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A B S T R A C T

Background and objectives: The study reported here focused on the aetiology of spondylolysis, a verte-

bral pathology usually caused by a fatigue fracture. The goal was to test the Overshoot Hypothesis,

which proposes that people develop spondylolysis because their vertebral shape is at the highly

derived end of the range of variation within Homo sapiens.

Methodology: We recorded 3D data on the final lumbar vertebrae of H. sapiens and three great ape

species, and performed three analyses. First, we compared H. sapiens vertebrae with and without spon-

dylolysis. Second, we compared H. sapiens vertebrae with and without spondylolysis to great ape verte-

brae. Lastly, we compared H. sapiens vertebrae with and without spondylolysis to great ape vertebrae

and to vertebrae of H. sapiens with Schmorl’s nodes, which previous studies have shown tend to be

located at the ancestral end of the range of H. sapiens shape variation.

Results: We found that H. sapiens vertebrae with spondylolysis are significantly different in shape from healthy

H. sapiens vertebrae. We also found that H. sapiens vertebrae with spondylolysis are more distant from great

ape vertebrae than are healthy H. sapiens vertebrae. Lastly, we found that H. sapiens vertebrae with spondyloly-

sis are at the opposite end of the range of shape variation than vertebrae with Schmorl’s nodes.

Conclusions: Our findings indicate that H. sapiens vertebrae with spondylolysis tend to exhibit highly

derived traits and therefore support the Overshoot Hypothesis. Spondylolysis, it appears, is linked to

our lineage’s evolutionary history, especially its shift from quadrupedalism to bipedalism.

Lay summary: Spondylolysis is a relatively common vertebral pathology usually caused by a fatigue

fracture. There is reason to think that it might be connected with our lineage’s evolutionary shift from

walking on all fours to walking on two legs. We tested this idea by comparing human vertebrae with

and without spondylolysis to the vertebrae of great apes. Our results support the hypothesis. They sug-

gest that people who experience spondylolysis have vertebrae with what are effectively exaggerated

adaptations for bipedalism.
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BACKGROUND AND OBJECTIVES

Back pain is perhaps the single greatest contributor to disability

worldwide [1], with over 50% of people living in developed coun-

tries experiencing it at some point in their lives [2, 3]. As well as

affecting the well-being of many people, back pain is economic-

ally burdensome [4]. For example, back pain-associated health-

care costs in the UK have been estimated to be between £3

billion and £12 billion per year [5, 6]. Back pain’s indirect eco-

nomic impacts are also high. It has been estimated that in the

USA alone companies lose as much as $7.4 billion per year due

to back pain-related issues among workers [7]. Given its sub-

stantial individual and societal costs, investigating the causes

of back pain is an important endeavour.

A few years ago, we proposed that a common spinal path-

ology, intervertebral disc herniation (IDH), may be linked to ver-

tebral shape and ultimately to our lineage’s evolutionary shift

from quadrupedalism to bipedalism [8]. IDH can be recognized

on dry-bone vertebrae by the presence of Schmorl’s nodes,

which are depressions on the vertebral endplate [9]. In the

study, we compared the planar shape of the final thoracic and

first lumbar vertebrae of humans (Homo sapiens), chimpanzees

(Pan troglodytes), and orangutans (Pongo pygmaeus). The

H. sapiens vertebrae were divided into two groups, one with

Schmorl’s nodes and one without. We found that the Schmorl’s

nodes-bearing H. sapiens vertebrae were closer in shape to the

chimpanzee vertebrae than were the healthy H. sapiens verte-

brae. When interpreting this finding, we took into account the

fact that Pan and Homo share an ancestor to the exclusion of all

other living taxa [10]. We hypothesized that the finding means

that many people who develop IDH do so because their verte-

brae are closer to the ancestral shape for the hominin lineage,

and therefore are less well adapted for the stress placed on the

spine during bipedalism. Recently, we tested this ‘Ancestral

Shape Hypothesis’ with 3D data from extant humans and chim-

panzees and fossil hominins and obtained results that are con-

sistent with it [11].

In this article, we report a study in which we attempted to use

evolutionary theory and methods to shed light on another im-

portant spinal pathology—spondylolysis. Spondylolysis is a de-

fect or abnormality of the pars interarticularis and the lamina

and pedicle surrounding it [12] (Fig. 1). While medical research-

ers recognize several types of spondylolysis, most cases feature

a cleft of the neural arch resulting from a fatigue fracture [12].

This type of spondylolysis is sometimes called ‘isthmic spondy-

lolysis’ [13] or ‘chronic traumatic spondylolysis’ [12] but it is so

much more common than the other types that it is usually just

referred to ‘spondylolysis’. While spondylolysis can be asymp-

tomatic, it often gives rise to lower back pain [14–17]. It is the

leading cause of back pain in sub-adults [12] and can have sig-

nificant impact on athletes [17]. For example, a 2004 study

reported that almost 40% of athletes with pain related to

spondylolysis withdrew from their athletic activities [18]. Non-

human primate species do not seem to be prone to fatigue

fracture-induced spondylolysis; to date spondylolysis has only

been reported in non-human primate individuals with congeni-

tal abnormalities of the pars interarticularis [19].

Although the pathogenesis of spondylolysis is well under-

stood, its aetiology is unclear. Several investigations of spondy-

lolysis in human skeletal remains have suggested that vertebral

shape may be an important factor in determining an individu-

al’s propensity to develop the condition. For example, Grobler

et al. [20], Miyake et al. [21], and Van Roy et al. [22] found an as-

sociation between spondylolysis and facet morphology.

Specifically, they found that the facets of the fourth and fifth

lumbar vertebrae of individuals with spondylolysis were flatter

and more coronally oriented than those of healthy individuals.

In addition, the facets of individuals with spondylolysis were

found to be smaller in the transverse direction than those of

individuals without spondylolysis. So far, there is no biomech-

anical explanation for these associations [21].

Another way that vertebral shape may contribute to spondy-

lolysis has been highlighted by studies carried out by Ward

et al. [23–25]. These authors found that individuals with spondy-

lolysis tend to have reduced mediolateral spacing between the

zygapophyseal facets of adjoining vertebrae. Ward et al. [23–25]

posited that this reduced inter-facet spacing leads to the articu-

lar processes of one vertebra directly contacting the pars inter-

articularis of the subjacent one, causing a fatigue fracture and

ultimately spondylolysis.

Other researchers have found a link between spondylolysis

and lumbar lordosis. Roussouly et al. [26] used radiographs to

investigate the alignment of the spine and pelvis in individuals

Figure 1. A human final lumbar vertebrae with bilateral spondylolysis
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with and without spondylolysis and found an association be-

tween spondylolysis and increased lumbar lordosis. Masharawi

et al. [27] found that individuals with spondylolysis tend to have

fifth lumbar vertebrae that are more dorsally wedged (i.e. the

ventral border of the vertebral body is craniocaudally taller than

the dorsal border) than unaffected individuals. They suggested

that the greater dorsal wedging increases lumbar lordosis,

resulting in contact between the neural arches of the fourth and

fifth lumbar vertebrae. It is this contact, Masharawi et al. [27]

proposed, that causes the fractures that leads to spondylolysis.

Building on the finding that spondylolysis is associated with

increased lumbar lordosis and the fact that lumbar lordosis is

widely accepted to be an adaptation for bipedalism [28, 29], in

the study reported here we tested the hypothesis that spondylol-

ysis is the result of individuals having a number of vertebral

traits that are effectively exaggerated adaptations for bipedal-

ism. The idea here is that spondylolysis is the result of the op-

posite shape problem to IDH: whereas having vertebrae that

are towards the ancestral end of the range of shape variation in

H. sapiens increases the probability of the developing IDH, hav-

ing vertebrae with traits that place them towards the highly

derived end of the range of shape variation in H. sapiens

increases the probability of developing spondylolysis. We will

refer to this as the ‘Overshoot Hypothesis’ on the grounds that

it posits that individuals with spondylolysis have developed the

condition because their vertebrae have gone beyond the

lineage-specific shape optimum for bipedalism as a result of

random mutations and/or developmental problems.

Our study had three parts, all of which involved the use of 3D

geometric morphometric techniques. In the first, we tested the

prediction that the shape of H. sapiens final lumbar vertebrae

with spondylolytic lesions is significantly different from the

shape of healthy H. sapiens vertebrae. In the second, we com-

pared the shape of H. sapiens final lumbar vertebrae with and

without spondylolytic lesions to the shapes of the final lumbar

vertebrae of chimpanzees, gorillas, and orangutans. The predic-

tion tested in this part of the study was that the vertebrae of

healthy H. sapiens should be closer in shape to those of the

great apes than are H. sapiens vertebrae with spondylolytic

lesions. In the third and final part of the study, we re-ran the

previous analysis after adding a sample of final lumbar verte-

brae from H. sapiens with Schmorl’s nodes in one or more of

their vertebrae. Given what we found previously vis-à-vis

Schmorl’s nodes and vertebral shape variation in H. sapiens [9],

the prediction we tested in this analysis was that the groups

should conform to the following pattern: the H. sapiens speci-

mens with spondylolytic lesions should be least like those of

the great apes; the H. sapiens specimens with Schmorl’s nodes

should be most like those of the great apes; and the H. sapiens

specimens without either pathology should fall between the

other two groups of H. sapiens vertebrae.

METHODOLOGY

Our sample comprised the final lumbar vertebra of 97 H. sapi-

ens, 28 P. troglodytes, 29 Po. pygmaeus, and 22 Gorilla gorilla

(Table 1). These individuals are curated at the Cleveland

Museum of Natural History, the Natural History Museum

Vienna, the Museum of Natural History Berlin, the University

of Copenhagen, the University of Zurich, and the Smithsonian

Institution National Museum of Natural History. All of the

individuals were deemed to be fully adult based on epiphyseal

fusion [30]. Twenty-one of the H. sapiens vertebrae exhibited bi-

lateral spondylolysis, while another 26 were from individuals

showing evidence of IDH in the form of Schmorl’s nodes [10]

on one or more of their vertebrae. The remaining 50 H. sapiens

vertebrae were from individuals without any visible spinal

pathologies. Individuals were chosen for inclusion in the

sample based on adequate preservation of the final lumbar

vertebrae.

We recorded the x, y, z coordinates of 39 landmarks using a

Microscribe digitizing arm (Fig. 2). The landmarks were chosen

to capture the shape of the body, pedicles, and superior zygapo-

physeal facets of each vertebra. Some of them were type II land-

marks; others were type III landmarks [31]. Following Arnqvist

and Martensson [32], each vertebra was digitized twice and the

coordinates averaged. In a previous study, we demonstrated

that the error associated with this set of landmarks after they

have been recorded twice and averaged is unlikely to bias the

results of analyses [33].

We removed the confounding effects of translation, rotation,

size, and asymmetry by applying the approach outlined by

Klingenberg et al. [34]. This involved reflecting and re-labelling

the landmark coordinates, and then subjecting the data to gen-

eralized Procrustes analysis (GPA), which removes translational

and rotational effects from landmark data and scales the config-

urations to centroid size [35]. Next, we removed asymmetry by

calculating the average Procrustes coordinates between the ori-

ginal and reflected landmarks. The GPA was performed in

Table 1. Number of individuals meas-

ured for each human group and great ape
species

Group/species Females Males Total

Homo sapiens

Spondylolytic 6 15

Schmorl’s nodes-affected 12 14

Healthy 24 26 97

Pan troglodytes 15 13 28

Gorilla gorilla 9 13 22

Pongo pygmeaus 13 16 29
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Morphologika [36], and the average Procrustes coordinates

were calculated in Excel.

Having minimized the confounding effects of translation, rota-

tion, size, and asymmetry, we undertook three sets of analyses. In

the first, we compared the spondylolytic and healthy H. sapiens

specimens to see whether their shapes differ significantly. We

began by subjecting the data to principal components analysis

(PCA) and then implemented Baylac and Frieb’s [37] method for

minimizing noise from principal components (PCs) that account

for little variance. To identify low-information PCs, Baylac and

Frieb’s [37] method progressively adds PCs into a discriminant

function analysis (DFA) until cross-validation percentage (CVP)

begins to drop; only PCs that contribute positively to the CVP are

retained. Next, we applied DFA to the PCs to assess the ability of

the data to classify the specimens as either spondylolytic or

healthy [38]. Lastly, we subjected the PCs to a MANOVA to assess

the statistical significance of the differences between the groups.

We performed the PCA in Morphologika [36], the DFA in R [39],

and the MANOVA in SPSS [40].

In the second set of analyses, we compared the spondylolytic

and healthy H. sapiens vertebrae to the great ape vertebrae.

The test prediction was that the healthy H. sapiens vertebrae

should, on average, be closer in shape to the great ape vertebrae

than are the spondylolytic H. sapiens vertebrae. As before, we sub-

jected the data to PCA and then excluded uninformative PCs

using Baylac and Frieb’s [37] method. Subsequently, we calculated

the Procrustes distances between the means of the groups. The

PCA was carried out in Morphologika [36], and the Procrustes dis-

tances were computed in R [39].

In the third set of analyses, we compared the spondylolytic

H. sapiens vertebrae, the healthy H. sapiens vertebrae, the

Schmorl’s nodes-affected H. sapiens vertebrae, and the great

ape vertebrae. The test prediction was that the spondylolytic

H. sapiens vertebrae should be least like the great ape vertebrae;

the Schmorl’s nodes-affected H. sapiens specimens should be

most like the great ape vertebrae; and the healthy H. sapiens

specimens should be intermediate between the other two

groups of H. sapiens vertebrae. The analyses were the same as

those in the second set of analyses, as were the computer pro-

grams we employed.

RESULTS

Comparison of spondylolytic and healthy H. sapiens

vertebrae

Eighteen PCs were retained by the noise reduction procedure.

These PCs accounted for 91% of the shape variance.

The differences between the average shapes of the spondylo-

lytic and healthy H. sapiens vertebrae were significant, according

to the MANOVA (k 0.293, F¼ 4.662, P< 0.0001). In the DFA,

87% of the specimens were correctly classified as either spondy-

lolytic or healthy. Both of these results are consistent with the

first test prediction, which was that the two groups of human

vertebrae should be significantly different in terms of shape.

The two groups were indistinguishable on most of the 18

PCs, but differences were apparent when PC3 (10% of shape

variance) was plotted against PC1 (21% of shape variance). As

can be seen in Fig. 3, the spondylolytic vertebrae were posi-

tioned more positively on PC3 than the healthy vertebrae.

The wireframes associated with Fig. 3 indicate that, com-

pared to healthy H. sapiens vertebrae, spondylolytic H. sapiens

vertebrae tend to have more pronounced dorsal wedging, and

transverse processes that project more dorsally. They also have

pedicles that project more dorsally, narrower inter-pedicle dis-

tances, and more coronally oriented zygapophyseal facets.

Comparison of spondylolytic and healthy H. sapiens vertebrae

with great ape vertebrae

The noise reduction procedure retained 23 PCs. These PCs

accounted for 95% of the shape variance.

Figure 2. The location of the 39 landmarks used to capture the shape of the

final lumbar vertebrae
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The Procrustes distances indicated that the average shape of

the healthy H. sapiens vertebrae is closer to the average shape of

the vertebrae of the three great ape species than is the average

shape of the spondylolytic H. sapiens vertebrae (Table 2). This is

consistent with the test prediction for this set of analyses, which

was that the healthy H. sapiens vertebrae should be more similar

in shape to the great ape vertebrae than are the spondylolytic

H. sapiens vertebrae.

Once again, the groups overlapped substantially on most

PCs. However, differences were apparent when PC2 (9% of

shape variance) was plotted against PC1 (47% of shape vari-

ance). As can be seen in Fig. 4, the centre of the distribution of

the spondylolytic H. sapiens vertebrae was located more nega-

tively on both PCs than the centre of the distribution of the

healthy H. sapiens vertebrae, and the latter was located more

negatively than the centre of the distribution of the great ape

vertebrae. This pattern is consistent with the test prediction.

The wireframes in Fig. 4 indicate that the differences between

the spondylolytic and healthy H. sapiens vertebrae are the same as

those described in the first set of analyses, but they also reveal

three additional distinguishing traits. According to this set of wire-

frames, spondylolytic H. sapiens vertebrae also tend to have more

concave inferior endplates, smaller inter-facet distances, and more

caudally located facets than healthy H. sapiens vertebrae.

Expanding the comparison to include the great ape verte-

brae adds a further important finding. The wireframes indicate

that the traits that distinguish the spondylolytic H. sapiens ver-

tebrae from the healthy H. sapiens vertebrae also distinguish

the healthy H. sapiens vertebrae from the great ape vertebrae.

Thus, the wireframes reveal that the spondylolytic H. sapiens

vertebrae are more distant from the great ape vertebrae than

are the healthy H. sapiens vertebrae. This implies that the

spondylolytic H. sapiens vertebrae can be considered highly

derived in relation to the traits and is consistent with the

Overshoot Hypothesis.

Figure 3. PCA scatter-plot depicting the shape variance on PC1 and PC3 when spondylolytic H. sapiens vertebrae are compared with healthy H. sapiens verte-

brae. The wireframes illustrate the shape differences described by the PCs

Table 2. Results of the second set of

analyses

Comparison Procrustes

distance

Spondylolytic H. sapiens vs P. troglodytes 0.2184

vs Po. Pygmaeus 0.1936

vs G. gorilla 0.2297

Healthy H. sapiens vs P. troglodytes 0.1898

vs Po. Pygmaeus 0.1640

vs G. gorilla 0.2086

Procrustes distances were used to compare spondylolytic and healthy
H. sapiens vertebrae with those of P. troglodytes, Po. pygmaeus, and
G. gorilla. The Procrustes distances were generated from the 23 PCs that
yielded the highest CVP.
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Comparisons of spondylolytic, Schmorl’s nodes-affected, and

healthy H. sapiens vertebrae with those of great apes

Twenty-four PCs were retained by the noise reduction proced-

ure. These accounted for 95% of the total shape variance.

The Procrustes distances indicated that, on average, the spon-

dylolytic H. sapiens vertebrae were more different from the great

ape vertebrae than were the healthy and Schmorl’s nodes-affected

H. sapiens vertebrae, and that the latter were more similar to the

great ape vertebrae than were the spondylolytic and healthy H.

sapiens vertebrae (Table 3). This pattern is in line with the test pre-

diction for this set of analyses, which was that the spondylolytic

H. sapiens vertebrae should be least like the great ape vertebrae,

the Schmorl’s nodes-affected H. sapiens vertebrae should be most

like the great ape vertebrae, and the healthy H. sapiens vertebrae

should fall between the other two groups of H. sapiens vertebrae.

As with the previous two sets of analyses, there was no dis-

tinction between groups on most PCs. Differences could be dis-

cerned when PC2 (9% of shape variance) was plotted against

PC1 (47% of shape variance), however. As shown in Fig. 5, the

three H. sapiens groups were clearly separated from the great

apes on PC1 but not on PC2. Of the three H. sapiens groups, the

Schmorl’s nodes-affected H. sapiens are the closest to the great

apes, the healthy H. sapiens were the next closest, and the spon-

dylolytic H. sapiens were the most distant. This pattern is also

consistent with the test prediction.

The wireframes indicate that the traits that distinguish

H. sapiens vertebrae from great ape vertebrae and those that

distinguish spondylolytic H. sapiens vertebrae from healthy

H. sapiens vertebrae are the same as the traits identified in the

Figure 4. PCA scatter-plot depicting the shape variance on PC1 and PC2 when healthy and spondylolytic H. sapiens vertebrae are compared with those of

P. troglodytes, Po. pygmaeus, and G. gorilla. The wireframes illustrate the shape differences described by the PCs

Table 3. Results of the second set of

analyses

Comparison Procrustes

distance

Spondylolytic H. sapiens vs P. troglodytes 0.2182

vs Po. Pygmaeus 0.1938

vs G. gorilla 0.2294

Schmorl’s nodes-affected

H. sapiens

vs P. troglodytes 0.1823

vs G. gorilla 0.2000

vs Po. pygmaeus 0.1589

Healthy H. sapiens vs P. troglodytes 0.1894

vs G. gorilla 0.2079

vs Po. Pygmaeus 0.1639

Procrustes distances were used to compare spondylolytic H. sapiens ver-
tebrae, the vertebrae of Schmorl’s nodes-affected H. sapiens, and healthy
H. sapiens vertebrae to P. troglodytes, Po. pygmaeus, and G. gorilla verte-
brae. Procrustes distances were generated from 24 PCs with the highest
CVP.

40 | Plomp et al. Evolution, Medicine, and Public Health

D
ow

nloaded from
 https://academ

ic.oup.com
/em

ph/article/2020/1/35/5775528 by guest on 21 August 2022



previous analysis. In addition, the wireframes show that shape

differences that distinguish Schmorl’s nodes-affected H. sapiens

vertebrae from those of spondylolytic and healthy H. sapiens are

the same as those that distinguish great ape vertebrae from

spondylolytic and healthy H. sapiens vertebrae. Specifically, the

wireframes indicate that, compared with both the spondylolytic

and healthy H. sapiens vertebrae, the Schmorl’s nodes-affected

H. sapiens vertebrae tend to have less pronounced dorsal wedg-

ing; transverse processes that project more laterally; laterally

projecting pedicles; zygapophyseal facets that are more crani-

ally located; narrower inter-pedicle distances; narrower inter-

facet distances; and more concave inferior endplates. In all

these traits, the Schmorl’s nodes-affected H. sapiens vertebrae

are closer in shape to the great ape vertebrae than are the other

two groups of H. sapiens vertebrae. This pattern is consistent

with the test prediction as well.

DISCUSSION

Summary of results

In the study reported here, we tested the Overshoot

Hypothesis for spondylolysis, which holds that having verte-

brae that are towards the highly derived end of the range of

shape variation in H. sapiens predisposes individuals to de-

velop spondylolysis. To test the hypothesis, we compared the

3D shape of healthy and pathological H. sapiens final lumbar

vertebrae to each other and to great ape final lumbar verte-

brae. Our analyses yielded three main findings. First, we found

that the average shape of H. sapiens vertebrae with spondyloly-

sis is significantly different from the average shape of healthy

H. sapiens vertebrae. We also found that the healthy H. sapiens

specimens in our sample were closer in shape to the great ape

specimens than were the spondylolytic H. sapiens specimens.

Lastly, we found that the spondylolytic vertebrae fell at the op-

posite end of the range of shape variation within H. sapiens to

the vertebrae of individuals with evidence of having experi-

enced IDH, which we have previously shown is associated

with possession of an ancestral vertebral shape [8, 9]. Taken

together, these findings suggest that individuals who suffer

from spondylolysis do indeed have vertebrae that lie at the

highly derived end of the range of variation within H. sapiens.

As such, they support the Overshoot Hypothesis.

Vertebral traits associated with spondylolysis

Three of the traits that our analyses indicate are associated with

spondylolysis have been identified in previous studies—

increased dorsal wedging, narrower inter-facet distances, and

zygapophyseal facets that are more coronally oriented [23–25,

27]. The analyses also identified five traits that have not

previously been linked with spondylolysis, to the best of our

Figure 5. PCA scatter-plot depicting the shape variance on PC1 and PC2 when spondylolytic, Schmorl’s nodes-affected, and healthy H. sapiens are compared

with those of P. troglodytes, G. gorilla, and Po. pygmeaus. The wireframes illustrate the shape differences described by each PC
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knowledge. These are dorsally projecting pedicles, narrower

inter-pedicle distances, caudally located zygapophyseal facets,

concave inferior endplates, and dorsally projecting transverse

processes.

It seems likely that two of the newly identified traits—nar-

rower inter-pedicle distance and dorsal projection of the

pedicles—are related to narrow inter-facet distances, which

Ward et al. [23–25] found to be associated with spondylolysis.

Both the projection of the pedicles and the inter-pedicle dis-

tance can be expected to influence the width of the neural arch

and this in turn can be expected to influence the distance be-

tween facets. Specifically, pedicles that are closer together and

project dorsally (rather than flaring laterally) can be expected to

contribute to a narrower neural arch and this can be expected to

lead to narrower inter-facet distances.

There is also reason to think that the more caudal location of

the zygapophyseal facets may increase the risk of spondylolysis

by reducing spacing between the inferior facets of the fourth

lumbar vertebra and the superior facets of the subjacent, fifth

lumbar vertebra. Insufficient subjacent spacing between the

neural arches of the fourth and fifth lumbar vertebrae likely

would result in crowding of the joints and lead to increased con-

tact between the inferior facets of the fourth vertebra and the

pars interarticularis of the fifth lumbar vertebra. This can be

expected to increase the probability of fatigue fractures that can

eventually lead to spondylolysis.

The shape of the vertebral endplates is thought to play a

role in dispersing compressive stress in the lower lumbar ver-

tebrae [41, 42]. Liu et al. [41] found that endplates with shal-

lower concavities decrease the amount of stress placed on the

zygapophyseal facets and neural arch, while He et al. [42]

found that less concave endplates are better suited to with-

stand compressive strains on the vertebral disc and body. One

corollary of these findings is that the facets and neural arches

of vertebrae with deeper concavities, such as the spondylolytic

vertebrae in our study, may have more stress placed on them.

The increased stress on these elements can be expected to in-

crease the probability of fatigue fractures and ultimately

spondylolysis.

At the moment, the more dorsal orientation of the trans-

verse processes does not appear to be causally related to

spondylolysis. Unlike the other vertebral elements under con-

sideration, the lumbar transverse processes do not seem to

play a significant role in withstanding stress or allowing ad-

equate spacing between vertebrae [43]. Their primary function

is to serve as attachment sites for the spinae muscles, which

maintain lordosis during bipedal posture and gait [43–45]. A

dorsal projection of the lumbar transverse processes would

increase the lever arms of the erector spinae muscles [46–48],

increasing the ability of the muscles to maintain lumbar lor-

dosis during bipedalism [49, 50]. While this is consistent with

the idea that vertebrae with spondylolysis tend to have highly

derived traits, there is no obvious biomechanical reason why

it should increase the propensity to develop spondylolysis.

Thus, we suggest that, for the time being, the more dorsal orien-

tation of the transverse processes should be considered to be cor-

related with spondylolysis but not causally related to it.

Future directions

Given the results of the study reported here, there are three ob-

vious potential avenues for research in the future. First, it would

be useful to test the hypothetical biomechanical links between

the newly identified vertebral shape traits and spondylolysis.

This could be accomplished using medical imaging technology

and 3D morphometrics to investigate the interaction between

bipedalism and vertebral shape. Such a study might be able to

identify patterns in human posture and locomotion that interact

with vertebral shape and spinal musculature in such a way that

they predispose individuals to spondylolysis. Potentially this

could help clinicians and sports therapists identify individuals

who are at a greater risk of experiencing fatigue fractures in

their lower lumbar vertebrae. Athletes would be an obvious

focus for such a study.

Second, it would be useful to repeat the analyses presented

here with vertebrae of extinct hominins, such as

Australopithecus and Paranthropus, included in the sample.

Plomp et al. [11] carried out a similar study in which they tested

the Ancestral Shape Hypothesis by comparing the shape of ver-

tebrae from humans with and without Schmorl’s nodes with

those of several extinct hominins. They found that vertebrae

from humans with Schmorl’s nodes were generally closer in

shape to the extinct hominin vertebrae than were healthy

human vertebrae. They interpreted these findings as supporting

the Ancestral Shape Hypothesis. The Overshoot Hypothesis

could be tested in the same way. If such a study were to find

that vertebrae of extinct hominins share more similarities in

shape with vertebrae of healthy H. sapiens and great apes than

with spondylolytic H. sapiens vertebrae, this would provide fur-

ther support for the hypothesis.

Lastly, the findings of the present study and those we

obtained in our previous studies [8, 11] show that analysing a

spinal pathology within an evolutionary framework can provide

valuable insight into the pathology’s aetiology. Given this, it

would be sensible to investigate whether other spinal patholo-

gies are associated with particular vertebral shapes and whether

those shapes lie at one end or the other of the range of vertebral

shape variation in H. sapiens. Indeed, in view of the fact that the

shift from quadrupedalism to bipedalism affected multiple

regions of the skeleton, it would be sensible to go beyond spinal

pathologies and examine other skeletal pathologies.
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CONCLUSIONS

The present study sought to shed light on the aetiology of the

spinal pathology known as spondylolysis. Using 3D data

recorded on the final lumbar vertebrae of three groups of

H. sapiens and three great ape species, we tested the Overshoot

Hypothesis, which proposes that people develop spondylolysis

because their vertebrae are at the highly derived end of the

range of shape variation within H. sapiens. The results we

obtained were clear-cut. We found that H. sapiens vertebrae with

spondylolysis are significantly different in terms of shape from

healthy H. sapiens vertebrae, and that H. sapiens vertebrae with

spondylolysis are more distant from great ape vertebrae than

are healthy H. sapiens vertebrae. We also found that H. sapiens

vertebrae with spondylolysis are at the opposite end of the

range of variation than vertebrae with Schmorl’s nodes, which

previous studies have revealed are at the ancestral end of the

range of variation [8, 9]. Together, these three findings strongly

support the Overshoot Hypothesis. More generally, the study

adds weight to the idea that where an individual’s vertebrae sit

on the spectrum of vertebral shape variation within H. sapiens

plays a role in their propensity to develop different spinal path-

ologies [8, 11]. This could have important implications for the

prevention and management of back pain.
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33. Plomp K, Viðarsdóttir US, Dobney K et alet al.Potential adaptations for

bipedalism in the thoracic and lumbar vertebrae of Homo sapiens: a

3D comparative analysis. J Hum Evol 2019; 137:102693.

34. Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric

structures: quantifying variation among individuals and asymmetry.

Evolution 2002;56:1909–20.

35. Slice DE. Geometric morphometrics. Ann Rev Anthropol 2007;36:261–81.

36. O’Higgins P, Jones N. Tools for Statistical Shape Analysis. Hull: York

Medical School, 2006.

37. Baylac M, Frieb M. Fourier descriptors, procrustes superimposition,

and data dimensionality: an example of cranial shape analysis in

modern human populations. In: Slice D. (ed.). Modern Morphometrics

in Physical Anthropology, Part 1 Theory and Methods. New York: Kluwer,

2005, 145–165.

38. Kovarovic K, Aiello LC, Cardini A et al. Discriminant function analyses

in archaeology: are classification rates too good to be true? J Archaeol

Sci 2011;38:3006–18.

39. R Development Core Team. R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical

Computing, 2018.

40. SPSS Inc. SPSS Base 8.0 for Windows User’s Guide. Chicago: SPSS Inc, 2016.

41. Liu YS, Chen QX, Liu SB. Endplate concavity variation of lumbar mo-

tion segments: a finite element analysis. J Clin Rehab Tis Engin Res

2007;12:8765–70.

42. He X, Liang A, Gao W et al. The relationship between concave angle of

vertebral endplate and lumbar intervertebral disc degeneration. Spine

2012;37:E1068–73.

43. Shapiro LJ, Jungers WL. Back muscle function during bipedal walking

in chimpanzee and gibbon: implications for the evolution of human

locomotion. Am J Phys Anthropol 1988;77:201–12.

44. ——— Electromyography of back muscles during quadrupedal and bi-

pedal walking in primates. Am J Phys Anthropol 1994;93:491–504.

45. Latimer B, Ward CV. The thoracic and lumbar vertebrae. In: Walker A,

Leakey R (eds.). The Nariokotome Homo Erectus Skeleton. Berlin:

Springer, 1993, 266–93.

46. Bogduk N, Macintosh JE, Pearcy MJ. A universal model of the lumbar

back muscles in the upright position. Spine 1992;17:897–913.

47. Sanders WJ. Comparative morphometric study of the australopithecine

vertebral series Stw-H8/H41. J Hum Evol 1998;34:249–302.
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