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Abstract. This paper proposes spongent – a family of lightweight
hash functions with hash sizes of 88 (for preimage resistance only), 128,
160, 224, and 256 bits based on a sponge construction instantiated with
a present-type permutation, following the hermetic sponge strategy.
Its smallest implementations in ASIC require 738, 1060, 1329, 1728,
and 1950 GE, respectively. To our best knowledge, at all security lev-
els attained, it is the hash function with the smallest footprint in hard-
ware published so far, the parameter being highly technology dependent.
spongent offers a lot of flexibility in terms of serialization degree and
speed. We explore some of its numerous implementation trade-offs.

We furthermore present a security analysis of spongent. Basing the
design on a present-type primitive provides confidence in its security
with respect to the most important attacks. Several dedicated attack
approaches are also investigated.

Keywords: Hash function, lightweight cryptography, low-cost cryptog-
raphy, low-power design, sponge construction, present, spongent, RFID.

1 Introduction

1.1 Motivation

As crucial applications go pervasive, the need for security in RFID and sensor
networks is dramatically increasing, which requires secure yet efficiently imple-
mentable cryptographic primitives including secret-key ciphers and hash func-
tions. In such constrained environments, the area and power consumption of
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a primitive usually comes to the fore and standard algorithms are often pro-
hibitively expensive to implement.

Once this research problem was identified, the cryptographic community de-
signed a number of tailored lightweight cryptographic algorithms to specifi-
cally address this challenge: stream ciphers like Trivium [12,10], Grain [13,14],
and Mickey [2] as well as block ciphers like SEA [26], DESL, DESXL [21],
HIGHT [16], mCrypton [22], KATAN/KTANTAN [11], and present [5] — to
mention only a small selection of the lightweight designs.

Rather recently, some significant work on lightweight hash functions has been
also performed: [6] describes ways of using the present block cipher in hash-
ing modes of operation and [1] takes the approach of designing a dedicated
lightweight hash function Quark based on a sponge construction [9,3]. How-
ever, while for the stream and block ciphers, the designs have already closely
approached the minimum ASIC hardware footprint theoretically attainable, it
does not seem the case for lightweight hash functions so far. This paper illus-
trates this point by proposing the lightweight hash function spongent with a
considerably smaller footprint than SHA-2, SHA-3 finalists, present in hashing
modes, and Quark. Similarly to Quark, a part of this advantage comes from
a reduced level of preimage and second preimage security, while maintaining the
standard level of collision resistance.

1.2 Design Considerations for a Lightweight Hash Function

The standard security requirements for a hash function with an n-bit output
size are collision resistance of 2n/2 as well as preimage and second-preimage
resistance of 2n.

The footprint of a hash function is mainly determined by
1. the number of state bits (incl. the key schedule for block cipher based designs)

as well as
2. the size of functional and control logic used in a round function.

For highly serialized implementations (usually used to attain low area and power),
the logic size is normally rather small and the state size dominates the total area
requirements of the design.

As shown in [6], using a lightweight block cipher in a hashing mode (single
block length such as Davies-Meyer or double block length such as Hirose) is not
necessarily an optimal choice for reducing the footprint, the major restriction
being the doubling of the datapath storage requirement due to the feed-forward
operation. At the same time, no feed-forward is necessary for the sponge con-
struction.

In a permutation-based sponge construction, let r be the rate (the number
of bits input or output per one permutation call) and c be the capacity (inter-
nal state bits not used for input or output). The design of [1] as well as the
works [3,4,9] convincingly demonstrate that a permutation-based sponge con-
struction can allow to almost halve the state size for n ≥ c and reasonably
small r. In this case, if the underlying permutation does not have any structural
distinguishers (thus, the sponge construction being hermetic), the preimage and
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second-preimage resistances are reduced to 2n−r and 2c/2, correspondingly, while
the collision resistance remains at the level of 2c/2. As in most embedded sce-
narios, where a lightweight hash function is likely to be used, the full second-
preimage security is not a necessary requirement, we will take this approach in
the design of spongent. For relatively small rate r, the loss of preimage security
is limited.

However, while using this novel idea of reducing the state size to minimize
(1), the Quark hash function does not appear to provide an optimal logic size,
which is mainly due to the Boolean functions with many inputs used in its round
transform. spongent keeps the round function very simple which reduces the
logic size close to the smallest theoretically possible, thus, minimizing (2) and
resulting in a significantly more compact design.

As to the output hash size n, we opt for 5 variants of spongent covering
most security applications in the field. spongent-88 is designed for extremely
restricted scenarios and low preimage security requirements. It can be used e.g. in
some RFID protocols and for PRNGs. spongent-128 and spongent-160 might
be used in highly constrained applications with low and middle requirements for
collision security. The latter also provides compatibility to the SHA-1 interfaces.
The parameters of spongent-224 and spongent-256 correspond to those of
a subset of SHA-2 and SHA-3 to make spongent compatible to the standard
interfaces in usual lightweight embedded scenarios.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 describes the design
of spongent and gives a design rationale. Section 3 presents some results of
security analysis, including proven lower bounds on the number of differentially
active S-boxes, best differential characteristics found, rebound attacks, and linear
attacks. In Section 4, the implementation results are given for a range of trade-
offs. We conclude in Section 5.

2 The Design of spongent

spongent is a sponge construction based on a wide present-type permutation.
Given a finite number of input bits, it produces an n-bit hash value. A design
goal for spongent is to follow the hermetic sponge strategy (no structural dis-
tinguishers for the underlying permutation are allowed).

2.1 Permutation-Based Sponge Construction

spongent relies on a sponge construction – a simple iterated design that takes
a variable-length input and can produce an output of an arbitrary length based
on a permutation πb operating on a state of a fixed number b of bits. The size
of the internal state b = r + c ≥ n is called width, where r is the rate and c the
capacity.

The sponge construction proceeds in three phases (see also Figure 1):
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Fig. 1. Sponge construction based on a b-bit permutation πb with capacity c bits and
rate r bits. mi are r-bit message blocks. hi are parts of the hash value.

– Initialization phase: the message is padded by a single bit 1 followed by a
necessary number of 0 bits up to a multiple of r bits (e.g., if r = 8, then the
1-bit message ‘0’ is transformed to ‘01000000’). Then it is cut into blocks of
r bits.

– Absorbing phase: the r-bit input message blocks are xored into the first
r bits of the state, interleaved with applications of the permutation πb.

– Squeezing phase: the first r bits of the state are returned as output, in-
terleaved with applications of the permutation πb, until n bits are returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing phase.
In all spongent variants, except spongent-88, the hash size n equals capacity
c. The message chunks are xored into the r rightmost bit positions of the state.
The same r bit positions form parts of the hash output.

Let a permutation-based sponge construction have n ≥ c and c/2 > r which
is fulfilled for the parameter choices of all spongent variants. Then the works
[3,4,9] imply the preimage security of 2n−r as well as the second preimage and
collision securities of 2c/2 if this construction is hermetic (that is, if the underly-
ing permutation does not have any structural distinguishers). The best preimage
attack we are aware of in this case has a computational complexity of 2n−r+2c/2.

2.2 Parameters

We propose five variants of spongent with five different security levels:

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds preimage 2nd preimage collision

spongent-88 88 88 80 8 45 80 40 40
spongent-128 128 136 128 8 70 120 64 64
spongent-160 160 176 160 16 90 144 80 80
spongent-224 224 240 224 16 120 208 112 112
spongent-256 256 272 256 16 140 240 128 128
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2.3 present-type Permutation

The permutation πb : F
b
2 → F

b
2 is an R-round transform of the input state of b

bits that can be outlined at a top-level as:
for i = 1 to R do

state← lCounter b(i)⊕ state⊕ lCounterb(i)
state← sBoxLayerb(state)
state← pLayerb(state)

end for
where sBoxLayerb and pLayerb describe how the state evolves. For ease of
design, only widths b with 4|b are allowed. The number R of rounds depends on
block size b and can be found in Subsection 2.2. lCounterb(i) is the state of an
LFSR dependent on b at time i which yields the round constant in round i and
is added to the rightmost bits of state. lCounter b(i) is the value of lCounterb(i)
with its bits in reversed order and is added to the leftmost bits of state.

The following building blocks are generalizations of the present structure to
larger b-bit widths:

1. sBoxLayerb: This denotes the use of a 4-bit to 4-bit S-box S : F
4
2 → F

4
2

which is applied b/4 times in parallel. The S-box fulfills the present S-box
criteria [5]. The action of the S-box in hexadecimal notation is given by the
following table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

2. pLayerb: This is an extension of the (inverse) present bit-permutation and
moves bit j of state to bit position Pb(j), where

Pb(j) =
{

j · b/4 mod b− 1, if j ∈ {0, . . . , b− 2}
b− 1, if j = b− 1.

3. lCounterb: This is one of the three �log2 R�-bit LFSRs. The LFSR is clocked
once every time its state has been used and its final value is all ones. If ζ is
the root of unity in the corresponding binary finite field, the 6-bit LFSR used
in spongent-88 is defined by the primitive trinomial ζ6 + ζ5 +1 (initialized
with ‘000101’). The 7-bit LFSR with a primitive trinomial of ζ7 + ζ6 + 1 is
used in spongent-128, spongent-160, and spongent-224 and respectively
initialized with ‘1111010’, ‘1000101’, and ‘0000001’. spongent-256 uses an
8-bit LFSR based on the pentanomial ζ8 +ζ4+ζ3+ζ2+1 and it is initialized
with ‘10011110’.

2.4 Design Rationale

Permutation. The 4-bit S-box is the major block of functional logic in a se-
rial low-area implementation of spongent, the bit permutation requiring some
additional space in silicon. Its simplicity and small size minimize the area and
power consumption on the logic side. The structures of the bit permutation and
the S-box in spongent make it possible to prove
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Theorem 1. Any 5-round differential characteristic of the underlying permuta-
tion in spongent-{88, 128, 160, 224, 256} has a minimum of 10 active S-boxes.

Proof. The statements for spongent-{88, 128, 160, 224, 256} can directly be
proven by applying the same technique used in [5, Appendix III].

The concept of counting active S-boxes is central to the differential cryptanalysis.
The minimum number of active S-boxes relates to the maximum differential
characteristic probability of the construction. Since in the hash setting there are
no random and independent key values added between the rounds, this relation
is not exact (in fact that it is even not exact for most practical keyed block
ciphers). However, differentially active S-boxes are still the major technique used
to evaluate the security of SPN-based hash functions.

An important property of the spongent S-box is that its maximum
differential probability is 2−2. This fact and the assumption of the indepen-
dency of difference propagation in different rounds yield an upper bound on
the differential characteristic probability of 2−20 over 5 rounds for spongent-
{88, 128, 160, 224, 256}, which follows from the claims of Theorem 1.

Theorem 1 is used to determine the number R of rounds in permutation πb:
R is chosen in a way that πb provides at least b active S-boxes. Other types of
analysis are performed in the next section.

3 Security Analysis

In this section, we discuss the security of spongent against the currently known
cryptanalytic attacks by applying the most important state-of-the-art methods
of cryptanalysis and investigating their complexity.

3.1 Resistance against Differential Cryptanalysis

Here we analyze the resistance of spongent against differential attacks where
Theorem 1 plays a key role providing a lower bound on the number of active
S-boxes in a differential characteristic. The similarities of the spongent permu-
tations and the basic present cipher allow to reuse some of the results obtained
for present in [5]. More precisely, the results on the number of differentially ac-
tive S-boxes over 5 rounds will hold for all spongent variants which is reflected
in Theorem 1.

For all spongent variants, we found that those 5-round bounds are actually
tight. We present the characteristics attaining them in Table 1 as well as in
Appendix A.

3.2 Collision Attacks

A natural approach to obtain a collision for a sponge construction is to inject
a difference in a message block and then cancel the propagated difference by
a difference in the next message block, i.e., (0 . . . 0||Δmi)

π→ (0 . . . 0||Δmi+1).
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Table 1. Differential characteristics with lowest numbers of differentially active S-
boxes (ASN). The probabilities are calculated assuming the independency of round
computations.

# of spongent-88 spongent-128 spongent-160 spongent-224 spongent-256
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

5 10 2−21 10 2−22 10 2−21 10 2−21 10 2−20

10 20 2−47 29 2−68 20 2−50 20 2−43 − −
15 30 2−74 - - 30 2−79 30 2−66 − −

For this purpose, we follow a narrow trail strategy using truncated differential
characteristics. We start from a given input difference (some difference restricted
to S-boxes that the message block is xored into) and look for all paths that
go to a fixed output difference (also located in the bitrate part of the state).
Based on our experiments, even by using truncated differential characteristics,
the probability of such a path is quite low and it is not possible to attack the
full number of rounds (see Appendix A).

The rebound attack [24], a recent technique for cryptanalysis of hash func-
tions, is applicable to both block cipher based and permutation based hash
constructions. It consists of two main steps: the inbound phase where the free-
dom is used to connect the middle rounds by using the match-in-the-middle
technique and the outbound phase where the connected truncated differentials
are calculated in both forward and backward directions.

Dedicated Rebound Attack on 6 Rounds of spongent-88. Here we de-
scribe a dedicated rebound attack on spongent-88. For other hash sizes, a
similar method is applicable. The path for this attack is shown in Figure 2.

– Inbound phase: In the forward direction, we start from the input of the sec-
ond round. We generate 228 structures as follows: We restrict the input of the
active S-boxes to the eight values such that the difference ΔS : [{Ox2, Ox3} →
Oxf] and to the four values such that the difference ΔS : [Ox4→ Oxf] and we
generate the passive bits at random. For each fixed value of the passive part,
we can obtain (23)2 · (22)2 = 210 pairs, so we repeat the procedure 218 times.
At the input of round 3, we have 16 active S-boxes and 6 passive S-boxes,
and it is guaranteed to have all S-boxes active at the input of round 4. In
the backward direction, we start from the input of the S-boxes in round 6.
Similarly, we generate 228 structures by restricting the values of the active
S-boxes to four values such that the difference ΔS−1 : [Ox1 → {Oxb, 0xd}].
Again, we can generate (22)11 = 222 pairs for each value of the passive part,
hence we choose random 26 values. Then at the input of the fifth round all
S-boxes are active and with high probability they will still be active after
the permutation layer.

– Merging phase: We look for a matching input/output difference of the S-
box layer in round 4 using the precomputed difference distribution table. We
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Fig. 2. Differential path for the rebound attack (black: starting S-boxes with condi-
tions, grey: active S-boxes, S: sBoxLayer88, P: pLayer88 )

can find a match with probability of 2−2.4 for each word that has one fixed
bit with zero difference and a match with probability 23.6 for each word that
has two fixed bit zero. Therefore, we can find an entire differential path with
probability (2−2.4)20 · (2−3.6)2 = 2−55.2. Hence we expect to find at least one
solution.

– Outbound phase: We further extend the differential path backwards
(from round 2 to round 1) and forwards (to the end of round 6) with
probability 1.

3.3 Linear Attacks

The most successful attacks, the attacks that can break the highest number of
rounds, for the block cipher present are attacks based on linear approxima-
tions. In particular the multi-dimensional linear attack [7] and the statistical
saturation attack [8] claim to break up to 26 rounds. It was shown in [20] that
both attacks are closely related. Moreover, the main reason why these attacks
are the most successful attacks on present so far, is the existence of many lin-
ear trails with only one active S-box in each round. It is not immediately clear
how linear distinguishers on the spongent permutation πb could be transferred
into collision or (second) pre-image attacks on the hash function. However, as we
claim that spongent is a hermetic sponge construction, the existence of such
distinguishers has to be excluded. So the spongent S-box was chosen in a way
that allows for at most one trail with this property given a linear approximation.
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4 Hardware Implementations

Using the most serialized implementation, the hash functions spongent-{88,
128, 160, 224, 256} can be implemented with 738 GE, 1060 GE, 1329 GE,
1728 GE, and 1950 GE, respectively, which is smaller than the most compact
Quark designs [1] of respective sizes. Furthermore, even the spongent-256
hash function is more compact than s-Quark having a hash output of 224 bits.
Though some of this advantage is at the expense of a performance reduction,
also less serialized (and, thus, faster) implementations result in area requirements
significantly lower than those of the corresponding Quark variants.

In order to provide very compact implementations, we first focus on seri-
alized designs. We explore different datapath sizes (d) for each of the spon-

gent variants: for spongent-{88, 128, 160} we implement d ∈ {4, 8, 16, 32},
d ∈ {4, 8, 16, 68}, d ∈ {4, 8, 16, 44, 88}, respectively, while for spongent-{224,
256} we implement d ∈ {4, 8, 16, 32, 64}. An architecture representing our se-
rialized datapath is depicted in Fig. 3(a). The control logic consists of a single
counter for the cycle count and some extra combinational logic to drive the select
signals of the multiplexers. In order to further reduce the area we use so-called
scan registers (6.25 GE in our library), which act as a combination of two input
multiplexer and an ordinary register1. Instead of providing a reset signal to each
register separately, we use two zero inputs at the multiplexers M1 and M2 to cor-
rectly initialize all the registers. This additionally reduces hardware resources, as
the scan registers with a reset input approximately require additional GE per bit
of storage. With gi we denote the value of lCounterb(i) in round i. lCounterb(i)
is implemented as an LFSR as explained in Subsection 2.3. The input of the
message block m, denoted with dashed line, is omitted in some cases, i.e. d ≥ r.
The pLayer module requires no additional logic except some extra wiring.

Additionally, we implement all the spongent variants as depicted in Fig. 3(b).
Every round now requires a single clock cycle, therefore resulting in faster, yet
rather compact designs.
1 Scan registers are typically used to provide scan-chain based testability of the circuit.

Due to the security issues of scan-chain based testing [28], other methods such as
Built-In-Self-Test (BIST) are recommended for testing the cryptographic hardware.
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Table 2. Hardware performance of the spongent family and comparison with state-
of-the-art lightweight hash designs. The nominal frequency of 100 kHz is assumed in
all cases and the power consumption is therefore adjusted accordingly.

Hash function
Security (bit) Hash Cycles Datapath Process Area Throughput Power

Pre. Coll. 2nd Pre. (bit) (bit) (μm) (GE) (kbps) (μW)

spongent-88 80 40 40 88
990 4 0.13 738 0.81 1.57
45 88 0.13 1127 17.78 2.31

spongent-128 120 64 64 128
2380 4 0.13 1060 0.34 2.20
70 136 0.13 1687 11.43 3.58

spongent-160 144 80 80 160
3960 4 0.13 1329 0.40 2.85
90 176 0.13 2190 17.78 4.47

spongent-224 208 112 112 224
7200 4 0.13 1728 0.22 3.73
120 240 0.13 2903 13.33 5.97

spongent-256 240 128 128 256
9520 4 0.13 1950 0.17 4.21
140 272 0.13 3281 11.43 6.62

u-Quark [1] 120 64 64 128
544 1 0.18 1379 1.47 2.44
68 8 0.18 2392 11.76 4.07

d-Quark [1] 144 80 80 160
704 1 0.18 1702 2.27 3.10
88 8 0.18 2819 18.18 4.76

s-Quark [1] 192 112 112 224
1024 1 0.18 2296 3.13 4.35
64 16 0.18 4640 50.00 8.39

dm-present-80 [6] 64 32 64 64
547 4 0.18 1600 14.63 1.83
33 64 0.18 2213 242.42 6.28

dm-present-128 [6] 64 32 64 64
559 4 0.18 1886 22.90 2.94
33 128 0.18 2530 387.88 7.49

h-present-128 [6] 128 64 64 128
559 8 0.18 2330 11.45 6.44
32 128 0.18 4256 200.00 8.09

c-present-192 [6] 192 96 192 192
3338 12 0.18 4600 1.90 -
108 192 0.18 8048 59.26 9.31

Keccak-f[400] [17] 160 80 160 160
1000 16 0.13 5090 14.40 11.50
20 16 0.13 10560 720.00 78.10

Keccak-f[200] [17] 128 64 128 128
900 8 0.13 2520 8.00 5.60
18 8 0.13 4900 400.00 27.60

SHA-1 [18] 160 80 160 160 450 32 0.25 6812 113.78 11.00
SHA-256 [19] 256 128 256 256 490 32 0.25 8588 104.48 11.20

BLAKE [15] 256 128 256 256 816 32 0.18 13575 62.79 11.16
Grøstl [27] 256 128 256 256 196 64 0.18 14622 261.14 221.00

Next, we present our hardware figures of all the spongent variants. For
the purpose of extensive hardware evaluation we use Synopsys Design Compiler
version D-2010.03-SP4 and target the High-Speed UMC 0.13 μm CMOS process
provided by Faraday Technology Corporation (fsc0h d tc). We provide synthesis
results only. Our reasoning follows a simple design decision: we provide a large
design space, focusing on multitude of design choices and discuss in detail our
implementation strategy. Therefore, we rather spend our efforts by exploring a
large set of hardware designs than by performing a time-consuming place and
route process for each of the design separately. Moreover, the physical size of
the designs (in terms of gate equivalences) is expected to remain the same even
after the place and route is performed. We expect slightly worse results only
with respect to the overall power consumption.
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Fig. 4. (a) Area versus throughput trade-off of the spongent hash family. (b) Com-
parison with state-of-the-art lightweight hash functions.

The power is estimated by observing the internal switching activity of the
complete design. Using Mentor Graphics ModelSim version 10.0 SE, we simu-
late the circuits’ behavior for very long messages and generate the VCD (Value
Change Dump) files. The VCD files are then converted to the backward SAIF
(Switching Activity Interchange Format) files and used within Synopsys Design
Compiler for the accurate estimation of the mean power consumption. A typical
frequency of 100 kHz is used for all measurements.

Table 2 reports hardware figures obtained using the aforementioned method-
ology. Besides having a very small footprint, another remarkable result is that
the most serialized versions of spongent-{88, 128, 160, 224, 256} are built of
89.3%, 92.5%, 93.8%, 95%, and 96% sequential logic, respectively. For the sake
of comparison, we include figures for several state-of-the-art lightweight hash
functions. We also include two out of five SHA-3 finalists for which the data of
compact hardware implementations is publicly available. We do not compare our
design with software-like solutions that benefit from using an external memory
for storing the intermediate data. Figure 4(a) illustrates the wide spectrum of
our explored design space, where a typical trade-off between speed and area is
scrutinized. Using the same metrics, we compare our design with state-of-the-
art lightweight hash functions (Fig. 4(b)). For the same level of security, the
spongent family tends to require much smaller area than its counterparts.

5 Conclusion

In this paper, we have proposed the family of lightweight hash functions spon-

gent with hash sizes 88, 128, 160, 224, and 256 bits. Its serialized implementa-
tions in ASIC hardware require 738, 1060, 1329, 1728, and 1950 GE, respectively.
Thus, spongent has the smallest footprint among all hash functions published
so far at all security levels it attains, though area requirements are highly de-
pendent on technology used.
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A Some Differential Paths

Table 3. Sample differential paths for spongent−{88, 128}

spongent-88 spongent-128

Round Difference Prob Difference Prob

0 0500000000000009000000 2−21 0000000000000000900090000000000000 2−22

5 0000000400800000000000 0000000000008000400000000000000000

0 9000900000000000000000 2−47 0000000550000000000003300000000000 2−68

10 20000000000080000A0000 0000040040000000100000000000001010

0 9000900000000000000000 2−74

15 0000000080100000000000

Table 4. Sample differential paths for spongent−{160, 224, 256}

spongent-160

Round Difference Prob

0 06000000060000000000000000000000000000000000 2−21

5 00000000000000000400800000000000000000000000

0 90000000000090000000000000000000000000000000 2−50

10 00800000000000000000000020000000000A00000000

0 00000000000000000000000000003000300000000000 2−79

15 00000000000000000080100000000000000000000000

spongent-224

Round Difference Prob

0 090000000000090000000000000000000000000000000000000000000000 2−21

5 000000020004000000000000000000000000000000000000000000000000

0 000000000000000000000000000000000009000000000009000000000000 2−43

10 008000000000000000000000000000001000000000000009000000000000

0 000000001001000000000000000000000000000000000000000000000000 2−66

15 008000000000000000000000000000001000000000000009000000000000

spongent-256

Round Difference Prob

0 00000000000000000000000000000000000000000000000000000660000000000660 2−20

5 00000000020001000000000000000000000000000000000000000000000020001000
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