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Abstract

With increasing rates of survival throughout the past several years, stroke remains one of the 

leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of 

recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery 

is generally incomplete and variable amongst individuals. Typically, the best recovery outcomes 

entail the restitution of function in injured but surviving neural matter. An assortment of 

restorative therapies exists or is under development with the goal of potentiating restitution of 

function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, 

which often rely on mechanisms similar to those observed during spontaneous recovery. 

Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and 

therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in 

research and clinical settings will enable a multimodal approach to probing brain state and 

predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and 

therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring 

several potential restorative therapies and biomarkers.
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Introduction

Stroke alters the landscape of the brain, compromising the function of various systems and 

structures. In conjunction with increasing survival rates over the past several years, stroke 

remains one of the leading causes of long-term disability in the United States and other 

developed countries [1]. The financial repercussions associated with stroke and subsequent 
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disability are substantial, totaling over 30 billion dollars annually [2]. Behavioral deficits 

following stroke span domains of cognition, sensation, vision, and language with motor-

related impairments most abundant [3]. Most patients experience some degree of 

spontaneous recovery, defined by Kwakkel et al. [4] as the amount of improvement in body 

function and activity determined solely by time.

Spontaneous recovery, however, is often incomplete and the recovery rates of neurological 

function vary. Impairments of the motor system are most frequently diagnosed and, 

consequently, most studied in the literature [3]. The majority of motor function gains occur 

within the first three months post-stroke [4–7]. Whereas, recovery of visuospatial neglect 

and orientation follow 5–6 months after stroke [8–10], and gains in cognition [11], memory 

[12], and language function [13, 14] may extend over a period of months to years post-

stroke. Individual factors such as genetics [15–17], previous medical comorbidities, initial 

severity of deficits, and age [18], stroke mechanism, neuroanatomical details such as lesion 

size and location, and areas spared injury [19–22] impact recovery.

To address the underlying complexity of recovery and stroke heterogeneity, a wide spectrum 

of restorative treatments encompassing drugs, stem cells, behavioral therapies, robotics, and 

non-invasive brain stimulation exists [23]. Accompanying this vast array of restorative 

therapies is a growing list of potential therapeutic targets. One viable therapeutic target rich 

in recovery potential is the penumbra, or the peri-infarct region. In astronomy, the penumbra 

is a region of half light and shadow [24]. In acute stroke, it has been defined as a region of 

electrical failure but preserved energy metabolism that holds recovery potential [25]. The 

conceptualization of the penumbra, in the context of stroke rehabilitation, is a region that 

survived the initial insult and is galvanized for reorganization in support of recovery. Other 

therapeutic targets include both local and remote non-injured areas. The aim of the above 

treatment approaches is to boost restitution of function in the penumbra and in functionally- 

related targets by fostering neuroplastic change [26]. Often, the underlying mechanisms of 

these therapies rely on similar mechanisms observed during spontaneous recovery. Both 

spontaneous and therapeutic-induced mechanisms of plasticity that promote the resumption 

of activity and function in stroke-damaged areas can positively impact post-stroke recovery. 

However, as discussed below, not all plasticity mechanisms support restitution of function in 

stroke-damaged areas and structures.

The proceeding discussion will review both spontaneous and therapeutically- induced 

mechanisms of post-stroke recovery while highlighting the growing assortment of restorative 

therapies and promising biomarkers of functional recovery in stroke.

Spontaneous Mechanisms of Functional Recovery

Stroke triggers a cascade of cellular and molecular events that facilitates neural protection 

and spontaneous recovery [27]. Animal studies have enhanced our understanding of these 

mechanisms and in-depth reviews are provided elsewhere [28, 29]. In short, experimental 

stroke models depict subsequent growth of synapses and dendrites [30–32], axonal 

remodeling and angiogenesis [33–35], increased expression of growth-related genes and 

proteins [36], and enhanced brain excitability mediated by alterations in N-methyl-D-
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aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptor subtypes [37] and 

upregulation of NMDA receptors [38]. These events are not confined exclusively to the peri-

lesioned region. Stroke-induced modulations in synaptic efficacy arise in homologous 

regions in the contralesional hemisphere [30], in ipsilesional areas functionally and/or 

structurally connected to the lesioned area [39], and even downstream in the spinal cord 

[40].

These brain changes, driven by discrete physiological and pathological events, can be 

organized into three recovery epochs. The first epoch occurs during the initial hours after 

stroke onset and represents an opportunity to salvage threatened tissue, e.g., via reperfusion 

or neuroprotection. The second epoch commences days to weeks following stroke and 

corresponds to an initiation of brain repair. Mechanisms of spontaneous recovery are most 

robust during this time. The third epoch denotes a chronic phase of brain repair when the 

brain is relatively stable with regards to endogenous repair-related events but modifications 

in brain structure and function are still possible. Because these epochs delineate periods of 

neuroprotection and repair, they pose important clinical implication related to the delivery of 

restorative therapies.

The application of restorative therapies (discussed below) in humans further elucidates the 

above-described cellular and molecular underpinnings of post-stroke functional recovery, but 

obtaining precise molecular measurements similar to those in animals proves difficult. 

Neuroimaging and brain mapping approaches comprising functional magnetic resonance 

imaging (fMRI), positron emission tomography (PET), single photon emission computed 

tomography (SPECT), electroencephalography (EEG), magnetoencephalography (MEG), 

transcranial magnetic stimulation (TMS), and near infrared spectroscopy (NIRS), for 

example, provide a systems-level perspective of brain repair. This primary focus of this 

review entails fMRI, TMS, and EEG application to examine spontaneous and treatment-

induced mechanisms of post-stroke functional recovery.

Studies employing fMRI, TMS, and EEG have shown modulations in local and distant 

cortical and subcortical activity, changes in interactions between hemispheres, shifts in 

cortical representational maps, and alterations in functional and effective brain connectivity. 

Many of these events contributing to spontaneous recovery are compensatory. In other 

words, areas and/or structures distinct from the injured area assume function of the injured 

area. These compensatory events may provide some benefit to individuals with considerable 

stroke-related injury and severe functional deficits [41–43]. However, compensatory events 

may also have the opposite effect on individuals with less severe post-stroke injury and 

deficits similar to how a crutch may simultaneously improve gait function for more impaired 

individuals and hinder gait function in less impaired individuals. Typically, mechanisms of 

stroke recovery that promote restitution of function to injured areas typically yield better 

rehabilitation outcomes [44].

One particular event that has received limited attention to date but may be important in 

stroke recovery is diaschisis. As one of several theories of functional recovery originally 

postulated by Von Monakow in the early 20th century, diaschisis entails a decline in function 

in brain areas spatially discrete but functionally connected to the site of injury [45]. Both 
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animals [37, 46, 47] and humans [48] demonstrate diaschisis with changes in cerebral blood 

flow, metabolism, and neurotransmitter activity in areas distant from the lesion. A reversal of 

diaschisis is suggestive of recovery, but additional work is needed to better understand the 

timing of diaschisis and the process of diaschisis reversal relative to time post-stroke.

Modulation of Local Cortical Structure & Function

Stroke injury to cortex and underlying white matter results in reduced cortical activity and 

cortical thickness [49, 50]. Over time, a resurgence of activity occurs in conjunction with 

functional motor recovery [44, 42, 51, 52, 49]. Similar time-dependent shifts in cortical 

activity for language [53, 54] and spatial attention [55] also arise and correlate with positive 

functional recovery in these domains. Schaechter et al. [49] compared functional activation 

and cortical thickness between individuals with chronic stroke and healthy controls 

following a unilateral tactile stimulation activity during fMRI. Compared to control subjects, 

individuals with stroke demonstrated significantly greater activation in areas along the 

ventral postcentral gyrus and significantly greater cortical thickness within these same areas. 

These results depict area-specific functional and structural plasticity following stroke.

TMS is another modality used to examine local cortical function. TMS involves non-

invasive brain stimulation, operating through electromagnetic induction [56], and enables 

individuals the ability to probe motor pathway physiology and cortical network excitability 

[57]. When a TMS pulse of sufficient intensity is delivered to the motor cortex region, a 

downstream muscle response, referred to as a motor-evoked potential (MEP), occurs. 

Examination of various properties of the MEP such as size, area, and latency provide 

valuable information about cortical and corticospinal tract excitation. Studies utilizing TMS 

in stroke demonstrate an initial downregulation in ipsilesional hemisphere excitability often 

with an absent MEP, elevated motor thresholds [58–61], diminished MEP size [62, 63], 

and/or prolonged MEP conduction time [64]. In instances of profound corticospinal tract 

damage, stimulation of the contralesional hemisphere elicits MEPs in the ipsilateral (i.e. 

stroke affected) hand [65], suggestive of uncrossed contralesional corticospinal tract fibers 

contributing to stroke-affected (i.e. ipsilateral) extremity movement.

Shifts in motor threshold and MEP properties over time, consistent with increased cortical 

excitability in the ipsilesional hemisphere, are associated with positive recovery [66, 67]. 

Mangonotti et al. [66] observed a significant decrease in ipsilesional motor threshold during 

a timeframe spanning 5–7 days to 30 days post-stroke in individuals that exhibited 

improvements across several activities of daily living (i.e. feeding, grooming, dressing, etc.).

Modulation of Brain Regions Distant From Injury

In addition to diminished activity in the ipsilesional hemisphere, increased activation in sites 

distant from the infarct occurs resulting in the formation of distributed motor, language, and 

attention networks, sometimes bilaterally [68–74]. The utility of these distributed networks 

in post-stroke recovery is dependent on the amount of clinical impairment, the extent of 

injury, and the complexity of the functional task. The contralesional hemisphere is a 

particularly controversial area under study [75] especially in the context of upper-extremity 

motor recovery (detailed review by Buetefisch, 2015) [76]. Numerous studies support the 
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role of the contralesional hemisphere in recovery of the stroke-affected upper-extremity [43, 

41, 77–80]. However, other studies view the contralesional hemisphere as a hindrance [81–

83]. For example, in an exploratory study that examined cortical activity during an fMRI 

hand squeezing task in individuals with chronic, subcortical stroke, investigators found 

increased activation in contralesional primary motor and premotor cortices that negatively 

correlated to use of the stroke-affected arm [84]. As another example that recruitment of 

contralesional sensorimotor areas is not always a favorable event in the context of motor 

performance after stroke, significant correlations have been reported between increased 

contralesional primary sensorimotor cortex activation and poorer performance on a fine 

motor task [85]. The role of the contralesional hemisphere in functional recovery is complex 

and requires further investigation.

Changes in Ipsilesional and Contralesional Hemisphere Interaction

Stroke affects the interactions between hemispheres as evidenced by changes in the 

distribution of the blood-oxygen-level-dependent (BOLD) signal activation (i.e. laterality 

index) and by changes in the amount cortical inhibition imparted by one hemisphere onto 

the other (i.e. interhemispheric inhibition, IHI). The BOLD signal is an indirect measure of 

neural activity based on changes in blood flow and deoxyhemoglobin concentration [86]. 

IHI is a type of GABAergic-driven cortical inhibition [87–89] measured by applying a single 

TMS pulse to one hemisphere and a second TMS pulse to the homologous region on the 

other hemisphere several milliseconds later.[90] A decrease in MEP amplitude and/or area 

following the delivery of two TMS pulses (paired-pulse TMS) compared to the delivery of a 

single TMS pulse is indicative of IHI.

Individuals with stroke often exhibit a negative laterality index [68], a measure that reflects 

increased recruitment of the contralesional hemisphere, relative to the ipsilesional 

hemisphere, when performing various motor tasks using their stroke-affected extremity. 

Indeed, brain mapping studies show increased recruitment of contralesional motor, 

supplementary, and premotor cortical areas with voluntary movement from the stroke-

affected extremity [91, 92, 70, 74, 85, 93–96]. The extent of contralesional hemisphere 

activation is typically predicated on the integrity of the corticospinal tract, with greater 

contralesional hemisphere activation associated with greater ipsilesional corticospinal tract 

injury [97–99]. Better motor outcomes are generally associated with progressive reductions 

in contralesional hemisphere recruitment and/or increased recruitment in the ipsilesional 

hemisphere, comparable to a pre-stroke contralateral motor organization scheme [44, 51, 52, 

68, 85, 93, 100–103], although the extent to which this finding generalizes likely varies 

according to severity of impairment.

Imbalances in transcallosal–mediated [104, 90, 105] IHI also emerge after stroke. Compared 

to healthy controls, individuals with stroke typically demonstrate greater inhibition in the 

contralesional to ipsilesional primary motor cortex direction [105–108] and/or less inhibition 

in the ipsilesional to contralesional primary motor cortex direction [105, 109]. Murase et al. 

[106] measured the amount of IHI during a simple reaction time paradigm using paired-

pulse TMS. Subjects with stroke did not demonstrate significant differences in IHI at rest 

compared to controls. However, just prior to movement initiation of the stroke-affected hand, 
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individuals demonstrated an increase in IHI in the contralesional to ipsilesional primary 

motor cortex direction that correlated to reduced finger-tapping speed and overall motor 

performance. In contrast, control subjects demonstrated a decrease in IHI, indicative of 

facilitation, prior to movement onset. Future research is required to better understand the 

relationship between cortical vs. subcortical lesion involvement and IHI as current work is 

inconclusive [104, 105, 109, 110].

Shifting of Cortical Representational Maps

Another compensatory response to stroke is reorganization or re-mapping of somatotopic 

representation. Somatotopic ordering, or maps, exist in cortex, white matter, and subcortical 

structures such as basal ganglia [111–113]. These maps are found in numerous neural 

systems including auditory and vision, with much of the map reorganization literature 

focused on sensorimotor cortex. The most striking illustrations of cortical re-mapping 

following ischemic injury are in non-human primates that depict changes in map size and 

location occurring in conjunction with underlying axonal sprouting and the formation of new 

neuronal connections [39, 114, 115]. Lesion size influences the extent of cortical re-mapping 

[116], and subsequent rehabilitation/behavioral training alters map size and location [114, 

115, 117].

In humans, studies employing fMRI [100, 101, 118, 119] and TMS [119–121, 64] depict 

stroke-driven alterations in map representation. Several studies have reported shifts in motor 

cortex hand representation in dorsal [122], ventral [100, 101, 120, 123–125], and posterior 

[101, 119, 126, 127, 102] directions that may represent the extent of corticospinal tract 

injury [128–131]. Previous work has also shown that the side and extent of injury and degree 

of behavioral impairment likely influence the reorganizational pattern [100, 101]. Available 

data suggests that while the relative position of certain map fine features shift when stroke 

injures these maps, key features of map organization, such as the arm motor map being 

dorsal to the face motor map, do not [101]. More positive motor outcomes are significantly 

associated with the preservation of ipsilesional motor map area [118].

Alterations in Functional & Effective Connectivity

An emerging area of study in post-stroke recovery centers on brain network connectivity 

(reviewed by Friston, 2011)[132]. Resting-state fMRI and EEG are attractive tools to 

measure functional connectivity, defined as low-frequency temporal correlations in the 

BOLD signal or synchronization of electrical oscillations, respectively, between distinct 

brain regions [133, 132, 134, 135]. In contrast to task-oriented fMRI that requires subjects to 

complete a physical task during scanning, during resting-state fMRI the subject maintains a 

relaxed but awake state. One important advantage of resting-state fMRI is that subjects’ 

physical impairments do not confound BOLD signal interpretation as they may in task-

oriented fMRI. However, as with task-oriented fMRI, interpretation of functional 

connectivity is complicated whenever the stroke injures the very areas under study, as one 

must then disentangle injury effects from plasticity effects within the same zone. One 

strategy to address this issue is to exclude damaged regions of interest [137] or exclude 

subjects with a pre-specified percentage of damage to those region(s) of interest under study 

from analyses [138].
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Research has demonstrated disruptions in resting-state functional connectivity involving 

regions of motor [139, 137, 140], sensory, attention, and language [141] early after stroke. 

These disruptions often relate to the extent of white matter damage [142, 143]. Akin to 

previous animal work [144], functional recovery positively correlates to resting-state 

connectivity between interhemispheric networks. Indeed, our laboratory found that resting-

state connectivity between contra- and ipsilesional primary motor cortex correlated with 

treatment-induced gains in motor function (r = 0.45, p = 0.01) [138].

EEG measures of coherence or phase and amplitude consistency of neural oscillations 

between two brain regions may function as additional probes of those processes evaluated 

with resting-state fMRI functional connectivity analyses as above [145, 146]. Dubovik et al. 

[147] found greater disruption of functional connectivity in the alpha frequency band in 

individuals with stroke relative to healthy controls. Further, diminished coherence in the 

alpha frequency band related to the severity of motor and cognitive deficits. Similar to post-

stroke imbalances in interhemispheric inhibition favoring the contralesional hemisphere 

[105–108], Gerloff and colleagues [148] discovered greater cortico-cortical coherence in the 

contralesional hemisphere and reduced coherence in the ipsilesional hemisphere in 

individuals with chronic stroke. These results further demonstrate a compensatory functional 

shift in the contralesional hemisphere direction.

Effective connectivity studies extend functional connectivity studies by utilizing 

sophisticated modeling techniques on task-based and resting-state fMRI and EEG to explain 

the direction and causal relationship between two remote brain regions [134, 149, 150]. 

Rehme et al. [151] applied dynamic causal modeling to task-based fMRI data to examine 

effective connectivity between ipsilesional primary and secondary motor regions. The group 

found reduced positive couplings between supplementary motor area and ventral premotor 

cortices with ipsilesional M1 immediately after stroke that eventually increased (i.e. 

strengthened) over time and related to positive functional recovery. Collectively, functional 

and effective connectivity provides insight to the intricate brain circuitry that comprises 

brain networks. This information may prove especially valuable when considering post-

stroke therapies and corresponding therapeutic targets.

Treatment-Driven Functional Recovery Mechanisms

There are many types of restorative therapies and combinations of restorative therapies 

currently under study (Table 1): activity and cognitive-based training [93, 98, 152–156], 

robotics and brain computer interface systems [157–159], non-invasive brain stimulation 

[160–162], pharmacological compounds [163–166], stem cells [167, 168], and growth 

factors [169]. Several meta-analyses provide treatment effect sizes for arm motor 

impairment following therapy: 0.34 (constraint-induced movement therapy, CIMT) [170], 

0.55 (repetitive TMS) [162], 0.65 (robotic arm training) [171], and 0.92 (selective serotonin 

reuptake inhibitors) [172]. The implementation of these therapies to clinical practice may be 

hindered in part by the overall quality of evidence available. Many studies are underpowered 

and issues of heterogeneity between studies and inconsistent data reporting exist.
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Comprehensive reviews of restorative therapies and their purported mechanisms are 

available [173, 174]. Briefly, several of the above therapies manipulate the peripheral 

nervous system while others directly stimulate brain matter. The mechanisms of action of 

various pharmacological-based restorative therapies may also elucidate those mechanisms 

asserting neuroplastic change post-stroke. For instance, the Fluoxetine for Motor Recovery 

After Acute Ischemic Stroke (FLAME) study investigated motor recovery in non-depressed 

patients randomly assigned to oral fluoxetine (20 mg/day) or placebo pill for three months 

[165]. Patients receiving fluoxetine displayed significantly greater gains in arm/leg Fugl-

Meyer motor score at day 90 than the placebo group (a 9.7 point difference between groups 

on a 100-point scale, p = 0.003). In this study, the underlying interaction of fluoxetine and 

neurotransmitters resulted in enhanced motor recovery outcomes. In general, treatment-

driven and spontaneous mechanisms of recovery overlap.

Carey et al. [93] observed activation of contralesional brain regions when subjects with 

chronic stroke performed a finger tracking exercise using their stroke-affected hand. 

Following a series of training sessions, subjects demonstrated significant changes in brain 

laterality consistent with increased utilization of the ipsilesional hemisphere. Importantly, 

improvement in finger tracking accuracy and shifts in brain activation translated to gains in 

functional activity with significant increases in Box and Block scores. Results from this 

seminal study demonstrated a resumption of ipsilesional hemisphere activity and an 

improvement in stroke-affected hand function resulting from task-specific training. Other 

work has shown similar shifts in cortical activation and an enlargement of ipsilesional motor 

map representation following various motor rehabilitation programs including CIMT that 

involves forced-use of the hemiparetic arm [103, 155, 156, 175, 176]. Recent work 

employing robotic upper-extremity training exhibited changes in EEG coherence between 

ipsilesional primary motor, premotor [177], and bilateral primary sensory areas [157]. 

Specifically, heightened coherence in the high frequency beta band (defined as 20–30 Hz by 

Wu et al. [177] and 24–33 Hz by Pellegrino et al. [157]) correlated with upper-extremity 

motor function improvement. Together, these results reinforce previous work showing 

associations between motor system function and the beta frequency band [135, 178]. 

Additionally, enhanced resting-state fMRI network connectivity involving supplementary 

and bilateral motor cortices and visuospatial areas with the cerebellum and association areas 

also correlated with gains in upper-extremity function following robotic and brain-computer 

interface-led upper-extremity training [159].

Due to the high frequency of motor-related impairments after stroke and their impact on 

overall post-stroke disability, a large portion of rehabilitation literature focuses on treatment 

of motor deficit. Nonetheless, repetitive TMS [179] and behavioral training [180] in 

individuals with post-stroke hemineglect resulted in improvements in spatial attention and 

neglect tasks. Accompanying these behavioral improvements were increases in bilateral 

white-matter integrity and cortical activation in structures and areas associated with visual 

attention. Pilot work in patients with aphasia also demonstrated comparable increases in 

cortical activity in language-specific areas following a two-week language rehabilitation 

program [154]. Collectively, these findings illustrate domain-specific structural and 

functional changes following targeted interventions. The ability of restorative therapies to 
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exert both behavioral and neuroplastic change strengthens the potential to translate these 

therapies to clinical practice.

Brain Repair & Treatment Considerations

Timing of Treatment Delivery

Many studies examining therapeutic-induced mechanisms of recovery occur during the 

chronic phase. In a rodent stroke model, Clarkson and colleagues [181] found that 

administration of AMPA receptor agonists several days after stroke enhanced stroke-affected 

forelimb use, whereas earlier administration adversely affected recovery. These findings 

provide evidence that neural targets relevant to repair at one timepoint may not be relevant at 

a later timepoint.

A similar message was provided by the study by Biernaskie et al [184], who found that 

introducing enriched rehabilitation 5 days after experimental stroke in rodents improved 

behavioral outcomes, possibly on the basis of enhanced dendritic growth within undamaged 

motor cortex. However, the same intervention introduced 30 days after stroke had no effect; 

introduction 14 days after stroke had an intermediate effect.

Because treatment effects vary based on their timeframe of delivery, one cannot simply 

extrapolate intervention findings from a chronic stroke population to an acute stroke 

population. Relatedly, great debate surrounds the timing of therapy initiation. Early 

commencement of CIMT in a rodent stroke model led to an exacerbation of neural injury 

[182]. However, others have found enhanced expression of growth-related proteins and 

dendritic growth in the ipsilesional hemisphere and improved behavioral outcomes following 

early vs. late CIMT [183] and reaching training [184] in rodents.

Similar CIMT investigation in humans also demonstrates variable findings. The Extremity 

Constraint Induced Therapy Evaluation (EXCITE) trial was a prospective, single-blind, 

randomized, multisite clinical trial that compared a two-week CIMT program to customary 

care in 222 enrolled individuals with moderate motor arm impairment resulting from stroke 

3–9 months earlier [185]. Subjects receiving CIMT demonstrated a significant improvement 

in both primary outcome measures: a 52% reduction in time to complete tasks (Wolf Motor 

Function Test) and a 76–77% increase in quantity and quality of stroke-affected arm 

movement (Motor Activity Log). These improvements were significantly greater than those 

observed for the control group receiving customary care and persisted for one year. A related 

study from the EXCITE trial followed and involved the comparison of two delivery 

timeframes of the same two-week CIMT program [186]. Subjects receiving early (3–9 

months post-stroke) and delayed (15–21 months post-stroke) CIMT demonstrated 

improvements in the Wolf Motor Function Test and Motor Activity Log from pretest to 12 

months following CIMT administration. However, the early CIMT group exhibited a 

significantly greater amount of improvement than the delayed CIMT group. These group 

differences were not significant at long-term follow-up (24 months after study enrollment). 

In a smaller-scale comparison of early vs. late CIMT, individuals receiving early (< 9 

months post-stroke) CIMT demonstrated greater behavioral improvement of the stroke-

affected upper-extremity compared to those receiving late (> 12 months post-stroke) CIMT. 
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Yet, those receiving late CIMT showed greater changes in cortical reorganization as assessed 

by positional shifts in TMS motor maps [187]. The consensus from these studies is that early 

rehabilitation is safe and preferable to late onset therapy.

Treatment Dosage

Treatment dosage (i.e. frequency, duration, and intensity) also influences functional 

recovery. The relationship between treatment dosage and functional improvement is not 

straightforward. Restated, more does not always equate to better, and research in post-stroke 

motor [188] and language [189] function confirm this assertion. The VECTORS study 

randomized subjects with acute stroke to traditional upper-extremity therapy, dose-matched 

CIMT, or high-intensity CIMT [188]. All groups demonstrated positive recovery and, 

importantly, no anatomical MRI evidence of lesion enlargement. However, participants 

randomized to the high-intensity CIMT demonstrated less motor improvement at three 

months post-stroke compared to the other groups. In a related study examining treatment 

dosage, participants receiving aphasia rehabilitation in a distributed (6 hours per week for 8 

weeks) vs. intensive (16 hours per week for 3 weeks) schedule demonstrated significantly 

greater improvements immediately after therapy and at one-month follow-up. Additional 

work is necessary to examine associated structural and functional brain changes with 

varying therapeutic dosages.

Severity of Baseline Impairment

Differences in baseline functional status amongst subjects can impact the informative value 

of brain mapping in discerning underlying, therapeutic-induced recovery mechanisms. 

Könönen et al. [156] observed greater increases in sensorimotor cortex activation following 

CIMT amongst subjects possessing poorer hand motor behavior at baseline. These findings 

parallel previous work [98] illustrating greater supplementary motor cortex activation 

following CIMT in participants with diminished corticospinal tract integrity. Differences in 

baseline functional status may therefore influence subsequent patterns of therapeutic-driven 

neurological reorganization and may account for discrepancies in the literature regarding the 

efficacy of certain therapies and/or drugs. An overwhelming amount of post-stroke 

intervention studies include fairly well-recovered individuals. However, as the above studies 

indicate, expanding interventional studies to include participants with severe impairment or 

poor functional recovery is necessary towards our understanding of therapy-induced 

mechanisms of recovery.

The Role of Biomarkers

Biomarkers are measurements that demonstrate strong associations to disease state and 

progression [190]. For example, HIV RNA levels serve as a marker for AIDS and thyroid 

stimulating hormone concentration acts a marker for hyper/hypothyroidism. A biomarker 

might also be conceptualized as providing correlative behavior in a cross-sectional manner, 

as predicting future behavioral course, or as being measured serially in parallel with 

behavioral observations. A stroke biomarker, therefore, signifies an underlying brain state 

event linked to behavioral status or to recovery and behavioral change [191]. Examples of 

stroke biomarkers include measures of structure and function and genetic measures (Table 
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2). Past work has shown corticospinal tract injury to be predictive of spontaneous motor 

recovery [192] and treatment-induced motor recovery [22]. The implementation of 

biomarkers in stroke rehabilitation would address several existing challenges in the field of 

stroke. One challenge is to understand and control the amount of heterogeneity between 

patients with regards to functional recovery and its response to therapeutic intervention. A 

second challenge is that behavioral-based stroke measures commonly used in the hospital 

and clinic settings likely do not fully capture post-stroke neurological change and functional 

improvement [138]. Biomarkers combined with well-established behavioral measurements 

provide a more complete account of post-stroke brain change.

Though there are no established biomarkers in stroke recovery, there are several potential 

examples in domains of language and motor function. For instance, Marchina and colleagues 

[193] found that the volume of stroke-related damage (i.e. lesion load) to the left arcuate 

fasciculus predicted speech impairment. Additional work has also shown right arcuate 

fasciculus volume predictive of language recovery following left hemisphere stroke [194]. 

Blicher et al. [152] found significant correlations between behavioral improvement of the 

stroke-affected hand and changes in the GABA:Creatine ratio in primary motor cortex of 

individuals 3–12 months post-stroke participating in a CIMT program. Decreases in the 

GABA:Creatine ratio were associated with greater gains in motor function. Additional work 

is warranted to substantiate these findings. Other examples of potential stroke biomarkers 

include total infarct volume [195], white matter tract injury [20–22, 138, 196], cortical 

activation [42, 52, 91, 175, 138, 197, 198] and connectivity [139, 137, 145, 147, 177, 138, 

199], and genetic polymorphisms derived from simple blood tests [15, 16, 200]. These 

measures may serve an important role in guiding treatment, stratifying subjects in 

intervention studies, and ultimately predicting functional outcome and response to therapy. 

Future research is necessary to confirm the reliability and validity of potential stroke 

biomarkers.

Difficulty associated with distinguishing cellular and molecular mechanisms of spontaneous 

stroke recovery in humans is an additional challenge that may limit the identification and 

accessibility of stroke biomarkers in humans. Brain mapping and blood analysis will 

continue to guide the development of human stroke biomarkers; however, future 

advancements in the capability of probing the human brain will likely uncover additional 

potential biomarkers.

Summary & Conclusions

Destruction of the neural environment following stroke propels a series of spontaneous 

recovery mechanisms at the cellular, molecular, and systems levels. These mechanisms are 

often compensatory and incomplete since many individuals continue to endure persistent 

disability years following their stroke. The heterogeneity of stroke has spurred the 

development of numerous restorative therapies that harness neuroplasticity [26] to reinstate 

activity in injured but surviving areas to ultimately improve motor, sensory, language, and 

cognitive impairments. Often, the mechanisms underlying these therapies rely on similar 

mechanisms as observed in spontaneous recovery. Several factors such as time of delivery, 

dosage, and severity of baseline impairment likely influence the effects of restorative 
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therapies. Finally, identifying human stroke biomarkers will enhance clinical and research 

practices and result in greater insight into functional recovery mechanisms.
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Table 1

Examples of Restorative Therapies Under Study

Activity-Based Therapies

occupational Therapy

physical Therapy

speech Therapy

constraint-induced movement therapy (CIMT)

gait training

Cognitive-Based Therapies

motor imagery

mirror therapy

virtual reality

augmented reality

mental rehearsal

Device-Based Therapies

robotics*

telerehabilitation*

brain-computer interface

vagal nerve stimulation

Sensory Stimulation

passive limb movement

electrical stimulation

Brain Stimulation

repetitive transcranial magnetic stimulation

transcranial direct current stimulation

epidural cortical stimulation

Pharmacologic Therapies

amphetamine

methylphenidate

amantidine

memantine

carbidopa/levodopa

fluoxetine, escitalopram, and other selective serotonin reuptake inhibitors

escitalopram

inosine

ropinirole

sildenafil

niacin

atorvastatin

donepezil

Biologicals

basic fibroblastic growth factor
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brain derivied neurotophic factor

vascular endothelial growth factor

erythropoietin

granulocyte-colony stimulating factor

monoclonal antibodies

Stem Cells

endogenous stem cells

exogenous stem cells

 xenografts

 transformed tumor cells

 umbilical cord cells

 embryonic and fetal stem cells

 induced pluripotent stem cells

 adult stem cells such as mesenchymal stromal cells

*
These device-based therapies might also be classified as activity-based.
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Table 2

Potential Stroke Biomarkers Under Study

Structural

infarct volume

extent of cortical injury

extent of white matter injury

extent of injury to specific sites of gray or white matter

white matter integrity

percent corticospinal tract injury (tract-specific lesion load)

Functional

activation within ipsilesional hemisphere sites (intensity or volume; peri-lesional or remote)

activation within contralesional hemisphere sites (intensity or volume)

laterality index, expressing hemispheric balance in activation between homologous sites

resting state functional connectivity

event-related synchronization and desynchronization

cortical excitability, facilitation, and inhibition

motor evoked potentials (presence, threshold, latency, and magnitude)

Genetic

BDNF val66met polymorphism

ApoE4 allele

Dopamine polygene score

ApoE = apolipoprotein E; BDNF = brain-derived neurotrophic factor. Note that numerous techniques are available for functional assessments, 
depending on biomarker, such as fMRI, PET, SPECT, EEG, MEG, and TMS.
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