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Abstract

Neuronal populations in sensory cortex produce variable responses to sensory stimuli, and exhibit 

intricate spontaneous activity even without external sensory input. Cortical variability and 

spontaneous activity have been variously proposed to represent random noise, recall of prior 

experience, or encoding of ongoing behavioral and cognitive variables. Recording over 10,000 

neurons in mouse visual cortex, we observed that spontaneous activity reliably encoded a high-

dimensional latent state, which was partially related to the mouse’s ongoing behavior and was 

represented not just in visual cortex but across the forebrain. Sensory inputs did not interrupt this 

ongoing signal, but added onto it a representation of external stimuli in orthogonal dimensions. 

Thus, visual cortical population activity, despite its apparently noisy structure, reliably encodes an 

orthogonal fusion of sensory and multidimensional behavioral information.

In the absence of sensory inputs, the brain produces structured patterns of activity, which can 

be as large as or larger than sensory-driven activity (1). Ongoing activity exists even in 

primary sensory cortices, and has been hypothesized to reflect recapitulation or expectation 

of sensory experience. This hypothesis is supported by studies that found similarities 
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between sensory-driven and spontaneous firing events (2–7). Alternatively, ongoing activity 

could be related to behavioral and cognitive states. The firing of sensory cortical and sensory 

thalamic neurons correlates with behavioral variables such as locomotion, pupil diameter, 

and whisking (8–23). Continued encoding of non-visual variables when visual stimuli are 

present could at least in part explain the trial-to-trial variability in cortical responses to 

repeated presentation of identical sensory stimuli (24).

The influence of trial-to-trial variability on stimulus encoding depends on its population-

level structure. Variability that is independent across cells – such as the Poisson-like 

variability produced in balanced recurrent networks (25) – presents little impediment to 

information coding, as reliable signals can still be extracted as weighted sums over a large 

enough population. In contrast, correlated variability has consequences that depend on the 

form of the correlations. If correlated variability mimics differences in responses to different 

stimuli, it can compromise stimulus encoding (26, 27). Conversely, correlated variability in 

dimensions orthogonal to those encoding stimuli has no adverse impact on coding (28), and 

might instead reflect encoding of signals other than visual inputs.

Spontaneous cortical activity reliably encodes a high-dimensional latent 

signal

To distinguish between these possibilities, we characterized the structure of neural activity 

and sensory variability in mouse visual cortex. We simultaneously recorded from 11,262 

± 2,282 (mean ± s.d.) excitatory neurons, over nine sessions in six mice using 2-photon 

imaging of GCaMP6s in an 11-plane configuration (29) (Fig. 1A,B, Movie S1). These 

neurons’ responses to classical grating stimuli revealed robust orientation tuning as expected 

in visual cortex (Fig. S1).

We began by analyzing spontaneous activity in mice free to run on an air-floating ball. Six 

of nine recordings were performed in darkness, but we did not observe differences between 

these recordings (shown in red on all plots) and recordings with gray screen (yellow on all 

plots). Mice spontaneously performed behaviors such as running, whisking, sniffing, and 

other facial movements, which we monitored with an infrared camera.

Ongoing population activity in visual cortex was highly structured (Fig. 1C-H). Correlations 

between neuron pairs were reliable (Fig. S2), and their spread was larger than would be 

expected by chance (Fig. 1C,D), suggesting structured activity (30). Fluctuations in the first 

principal component (PC) occurred over a timescale of many seconds (Fig. S3), and were 

coupled to running, whisking, and pupil diameter. These arousal-related variables correlated 

with each other (Fig. S4A,B), and together accounted for approximately 50% of the variance 

of the first neural PC (Fig. 1E, Fig. S4C). Correlation with the first PC was positive or 

negative in approximately similar numbers of neurons (57% ± 6.7% SE positive), indicating 

that two large sub-populations of neurons alternate their activity (Fig. 1F,G). The slowness 

of these fluctuations suggests a different underlying phenomenon to previously-studied up 

and down phases (5, 31–34), which alternate at a much faster timescale (~100 ms instead of 

multiple seconds) and correlate with most neurons positively. Indeed, up/down phases could 

not even have been detected in our recordings, which scanned the cortex every 400 ms.
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Spontaneous activity had a high-dimensional structure, more complex than would be 

predicted by a single factor such as arousal. We sorted the raster diagram so that nearby 

neurons showed strong correlations (Figs. 1H, S5). Position on this continuum bore little 

relation to actual distances in the imaged tissue (Fig. S6), suggesting that this activity was 

not organized topographically.

Despite its noisy appearance, spontaneous population activity reliably encoded a high-

dimensional latent signal (Fig. 1I-K). We devised a method to identify dimensions of neural 

variance that are reliably determined by common underlying signals, termed Shared 

Variance Component Analysis (SVCA). We divided the recorded neurons into two spatially 

segregated sets, and divided the recorded timepoints into two equal halves (training and test; 

Fig. 1I). The training timepoints were used to find the dimensions in each cell set’s activity 

that maximally covary with each other. These dimensions are termed Shared Variance 

Components (SVCs). Activity in the test time-points was then projected onto each SVC 

(Fig. 1J), and the correlation between projections from the two cell sets (Fig. 1K) provided 

an estimate of the reliable variance in that SVC (see Methods and Appendix). The fraction 

of reliable variance in the first SVC was 97% (Fig. 1K,L), implying that only 3% of the 

variance along this dimension reflected independent noise. The reliable variance fraction of 

successive SVCs decreased slowly, with the 50th SVC at ~50% reliable variance, and the 

512th at ~9% (Fig. 1L).

The magnitude of reliable spontaneous variance was distributed across dimensions 

according to a power law of exponent 1.14 (Fig. 1M). This value is larger than the power law 

exponents close to 1.0 seen for stimulus responses (35), but still indicates a high-

dimensional signal. The first 128 SVCs together accounted for 86% ± 1% SE of the 

complete population’s reliable variance, and 67% ± 3% SE of the total variance in these 128 

dimensions was reliable. Arousal variables accounted for 11% ± 1% SE of the total variance 

in these 128 components (16% of their reliable variance), and primarily correlated with the 

top SVCs (Fig. 1N,O). Thousands of neurons were required to reliably characterize activity 

in hundreds of dimensions, and the estimated reliability of higher SVCs increased with the 

number of neurons analyzed (Fig. S7A-E), suggesting that recordings of larger populations 

would identify yet more dimensions.

Ongoing neural activity encodes multidimensional behavioral information

Although arousal measures only accounted for a small fraction of the reliable variance of 

spontaneous population activity, it is possible that higher-dimensional measures of ongoing 

behavior could explain a larger fraction (Fig. 2A-C, Movie S2). We extracted a 1,000-

dimensional summary of the motor actions visible on the mouse’s face by applying principal 

component analysis to the spatial distribution of facial motion at each moment in time (36). 

The first PC captured motion anywhere on the mouse’s face, and was strongly correlated 

with explicit arousal measures (Fig. S4B), while higher PCs distinguished different types of 

facial motion. We predicted neuronal population activity from this behavioral signal using 

reduced rank regression: for any N, we found the N dimensions of the video signal 

predicting the largest fraction of the reliable spontaneous variance (Fig. 2D).
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This multidimensional behavior measure predicted approximately twice as much variance as 

the three arousal variables (Fig. 2D-J, Movie S3). To visualize how multidimensional 

behavior predicts ongoing population activity, we compared a raster representation of raw 

activity (vertically sorted as in Fig. 1H) to the prediction based on multidimensional 

videography (Fig. 2F, see Fig. S5 for all recordings). To quantify the quality of prediction, 

and the dimensionality of the behavioral signal encoded in V1, we focused on the first 128 

SVCs (accounting for 86% of the population’s reliable variance). The best one-dimensional 

predictor extracted from the facial motion movie captured the same amount of variance as 

the best one-dimensional combination of whisking, running, and pupil (Fig. 2G). Prediction 

quality continued to increase with up to 16 dimensions of video-graphic information (and 

beyond, in some recordings), suggesting that visual cortex encodes at least 16 dimensions of 

motor information. These dimensions together accounted for 21%± 1% SE of the total 

population variance (31% ± 3% of the reliable variance; Fig. 2H), substantially more than 

the three-dimensional model of neural activity using running, pupil area and whisking (11% 

± 1% SE of the total variance, 17% ± 1% SE of the reliable variance). Moreover, adding 

these three explicit predictors to the video signal increased the explained variance by less 

than 1% (Fig. 2I), even though the running signal provided information not derived from 

video. A neuron’s predictability from behavior was not related to its cortical location (Fig. 

S8). The timescale with which neural activity could be predicted from facial behavior was 

~1 s (Figs. 2J, S7H), reflecting the slow nature of these behavioral fluctuations.

Behaviorally-related activity is spread across the brain

Patterns of spontaneous V1 activity were a reflection of activity patterns spread across the 

brain (Fig. 3A-E). To show this, we used 8 Neuropixels probes (37) to simultaneously record 

from frontal, sensorimotor, visual and retrosplenial cortex, hippocampus, striatum, thalamus, 

and midbrain (Fig. 3A,B). The mice were awake and free to rotate a wheel with their front 

paws. From recordings in three mice, we extracted 2,296, 2,668 and 1,462 units stable across 

~1 hour of ongoing activity, and binned neural activity into 1.2 s bins, as for the imaging 

data.

Neurons correlated most strongly with others in the same area, but also correlated with 

neurons in other areas, suggesting non-localized patterns of neural activity (Fig. 3C). All 

areas contained neurons positively and negatively correlated with the arousal-related top 

facial motion PC, although neurons in thalamus showed predominantly positive correlations 

(Fig. 3D, p < 10−8 two-sided Wilcoxon sign-rank test). Sorting the neurons by correlation 

revealed a rich activity structure (Fig. 3E). All brain areas contained a sampling of neurons 

from the entire continuum (Fig. 3E, right), suggesting that a multidimensional structure of 

ongoing activity is distributed throughout the brain. This spontaneous activity spanned at 

least 128 dimensions, with 35% of the variance of individual neurons reliably predictable 

from population activity (Fig. S9).

Similar to visual cortical activity, the activity of brainwide populations was partially 

predictable from facial videography (Fig. 3F-H). Predictability of brain-wide activity again 

saturated around 16 behavioral dimensions, which predicted on average across areas 21.9% 

of the total variance (40% of the estimated maximum possible) (Fig. 3F). The amount of 
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behavioral modulation differed between brain regions, with neurons in thalamus predicted 

best (35.7% of total variance, 59% of estimated maximum). The timescale of videographic 

prediction was again broad: neural activity was best predicted from instantaneous behavior, 

decaying slowly over time lags of multiple seconds (Figs. 3G-H, S10), with a full-width at 

half-max of 2.5±0.4 s (mean ± SE). Neural population activity showed coherent structure at 

timescales faster than this behavioral correlation (280 ± 43 ms, mean ± SE) (Fig. S10). The 

fast-timescale structure modulated nearly all neurons in the same direction, leading to rapid 

fluctuations in the total population rate (“up and down phases”); by contrast, the structure 

seen at lower time scales was dominated by alternation in the activity of different neuronal 

populations, and steadier total activity (Figs. S10, S11, S12 (38)).

Stimulus-evoked and ongoing activity overlap along one dimension

We next asked how ongoing activity and behavioral information relates to sensory responses 

(Fig. 4A-B). We thus interspersed blocks of visual stimulation (flashed natural images, 

presented 1 per second on average) with extended periods of spontaneous activity (gray 

screen), while imaging visual cortical population activity (Fig. 4A). During stimulus 

presentation, the mice continued to exhibit the same behaviors as in darkness, resulting in a 

similar distribution of facial motion components (Fig. 4B).

There were not separate sets of neurons encoding stimuli and behavioral variables; instead, 

representations of sensory and behavioral information were mixed together in the same cell 

population. The fractions of each neuron’s variance explained by stimuli and by behavior 

were only slightly negatively correlated (Fig. S13; r = -0.18, p < 0.01 Spearman’s rank 

correlation), and neurons with similar stimulus responses did not have more similar 

behavioral correlates (Fig. S13; r = -0.005, p > 0.05).

The subspaces encoding sensory and behavior information overlapped in only one 

dimension (Fig. 4C-E). The space that encoded behavioral variables contained 11% of the 

total stimulus-related variance, 96% of which was contained in a single dimension (Fig. 4C) 

with largely positive weights onto all neurons (85% positive weights, Fig. 4D). Similarly, the 

space of ongoing activity, defined by the top 128 principal components of spontaneous 

firing, contained 23% of the total stimulus-related variance, 86% of which was contained in 

one dimension (85% positive weights). Thus, overlap in the spaces encoding sensory and 

behavioral variables arises primarily because both can change the mean firing rate of the 

population: the precise patterns of increases and decreases about this change in mean were 

essentially orthogonal (Fig. 4E). Analysis of electrophysiological recordings confirmed that 

the relationship between stimulus-driven and spontaneous activity was dominated by a 

single shared dimension: the correlation between spontaneous and signal correlations was 

greatly reduced after projecting out this one-dimensional activity (Fig. S14).

Stimulus decoding analysis further confirmed that information about sensory stimuli was 

concentrated in the stimulus-only subspace. To show this, we trained a linear classifier to 

identify which stimulus had been presented, from activity in different 32-dimensional neural 

subspaces. Decoding from the stimulus space yielded a cross-validated error rate of 10.1 
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± 4.0 %; activity in the spontaneous- or behavior-only spaces yielded errors of 53.1 ± 6.4 % 

and 56.8 ± 6.7 %, no better than randomly-chosen dimensions (Fig. 4F).

To visualize how the V1 population integrated sensory and behavior-related activity, we 

examined the projection of this activity onto three orthogonal subspaces: a multidimensional 

subspace encoding only sensory information (stimulus-only); a multidimensional subspace 

encoding only behavioral information (behavior-only); and the one-dimensional subspace 

encoding both (stimulus-behavior shared dimension) (Fig. 4G; Fig. S15). During gray-

screen periods there was no activity in the stimulus-only subspace, but when the stimuli 

appeared this subspace became very active. By contrast, activity in the behavioronly 

subspace was present prior to stimulus presentation, and continued unchanged when the 

stimulus appeared. The one-dimensional shared subspace showed an intermediate pattern: 

activity in this subspace was weak prior to stimulus onset, and increased when stimuli were 

presented. Similar results were seen for the spontaneous-only and stimulus-spontaneous 

spaces (Fig. 4G, lower panels). Across all experiments, variance in the stimulus-only 

subspace was 119 ± 81 SE times larger during stimulus presentation than during 

spontaneous epochs (Fig. 4H), while activity in the shared subspace was 19 ± 12 SE times 

larger; activity in the face-only and spontaneous-only subspaces was only modestly 

increased by sensory stimulation (1.4 ± 0.13 SE and 1.7 ± 0.2 SE times larger, respectively).

Trial-to-trial variability in population responses to repeated stimulus presentations reflected 

a combination of multiplicative modulation in the stimulus-space, and additive modulation 

in orthogonal dimensions. To visualize how stimuli affected activity in these subspaces, we 

plotted population responses to multiple repeats of two example stimuli (Fig. 4I-J). When 

projected into the stimulus-only space, the resulting clouds were tightly defined with no 

overlap (Fig. 4I), but in the behavior-only space, responses to the two stimuli were directly 

superimposed (Fig. 4J). Variability within the stimulus subspace consisted of changes in the 

length of the projected activity vectors between trials, resulting in narrowly elongated clouds 

of points (Fig. 4I), consistent with previous reports of multiplicative variability in stimulus 

responses (39–42). A model in which stimulus responses are multiplied by a trial-dependent 

factor accurately captured the data, accounting for 89% ± 0.1% SE of the variance in the 

stimulus subspace (Fig. 4K). Furthermore, the multiplicative gain on each trial could be 

predicted from facial motion energy (r = 0.61 ± 0.02 SE, cross-validated), and closely 

matched activity in the shared subspace (r = 0.73 ± 0.06 SE, cross-validated; Fig. 4L). 

Although ongoing activity in the behavior-only subspace and visual responses in the 

stimulus-only subspace added independently, we did not observe additive variability within 

the stimulus-only space itself: an “affine” model also including an additive term did not 

significantly increase explained variance over the multiplicative model (p > 0.05, Wilcoxon 

rank-sum test). Similar results were obtained when analyzing responses to grating stimuli 

rather than natural images (Fig. S16).

Discussion

Ongoing population activity in visual cortex reliably encoded a latent signal of at least 100 

linear dimensions, and possibly many more. The largest dimension correlated with arousal 

and modulated about half of the neurons positively and half negatively. At least 16 further 
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dimensions were related to behaviors visible by facial videography, which were also 

encoded across the forebrain. The dimensions encoding motor variables overlapped with 

those encoding visual stimuli along only one dimension, which coherently increased or 

decreased the activity of the entire population. Activity in all other behavior-related 

dimensions continued unperturbed regardless of sensory stimulation. Trial-to-trial variability 

of sensory responses comprised additive ongoing activity in the behavior subspace, and 

multiplicative modulation in the stimulus subspace, resolving apparently conflicting findings 

concerning the additive or multiplicative nature of cortical variability (39–42).

Our data are consistent with previous reports describing low-dimensional correlates of 

locomotion and arousal in visual cortex (8,10–16, 33), but suggest these results were 

glimpses of a much larger set of non-visual variables encoded by ongoing activity patterns. 

16 dimensions of facial motor activity can predict 31% of the reliable spontaneous variance. 

The remaining dimensions and variance might in part reflect motor activity not visible on 

the face or only decodable by more advanced methods (43–48), or they might reflect internal 

cognitive variables such as motivational drives.

Many studies have reported similarities between spontaneous activity and sensory responses 

(2–7). We also observed a similarity, but found it arose nearly exclusively from one 

dimension of neural activity. This dimension summarized the mean activity of all cells in the 

population, and variations along it reflected both spontaneous alternation of up and down 

phases and differences in mean population response between stimuli. These results therefore 

demonstrate that the statistical similarity of firing patterns during stimulation and ongoing 

activity need not imply recapitulation of previous sensory experiences, merely that cortex 

exhibits mean rate fluctuations with or without sensory inputs. While our results do not 

exclude that genuine recapitulation could occur in other behavioral circumstances, they 

reinforce the need for careful statistical analysis before drawing this conclusion: even a 

single dimension of common rate fluctuation is sufficient for some previously-applied 

statistical methods to report similar population activity (49).

The brain-wide representation of behavioral variables suggests that information encoded 

nearly any-where in the forebrain is combined with behavioral state variables into a mixed 

representation. We found that these multidimensional signals are present both during 

ongoing activity and during passive viewing of a stimulus. Recent evidence indicates that 

they may also be present during a decision-making task (50). What benefit could this 

ubiquitous mixing of sensory and motor information provide? The most appropriate 

behavior for an animal to perform at any moment depends on the combination of available 

sensory data, ongoing motor actions, and purely internal variables such as motivational 

drives. Integration of sensory inputs with motor actions must therefore occur some-where in 

the nervous system. Our data indicate that it happens as early as primary sensory cortex. 

This is consistent with neuroanatomy: primary sensory cortex receives innervation both from 

neuromodulatory systems carrying state information, and from higher-order cortices which 

can encode fine-grained behavioral variables (9). This and other examples of pervasive 

whole-brain connectivity (51–54) may coordinate the brain-wide encoding of behavioral 

variables we have reported here.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structured ongoing population activity in visual cortex.
(A,B) Two-photon calcium imaging of 10,000 neurons in visual cortex using multi-plane 

resonance scanning of 11 planes spaced 35 μm apart. (C) Distribution of pairwise 

correlations in ongoing activity, computed in 1.2 second time bins (yellow). Gray: 

distribution of correlations after randomly time-shifting each cell’s activity. (D) Distribution 

of pairwise correlations for each recording (showing 5th and 95th percentile). (E) First PC 

versus running speed in 1.2 s time bins. (F) Example timecourse of running speed (green), 

pupil area (gray), whisking (light green), first principal component of population activity 
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(magenta dashed). (G) Neuronal activity, with neurons sorted vertically by 1st PC weighting, 

same time segment as F. (H) Same neurons as in G, sorted by a manifold embedding 

algorithm. (I) Shared Variance Component Analysis (SVCA) method for estimating reliable 

variance. (J) Example timecourses of SVCs from each cell set in the test epoch (1.2 s bins). 

(K) Same as J, plotted as scatter plot. Title is Pearson correlation between cell sets: an 

estimate of that dimension’s reliable variance. (L) % of reliable variance for successive 

dimensions. (M) Reliable variance spectrum, power law decay of exponent 1.14. (N) % of 

each SVC’s total variance that can be reliably predicted from arousal variables (colors as in 

E). (O) Percentage of total variance in first 128 dimensions explainable by arousal variables.
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Figure 2. Multi-dimensional behavior predicts neural activity.
(A) Frames from a video recording of a mouse’s face. (B) Motion energy, computed as the 

absolute value of the difference of consecutive frames. (C) Spatial masks corresponding to 

the top three principal components (PCs) of the motion energy movie. (D) Schematic of 

reduced rank regression technique used to predict neural activity from motion energy PCs. 

(E) Cross-validated fraction of successive neural SVCs predictable from face motion (blue), 

together with fraction of variance predictable from running, pupil and whisking (green), and 

fraction of reliable variance (the maximum explainable; gray; cf. Fig. 1L). (F) Top: raster 

representation of ongoing neural activity in an example experiment, with neurons arranged 

vertically as in Fig. 1H so correlated cells are close together. Bottom: prediction of this 

activity from facial videography (predicted using separate training timepoints). (G) 

Percentage of the first 128 SVCs’ total variance that can be predicted from facial 

information, as a function of number of facial dimensions used. (H) Prediction quality from 
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multidimensional facial information, compared to the amount of reliable variance. (I) 

Adding explicit running, pupil and whisker information to facial features provides little 

improvement in neural prediction quality. (J) Prediction quality as a function of time lag 

used to predict neural activity from behavioral traces.
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Figure 3. Behaviorally-related activity across the forebrain in simultaneous recordings with 8 
Neuropixels probes.
(A) Reconstructed probe locations of recordings in three mice. (B) Example histology slice 

showing orthogonal penetrations of 8 electrode tracks through a calbindin-counterstained 

horizontal section. (C) Comparison of mean correlation between cell pairs in a single area, 

with mean correlation between pairs with one cell in that area and the other elsewhere. Each 

dot represents the mean over all cell pairs from all recordings, color coded as in panel D. (D) 

Mean correlation of cells in each brain region with first principal component of facial 

motion. Error bars: standard deviation. (E) Top: Raster representation of ongoing population 

activity for an example experiment, sorted vertically so nearby neurons have correlated 

ongoing activity. Bottom: prediction of this activity from facial videography. Right: 

Anatomical location of neurons along this vertical continuum. Each point represents a cell, 

colored by brain area as in C,D, with x-axis showing the neuron’s depth from brain surface. 

(F) Percentage of population activity explainable from orofacial behaviors as a function of 
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dimensions of reduced rank regression. Each curve shows average prediction quality for 

neurons in a particular brain area. (G) Explained variance as a function of time lag between 

neural activity and behavioral traces. Each curve shows the average for a particular brain 

area. (H) Same as G in 200ms bins.
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Figure 4. Neural subspaces encoding stimuli and spontaneous/behavioral variables overlap along 
one dimension.
(A) Principal components of facial motion energy (top) and firing of ten example V1 

neurons (bottom). (B) Comparison of face motion energy for each PC during stimulus 

presentation and spontaneous periods. Color represents recording identity. (C) The 

percentage of stimulus-related variance in each dimension of the shared subspace between 

stimulus- and behavior-driven activity. (D) Distribution of cells’ weights on the single 

dimension of overlap between stimulus and behavior subspaces. (E) Schematic: stimulus- 

and behavior-driven subspaces are orthogonal, while a single dimension (gray; characterized 
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in panels C,D) is shared. (F) Stimulus decoding analysis for 32 natural image stimuli from 

32 dimensions of activity in the stimulus-only, behavior-only, and spontaneous-only 

subspaces, together with randomly-chosen 32-dimensional subspaces. Y-axis shows fraction 

of stimuli that were identified incorrectly. (G) Example of neural population activity 

projected onto these subspaces. (H) Amount of variance of each of the projections illustrated 

in G, during stimulus presentation and spontaneous periods. Each point represents summed 

variances of the dimensions in the subspace corresponding to the symbol color, for a single 

experiment. (I) Projection of neural responses to two example stimuli into two dimensions of 

the stimulus-only subspace. Each dot is a different stimulus response. Red is the fit of each 

stimulus response using the multiplicative gain model. (J) Same as I for the behavior-only 

subspace. (K) Fraction of variance in the stimulus-only subspace explained by: constant 

response on each trial of the same stimulus (avg. model); multiplicative gain that varies 

across trials (mult. model); and a model with both multiplicative and additive terms (affine 

model). (L) The multiplicative gain on each trial (red) and its prediction from the face 

motion PCs (blue).
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