, which confirms the findings

observed in the results presented in Tables 15 and 16.

On the other hand, the results obtained with the P1B-

HTK system confirm the difficulty in retrieving medium-

length terms for the phone-based system submitted to

the evaluation when the term properties produce a more

difficult term.

Lessons learned

The spoken term detection ALBAYZIN 2014 evaluation

is integrated within a more general search on speech

ALBAYZIN evaluation. This is the second edition of

the search on speech ALBAYZIN evaluation, after that

held in 2012. Since then, the evaluation has involved

different tasks. In the first edition (held in 2012), we

organized three different tasks, named query-by-example

spoken term detection, keyword spotting, and spoken

term detection. In the first evaluation, however, most par-

ticipants only submitted systems to the query-by-example

STD evaluation [37] and only one participant submitted a

system for STD and keyword spotting tasks. In this second

edition (held in 2014), there was an additional task, named

query-by-example spoken document retrieval. However,

none of the participants submitted any system to this task,

being most of them involved in the STD task. There were

also some systems submitted to the query-by-example

STD and keyword spotting tasks. Therefore, this is the

first time that we really have an evaluation with several

teams working on STD in Spanish.

Table 19 Results of the STD ALBAYZIN 2014 evaluation on test data based on specific search terms. “Term 1” is a multi-word,

out-of-vocabulary, and in-language term, “Term 2” is a single-word, in-vocabulary, and foreign term, and “Term 3” is a single-word,

out-of-vocabulary, and in-language term. All are medium-length terms. “OCC” stands for the OCC value for each given term computed

with the NIST STD evaluation tool [40]

System ID Term 1 Term 2 Term 3

OCC Precision Recall OCC Precision Recall OCC Precision Recall

Fusion 0 0 0 0.167 1 0.1667 0.600 1 0.6000

WL-Kaldi 0.500 1 0.5000 0.500 1 0.5000 0.900 1 0.9000

W1B-HTK 0 0 0 0.317 0.6667 0.3333 0.900 1 0.9000

WL-ATWV-Kaldi 0 0 0 0.333 1 0.3333 0 0 0

WL-WER-Kaldi 0 0 0 0.167 1 0.1667 0 0 0

P1B-HTK 0 0 0 0 0 0 0 0 0
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Besides the possibility of evaluating results, conduct-

ing system comparison, and having a common framework

to foster research in search on speech for Spanish, the

organization of the evaluation has provided us several

lessons that will be very useful for the organization of

future evaluations (either by us or by other prospective

organizers).

First of all, from the number of participants and the

number of tasks that had very few or no submissions, it is

crucial for future evaluations either to have one compul-

sory task or even to focus on a single task to concentrate

research efforts. It could be useful to have a previous

survey (as it is usually done in MediaEval evaluations)

to select one or two tasks. Secondly, taking part in this

kind of evaluation implies a considerable amount of work

that sometimes is not as fruitful as expected. We con-

sider that it is important to lower the entrance barriers

for taking part in these evaluations. In this sense, the new

i-vector Challenges launched by NIST in speaker and lan-

guage recognition in the last years are good examples.

The i-vector Challenges transform the speaker and lan-

guage recognition tasks in a pattern recognition task (only

i-vectors and no speech are provided) for which specific

knowledge of speech processing is not required. Besides,

evaluation organizers also provide a baseline system with

relatively good performance that can be used to test

improvements over a basic algorithm. This has consider-

ably increased the participation in these evaluations. In

our evaluation, and in particular in the spoken term detec-

tion task, the highest barrier is probably the difficulty in

having a good LVCSR system in Spanish. By providing the

lattices generated by a reasonable good speech recogni-

tion system for training, development and test data (as

done in NTCIR STD evaluations), more research groups

(apart from those working on speech processing) would

be able to participate. We could also provide baseline sys-

tems to help researchers to focus on improvements rather

than on building a functional system from scratch, which

in some cases was the main goal of the participants in the

evaluation.

Regarding the data preparation, we have been able to use

the database of MAVIR project consisting of recordings of

seminars and roundtables organized at the general meet-

ings of the project (at large conference rooms with about

100 people). This database has resulted very challenging

with many interesting properties (i.e., different noise lev-

els, different speakers, foreign words, etc.). For instance, in

the first edition of the search on speech ALBAYZIN eval-

uation held in 2012, we focused on single-word terms in

Spanish, but in the second edition, we added multi-word

terms and foreign terms in order to analyze the influence

of these in system performance. The database was tran-

scribed and aligned at the utterance level. This was very

helpful to produce the manual term alignments, but even

using this information, it took a considerable amount of

time to produce themanual alignments. AlthoughMAVIR

data have been very useful, we consider that it will be

necessary to use additional data (for instance from broad-

cast news or perhaps more challenging TV programs) to

make the evaluations evolve and not become repetitive.

We are currently preparing more data in order to perform

a new and more challenging evaluation in 2016. Besides

using new data, we will probably reuse the same MAVIR

data to assess technology improvements on a comparable

basis.

In these two evaluation editions, we have prepared

a training and development dataset and a test dataset.

This has lead each participant to form the training data

and development data in a different way, which has

significantly complicated the comparison of the system

results on this dataset, since the amount of data used for

system training and system tuning is not consistent across

participants. To solve this issue, three different datasets

will be provided in future editions: training dataset, devel-

opment dataset, and test dataset.

Performance of OOV terms is crucial in spoken term

detection because OOV terms will inevitably occur when

searching on speech. In this edition, we have conducted

an analysis of the performance obtained by the different

systems with respect to OOV terms. However, we have

found significant differences in terms of OOV rate across

the systems because we did not put any restrictions in the

corpora that could be used for training the ASR compo-

nent of the whole STD system. For future editions, it will

be very helpful to define in advance and communicate to

the participants the set of OOV terms that cannot be used

for training in any way, so that OOV terms are actually

OOV terms for all the systems.

The current STD evaluation focused on searching a

training/development term list in training/development

speech data and searching a test term list in test speech

data. In future evaluations, the cross-data term search

should be also considered. To do so, organizers should

provide the alignments of the training/development terms

in the test speech data and the alignments of the test

terms in the training/development speech data. The pur-

pose of this cross-data search is to see how critical tun-

ing is for the different systems. For example, searching

test terms in training/development speech data could be

enhanced by unsupervised adaptation, whereas searching

training/development terms in test speech data will mea-

sure the generalization capability of the systems on unseen

data with the same term list for which good classifiers

could have been developed.

Finally, in future editions, we would like to include

other performancemeasures in the evaluation plan. In this

evaluation, we only considered MTWV and ATWV. We

have next included precision, recall, and the F-measure
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in the analysis of the results, but this was not planned

in advance and was not used for the evaluation itself.

For future editions, we would also like to allow the par-

ticipants to submit calibrated likelihood ratios as well

as non-calibrated scores in order to measure calibra-

tion as well as other figures of merit such as the nor-

malized cross entropy cost (Cnxe) employed in the last

query-by-example search on speech task of MediaEval

evaluation [27].

Preparing and running an evaluation is easier than

taking part in it, as long as you have the proper data

and funding, or even with very limited or no fund-

ing. Therefore, we hope to organize a new edition in

2016 but, in case it is impossible for us, at least we

hope that these lessons could be useful for prospective

organizers.

Conclusions
Wehave presented the spoken term detection ALBAYZIN

2014 evaluation, which is, to the best of our knowledge,

the first STD evaluation in Spanish, as well as the six sys-

tems submitted. Four different research groups (GTM,

GTH, ATVS-GEINTRA, and VivoLab) took part in the

evaluation. There were two different types of systems

submitted to the evaluation: word-based STD systems

and a phone-based STD system. Five systems rely on a

word-based speech recognizer and a subsequent search

within the word lattice or 1-best word sequence of the

evaluation terms. The other is based on a phone recog-

nizer and a search in the 1-best phone sequence from an

edit distance approach. Although the phone-based sys-

tem performance is the worst, it allows for fast indexing

and search. Given the challenging database chosen for

the evaluation, results show a high performance for the

best system (ATWV=0.5350) for which all the search

test terms were included in the ASR system vocabulary.

The other word-based STD systems, which suffer from

the OOV word problem, exhibit serious performance

degradation.

We have also shown that long single-word terms

and in-vocabulary terms yield better STD performance.

Contrary, multi-word terms and foreign terms tend to

decrease the STD performance, as expected.

This is the first STD evaluation that has been con-

ducted for Spanish language so far, which represents a

good baseline for future research in this language. In

addition, the database conditions (spontaneous speech

and challenging audio conditions) chosen for the exper-

iments and the highly heterogeneous list of terms

(single- and multi-word terms, in-vocabulary and out-

of-vocabulary terms, and in-language and foreign terms)

make the evaluation and the database attractive enough

for future research. Results presented in this paper

indicate that there is still ample room for improvement

when the list of terms contains a reasonable OOV rate

(for 13 % OOV rate, the best performance obtained is

ATWV=0.1980). The best result presented in this eval-

uation will be also considered as an interesting baseline

for systems that do not have OOV terms. These results

encourage us to maintain this evaluation in the next

ALBAYZIN evaluation campaigns, trying to improve sev-

eral issues that have arisen from the experience of this

edition.
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