
290 

Progress of Theoretical Physics, Vol. 48, No. 1, July 1972 

Spontaneous Breakdown of Symmetry and the Gauge 
lnvariance in a Relativistic Field Theory*> 

Antonio AURILIA, Y a sushi TAKAHASHI and Hiroomi UMEZA W A* 

Theoretical Physics Institute, Department of Physics 

University of Alberta, Edmonton, Alberta 
*Department of Physics, University of Wisconsin-Milwaukee 

Milwaukee, Wisconsin 

(Received January 21, 1972) 

The Nambu-Jona-Lasinio model in which the helicity current is coupled with a massless 
chiral gauge field, is discussed in the pair approximation. Our model is invariant under the 
constant as well as local gauge transformations. We have investigated the excitation spec
trum of physical states in this model, under the requirement that the chiral gauge invariance 
is maintained at every stage. Symmetry breaking solutions are found in a noncovariant form. 
Contrary to previous assertions, massless fields are still present in our theory. Thus, the 
physical fields are a massive vector field, a massless vector field and a phase field. It is shown 
that the gauge transformations are carried by the phase field and the massless vector field, 
respectively. 

§I. Introduction 

In the last decade, theories involving spontaneous breakdown of symmetries 
have been one of the dominating topics of investigation in physics. Such theo
ries have played a central role in our understanding of non-relativistic phenomena 
such as superfluidity, superconductivity and ferromagnetism. 

The .impressive success of the method of broken symmetries in non-relativistic 
problems led to the hope that analogous concepts might give an insight into some 
of the problems in the relativistic theory. In particular, a good deal of atten
tion has been given to the conjectures1h 2l that the observed symmetry violations 
in particle physics arise from an asymmetry of the vacuum state while the fun
damental dynamical equations are exactly symmetrical. The study of field theo
retical models which display spontaneous breakdown of symmetries was initiated 
by Nambu who proposed1l a relativistic model of the pion based on an analogy 
with the B.C.S. theory of superconductivity. It is well established1h 8l•'l by now 
that in a relativistic quantum field theory the occurrence of spontaneous symmetry_ 
breakdown implies the existence of massless bosons. However, the observed 
symmetry violations in particle physics do not seem to be connected in any di
rect way with the appearance of massless particles. This fact has motivated 

*l Supported in part by the National Research Council of Canada. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/1

/2
9
0
/1

9
1
9
7
4
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Spontaneous Breakdown of Symmetry and the Gauge Invariance 291 

considerable interest in how to get around the assumptions of the Goldstone 

theorem avoiding the zero mass conclusion. 

On the other hand it was suggested~> that Goldstone particles may actually 

be a source of strength rather than weakness to theories of dynamical breakdown 

of symmetries. As a matter of fact it has been recognized~h 6 l that massless bo

sons not only are responsible for the degeneracy and polarization of the vacuum, 

but also play the crucial role of preserving the local conservation of currents 

derived from the invariance properties of the theory. 

Further investigations in the domain of non-relativistic phenomena showed7> 

that the introduction of Coulomb interaction drastically affects the Goldstone 

theorem in that the original massless boson conspires with the electromagnetic 

field to form an excitation mode of finite mass. This result was extended to re

lativistic theories8> leading to the suggestion9> that the coupling of gauge fields 

might reconcile spontaneous symmetry breaking with the absence of massless 

particles. It has been pointed out10>• 11> however, that if long range forces are pre

sent in the theory, the convergence properties of the integral defining the formal 

charge associated with a symmetry transformation can be drastically affected. 

Therefore, one of the main assumptions of the Goldstone theorem is destroyed 

and the theorem itself need not apply. However, if massless bosons completely 

disappear, it is pertinent to ask a question how the conservation law is guaran

teed and the original invariance is maintained at every stage in the theory. In 

fact, as we have already mentioned, in absence of long range forces, the Gold

stone bosons play the important role of carrying the symmetry transformations 

and preserving the invariance of the system when the theory is formulated in 

terms of asymptotic fields. Although the above question is a natural one, it has 

always been overlooked in spite of the fact that in many models involving long 

range interactions, the asymptotic fields are unchanged under the symmetry ope

ration. This is the case, for example, in a recent treatment12> of the Nambu 

model extended to the case in which the helicity current associated with the 

chiral gauge invariance of the theory, is coupled to an axial vector gauge field: 

the local and constant gauge transformations, which leave the lagrangian invari

ant, vanish entirely from the theory when expressed in terms of physical fields. 

It is our intention here to investigate, by means of explicit dynamical cal

culations, the energy spectrum in the Nambu and Jona-Lasinio theory when a 

long range interaction is present among the Heisenberg fields. Dynamical effects 

are evaluated in the chain approximation under the requirements that the current 

conservation, the overall invariance of the theory and the algebraic relations, 

namely the so-called Goldstone commutator, be consistently maintained when the 

theory is formulated in terms of physical fields. We find that the internal con

sistency of the scheme deman,ds the existence of massless fields which turn out 

to be the carriers of the symmetry transformations. We explicitly write the field 

equations for the asymptotic operators which are manifestly gauge invariant in 
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292 A. Aurilia, Y. Takahashi and H. Umezawa 

spite of the fact that the axial vector field has acquired a finite physical mass. 
We also find that a manifestly covariant solution of the field equations is, strict
ly speaking, consistent only with a symmetric solution of the mass equation of 
the Nambu-Jona-Lasinio model, which is a solution with physical fermion mass 
equal to zero. A noncovariant solution involving a positive time-like unit vector9l'10l 
is required in order to give an account of the constant chiral gauge transforma
tion. This manifests itself at the level of asymptotic fields, as the gauge transfor
mation of a phase field B (x), which evidently plays now the role previously ascrib
ed to the Goldstone boson in absence of long range interaction. 

In § 2, we present the particle-anti-particle Bethe-Salpeter equation as well 
as the equation of the chiral gauge field in a form convenient for our purpose. 
We then solve, in § 3, these equations for both scattering and single particle 
states. In this respect, a convenient technique is proposed to express the rele
vant operator quantities of the theory in terms of physical fields. In order to 
show how our method works, we first discuss the Nambu-Jona-Lasinio model by 
putting the helicity charge to be zero. This reproduces the well-established re
sults.5l We then proceed to show that the requirement of covariance leads to 
perturbative solutions in which the physical fermion mass vanishes, namely there 
is no spontaneous breakdown of symmetry. 

Section 4 is devoted to show that the physical chiral gauge field satisfies a 
field equation which is gauge invariant in spite of the fact. that it contains com
ponents with non-zero mass. Thus the physical fields are 1) the massive fermion, 
2) the massive vector, 3) the massless transverse vector and 4) fields which carry 
constant and local gauges. 

Appendix A is provided for a detailed discussion of the gauge invariant 
massive vector field. The field carrying the constant gauge can be quantized 
consistently. Various integrals and relevant commutators are given in Appendices 
B and C. It is interesting to see in Appendix D that the Goldstone commutator 
can be calculated directly from the Bethe-Salpeter kernel. 

with 

§ 2. Derivation of fundamental equations 

We consider a system characterized by the Lagrangian 

.L(x) = -if}(x)racfJ(x) +g[(¢(x)¢(x))2+ (i¢(x)r5¢(x))2] 

-t;Fp..(x)F"'.(x) +ejp.5(x)A"'(x) 

F"'.(x) =a"'A.(x) -a.A"'(x), 

j"'5(x) =i¢(x)r"'r5¢(x). 

The field equations can easily be derived: 

(2·1) 

(2·2) 

(2·3) 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 293 

(rfJ+m)¢(x) =2g[¢(x) (Vi(x)¢(x)) +ir5¢(x) (iVi(x)r5¢(x))] 

+ierpr5¢(x)A"(x) + m¢(x) =r;(x), (2·4) 

Vi(x) ( -r8+m) =2g[(Vi(x)¢(x))Vi(x) +i(iVi(x)r5¢(x))Vi(x)r6] 

+ieVi(x)rpr5Ap(x) + mVi(x) ="ij(x), (2·5) 

(2·6) 

These equations are obviously invariant under the local gauge transformation 

¢ (x) ~ei•Ac:c>r•¢ (x)' 

Vi(x) ~Vi(x)eieA(:r:)r,' 

A"(x) ~A"(x) +fJ"A(x) 

and also are invariant under the constant gauge transformation 

¢(x) ~eiar'¢(x), 

Vi(x) ~Vi(x)eiaro. 

The associated conservation law is 

(2·7) 

(2·8) 

(2·9) 

Using the equal-time commutator, we further obtain the Goldstone commutator 

(OJ [jp5 (x), P5(x')] JO)~(x 0 -xo') = 2~,.4(0! Vi(x) ¢(x) JO)~C 4 ) (x -x'), (2 ·10) 
where 

P5(x) =iVi(x)r5¢(x). (2·11) 

When the symmetry (2 · 8) is spontaneously broken, we can evaluate the right
hand side of (2 ·10) to obtain 

where use has been made of the mass equation 

- 1 m 
(OJ¢(x)¢(x)JO)= ---

2 g 

which is discussed in Appendix B. 

(2·12) 

(2·13) 

As was stated in the preceding section, our intention is to investigate the 
excitation spectrum of physical states in the above model under the condition 
that the conservation law (2 · 9) and the Goldstone commutator (2 ·12) are main
tained so that the gauge symmetries (2 · 7) and (2 · 8) are recovered at the final 
stage. For this purpose, we introduce the fermion-anti-fermion Bethe-Salpeter 
amplitude 

(2·14) 

and its conjugate 
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294 A. Aurilia, Y. Takahashi and H. Umezawa 

(2·15) 

where the state Jq) is an eigenvector of the total energy-momentum vector P,., 

i.e., 

(2·16) 

The equations of motion (2 · 4) and (2 · 5) and the equal-time commutator then 

yield 

a'fJ' ..._ 
(ro,+m)aa'Xq (x, y) ( -rov+m)11,11 

= -io(xo-Yo) (r4)aa'<OJ {1Ja'(x), VJp(y)} Jq)+<OJT(1Ja(x), rjp(y)) Jq). 

(2·17) 

In pair approximation in which the last term can be neglected, this equation 

takes a particularly simple form: the use of the equal-time commutator reduces 

(2·17) to 

( ~ '11' ... 
ru,+m)aa'X/ (x, y) ( -rav+m)l1'11 

= -2igoc4>(x-y) (r~)a 11 Tr[r6Xq(x, x)] -ieoc4>(x-y) (ir,.r~)ap<OJA,.(x) jq). 

(2·18) 

Integrating (2 ·18), we obtain 

Xq(x, y) =xqc0>(x, y) -2ig J d 4 uSc(x-u)r~Sc(u-y)Tr[r~xq(x, x)] 

-ie J d 4 uSc(x-u)ir,.r~Sc (u-y)<OIA,.(x) jq), (2·19) 

where 

(ra,+ m)xqc0>(x, y) ( -rliv+m) =0, 

(ro,+m)Sc(x-y) =oc4>(x-y). 

(2·20) 

(2·21) 

The first term in the right-hand side of (2 ·19) represents two free fermions and 

vanishes if the state I q) is the bound state. 

It proves convenient to introduce at this stage the new amplitudes Xq(z) and 

Xq(z) by 

X a/1 (x y) = 1 eiqX.x a/1 (z) 
q ' ( 2rc)s;2 q ' 

(2·22) 

(2·23) 

where 

X=Hx+y), 
(2·24) 

z=x-y. 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 295 

We shall also introduce 

1 
<OIA"(x) lq) = (2rc)sf'J e'q"a"(q). 

Equation (2 ·19) can then be rewritten as 

with 

Xq(z) =xq<0l(z) +2g Tr[r~xq(O)]Q(z; q) +ea"(q)Q"(z; q) 

Q(z;q)=-i Jd'ySc(~ -y)r5sc(~ +y)e'qy, 

Q"(z; q) = -i J d'ySc( ~ -y) ir"r5sc( ~·· +y )e'q11 • 

If we note the relations 

(2·25) 

(2·26) 

(2·27) 

(2·28) 

Tr[r6Q(O; q)] =JP(q2), (2·29) 

Tr[ir"r5Q(O; q)] =J/·p(q) = -2mqpl(l), (2·30) 

Tr[r6Q"(O; q)] =J"n(q)=2mqpl(l), (2·31) 

Tr[ihr5Q"(O; q)] =JA~(q) = [o").- :,q"q).JJA(q2) +4m2I(l) q:;,). , (2·32) 

we can further reduce (2 · 26) to 

where 

C(q) =C<0l(q) +2gJP(l)C(q) +2ieml(l)q"a"(q), 

D).(q) =D).<ol (q) +eJA(l) [o)..- q~;· Ja.(q) 

+ 4iml(l)q). [gC(q) -iem : 2 q.a.(q) J. 

C(q) =Tr[ir6Xq(O)], 

D).(q) =Tr[ir).r5Xq(O)] 

and similarly 

c<o) (q) =Tr [ir6xq<O) (O) J, 

D). <O) (q) =Tr [ir).r~xq<O) (O) J. 

(2·33) 

(2·34) 

(2·35) 

(2. 36) 

(2· 37) 

(2·38) 

The quantities such as JP(l), JA(l) and J(q2) are given integrals coming from 

fermion-anti-fermion loops. Their definitions, explicit form and properties can 

be found in Appendix B. In particular, we note that when the gauge symmetry 

is spontaneously broken, namely, m=/=0, it holds 

(2·39) 
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296 A. Aurilia, Y. Takahashi and H. Umezawa 

by virtue of the mass equation (2 ·13). Furthermore, J.4. (l) is a monotonically 
increasing function of q 2 in the region l> -4m2, and I(l) is nonsingular at 
l=O. 

The above two equations (2 · 33) and (2 · 34) are not sufficient to determine 
the unknowns C(q), D-,.,(q) and a-,.,(q). We note, however, the relations 

<oU"s(x) Jq)=- ( 2 ~r eiqxD"(q), (2·40) 

1 <O/p6(x) Jq)=- (2nf2 eiqxC(q), (2·41) 

which follow from the definitions (2 · 35), (2 · 36), (2 · 3) and (2 ·11). Equations 
(2·40), (2·25) and (2·6) then yield 

[lO'""-q"q.]a.(q) = -eD"(q). (2·42) 

The set of equations (2 · 33) and (2 · 34) supplemented by (2 · 42) can be solved 
for the unknowns C(q), D"(q) and a"(q). 

§ 3. Covariant solutions 

We wish to find various solutions of Eqs. (2 · 33), (2 · 34) and (2 · 42). It 
is instructive, however, to see within our formalism how in the Nambu-Jona
Lasinio model the Goldstone particle appears and the symmetry (2 · 8) is fully 
recovered at the level of the physical fields. 

(a) When e= 0: 

Our model reduces to that of Nambu-Jona-Lasinio, if we put e=O. We ob
tain from (2 · 33) and (2 · 34) 

D-,.,(q) =D.,C0l(q) +4igmq-,.,l(l)C(q) (3·1) 

and 

(3·2) 

which can be cast, when m=/=0, into the form 

(3·3) 

by the aid of (2 · 39). From the helicity current conservation (2 · 9) and the re
lation (2 · 40), it follows 

q-,.,D-,.,(q) =0. (3·4) 

Multiplying (3 ·1) by q,. and using (3 · 4) and (3 · 3), we obtain 

q,_D,_C0l(q) +4igmll(l)C(q) =q,_D-,.,C0l(q) +2imCC0l(q) =0. (3·5) 

If we denote the contribution of two free fermion state to C (q) and D,. (q) by 
C (q, F) and D,. (q, F), respectively, Eq. (3 · 3) gives 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 297 

C(q, F)= 1 C<0<(q). 
2gll(q2) 

(3·6) 

The substitution of (3 · 6) into (3 ·1) yields 

0 • • 1 0 
D,.(q, F) =D,< l(q) +2zmq,-C< l(q) 

l 

(3·7) 

by virtue of (3 · 5). 

We now introduce the massive free fermion field ¢ (x) satisfying 

(rfJ+m)¢(x) =0. (3·8) 

We then transform (3 · 7) and (3 · 6) into coordinate space and express their con

tribution to p5(x) and jp5(x): 

1 
p/(x) =- 2gDI( -D) (i($(x)r5¢(x)), (3·9) 

j~(x) = (tJI'.- ~ fJI'a.) (i($(x)r.rs¢(x)), (3 ·10) 

which agree with the relations previously obtained in Ref. 5). 

The bound state contribution C (q, B) can easily be obtained by dropping 

the inhomogeneous terms C<0l (q) from (3 · 3): 

ll(l)C(q, B) =0. (3·11) 

Due to the fact that 1(l) is not singular at l=O, there exists a bound state 

with the vanishing mass. The bound state contribution to D>. (q) is extracted 

from (3 ·1) by omitting D, <0l (q): 

D>.(q, B) =4igmq,J(q2)C(q, B). (3·12) 

The solutions C(q, B) and D,(q, B) of homogeneous equations can be normalized 

in two ways. The first method is a straightforward application of the technique 

put forward by Lurie et al_l8l We shall here apply the formula 

ifJI'(OI T(jp5(x), p5(x')) JO) =(OJ [j,5(x), p5(x')] JO)tJ(xo-xo') 

= -2(0JT(¢(x), ~(x')) JO)tJ<'l(x-x') 

(3·13) 

The derivation of this relation is given in Appendix D. The first method gives 

the same result as that obtained by (3 ·13). To make use of (3 ·13), let us in

troduce a massless boson field B(x) such that 

[B(x), B(x')] =iD(x-x'), (3·14) 
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298 A. Aurilia, Y. Takahashi and H. Umezawa 

DB(x) =0. 

Then, the boson contribution to p5 (x) is 

pl(x) =aB(x). 

Correspondingly, the boson contribution to j,.6 (x) is, due to (3 ·12) 

j~(x) =4gmal(O)fJ,.B(x), 

where a is a real constant to be determined by (3 ·13). 
Since we have, as is shown in Appendix C, 

(01 [j~(x), p/(x')] IO)=O, 

we obtain 

(3·15) 

(3·16) 

(3·17) 

(3·18) 

(01 [j,D(x), PD(x')] I0)8(xo-Xo') =(01 [j~(x), p/(x')] I0)8(xo-xo') 

=4gma21(0)(0I [fJ,B(x), B(x')] IO)c1(xo-xo') 

= -4gma21(0)8<'>(x-x') (3·19) 

which must agree with (3 ·13). Hence, 

1 1 
a=---

2g ./1(0) . 
(3·20) 

We thus arrive at 

P6B (x) = _1_ - 1-B (x) 
2g ./1(0) ' 

(3·21) 

j~(x) =2m ./1(0) fJ,.B(x). (3·22) 

The generator of the transformation (2 · 8) can be constructed formally: 

G== J drJ,.(x)j,.D(x) 

=2m ./1(0) J drJ,.(x)fJ,.B(x). (3·23) 

The fermion part of j,.6 (x) does not contribute to G due to the presence of the 
projection operator in (3 ·10). The operator 

Ua=expiaG 

then transforms rp(x) and B(x) as 

Ua -lrp(x) Ua=r/J(x), 

Ua- 1B(x) Ua=B(x) +2m ./1(0) a. 

(3·24) 

(3·25) 

(3·26) 

We see that the original constant gauge (2 · 8) is now carried by the massless 
field B (x). It is a simple matter to demonstrate that the current expressed in 
terms of the physical fields is indeed conserved. 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 299 

(b) When e=FO: 

In this case, equations to be solved are 

D.,.(q) =D),<0l(q) +eJA(q') (o.,..- := q),q.)a.(q) 

+4iml(q')qA [gC(q) -iem :, q.a.(q) J. 
2gq'I(q')C(q) =C<0l(q) +2imel(q')q.a.(q), 

[liJA.-q.,.q.]a.(q) = -eD.,.(q). 

(3·27) 

(3·28) 

(3·29) 

The second equation follows from (2 · 33) and (2 · 34), which is valid only when 

m=FO. If we multiply (3 · 27) by q' and substitute (3 · 28) and (3 · 29) into the 

resultant equation, we obtain 

[q'+e'JA.(q')]DA(q) =q'DA<0l(q) +2imq.,.C<0l(q) 

= (q'iJA.-qAq.)D.<Dl(q) (3·30) 

by virtue of (3 · 5). Hence, the fermion contribution to DA (q) can easily be ob

tained: 

DA(q, F)= q'+e'~A.(q') [q'iJ),.-qAq.]D}ol(q). (3·31) 

The solution of the homogeneous equation, denoted by DA (q, A), satisfies 

[q'+e'J.4.(q')]D.,.(q, A) =0 

which obviously admits a non-trivial solution since the equation 

M'=e'J.4.( -M') 

(3·32) 

(3·33) 

has one and only one root due to the fact that JA.(z) is a monotonic function 

in the range z< -4m3• Hence we may write 

(q'+M')D),(q, A) =0. (3·34) 

Considering the relation (3 · 4), we would be tempted to identify D), (q, A) with 

a physical Proca field with the mass M. This would then mean that the original 

gauge transformation has completely vanished from our theory. 

The crucial point in our model lies however in the relation (3 · 29) which 

relates the physical field to the matrix element of the helicity current. If we 

substitute (3 · 29) into (3 · 34), we have 

(3·35) 

which reads in configuration space 

(3·36) 

This implies that the physical field AA <DJ (x) satisfies the gauge invariant massive 
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300 A. Aurilia, Y. Takahashi and H. Umezawa 

field eguation. Such a field equation was investigated previously by Palmer and 
one of us (Y.T.) in a different context.14l Appendix A is provided to discuss 
this field. We here emphasize that the massive field A" (O) (x) does not satisfy 
the Proca equation. It is worth pointing out that the gauge transformation of 
A"<0l(x) does not require the simultaneous transformation of the fermion field, 
whereas the gauge transformation of the interpolating field A"(x) must be ac
companied by that of the fermion field cf;(x), as was seen in (2·7). Thus, we 
see that the original local gauge carried by A"(x) and cf;(x) is now carried sole
ly by the asymptotic vector field A/0) (x). 

The helicity current in terms of physical fields now takes the form 

with 

and also 

it;(x) = O-e2}-A( -O) [00'".-8"8.J(i~(x)r.;r5c,b(x)), 

ifl1(x) = _l_[00'".-8"8.]A}0l(x) 
e 

(3·37) 

(3·38) 

(3·39) 

(3. 40) 

It should be noted that the last term in (3 · 40) is written in terms of the inter
polating field. However, we can arrange the gauge in such a way that 

(3. 41) 

as will be shown shortly. In this case, we can separate p5 (x) into two parts 
given by 

F 1 -P5 (x) =- (ic,b(x)r6c,b(x)) 
2g0l(-O) 

(3·42) 

and 

(3·43) 

on account of the relation 

(3·44) 

To justify (3 · 41), we observe 

[00'".-a"a.]A.(x) = -ej"5(x) 

= -ejt;(x) -ejfl1(x), (3·45) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/1

/2
9
0
/1

9
1
9
7
4
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Spontaneous Breakdown of Symmetry and the Gauge Invariance 301 

which enables us to write 

[00',..-a,.a.] (A.(x) -A.<0l(x)) = -ej:O(x) 

due to (3 · 39). Hence, 

A,.(x) =A,.<0l(x)- !__j:O(x) +8,.¢(x), 
D 

(3·46) 

(3·47) 

with an arbitrary function ¢(x). However, the gauge of A,.(x) and A,.<0l(x) is 
arbitrary and therefore the last term in (3·47) can be absorbed into A,.(x) or 
A,. <OJ ( x) . Thus, we arrive at (3 · 41). 

Since the asymptotic field A,.<0l(x) satisfies- (3·36), it is reasonable to as
sume, on the ground of covariance, the commutation relation 

with an arbitrary constant a and an arbitrary function f(x- x'). Consequently, 
we have 

(3. 49) 

which yields 

<OJ [j,.5(x), P5(x')] JO)=<OJ U:O(x), P5F(x')] JO)+ <OJ [j"1(x), p/(x')] JO) 

=0 (3·50) 

due to (C · 39), (3 · 39) and (3 · 43). The relation (3 ·50) is compatible with 
(2 ·12) only when m = 0. Namely the physical fermion field must have the vanish
ing mass. We must recall however that the various relations used above are based 
on the assumption m=/=0. If we wish to consider the case m = 0, we have to 
start all over again from (2 · 33), (2 · 34) and (2 · 42) without using the relation 
such as (2 · 39). We then obtain 

D ( F)- 1 D <0l( ) ~q, -l+e3J..t(q2) ~ q, 

D~(q, A) =0, 

C( F)- 1 C~() 
q, - 1-2gJP(l) q ' 

C(q, A) =0, 

and in particular, a,.(q, A) satisfies 

(3. 51) 

(3·52) 

(3·53) 

(3·54) 

(3·55) 

where J..t(l) and JP(l) in (3·51) and (3·53) can be obtained by putting m=O 
in (B · 29) and (B · 3), respectively. The above solutions (3 ·51)'""" (3 ·55) coin
cide with the perturbative solutions with the pair approximation, as we have ex

pected. 
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302 A. Aurilia, Y. Takahashi and H. Umezawa 

§ 4. Noncovariant solutions 

The argument presented in the preceding section indicates that the manifest
ly covariant solutions exist only when the symmetry is not spontaneously broken. 
In view of the fact that the Goldstone commutator is a manifestation of the com
pleteness of solutions, this implies that the asymptotic fields obtained are not 
complete, and an extra mode must appear in a noncovariant form, as long as 
we assume m=/=0. Moreover, the noncovariant mode must be of long range, for, 
otherwise, the generator of the constant gauge transformation would vanish identi
cally due to the factor D~p.-OpOv in (3·39).*> 

The various relations leading to (3 · 47) are valid under m=f=.O. However, 
the commutation relation (3 · 48) for the field AI' co> (x) should now be abandoned. 
To obtain the more general commutation relation, we seek a solution of the form 

(4·1) 

where ap(x) and Up(x) are transverse massless and the Proca :fields, respectively. 
They satisfy 

npap(x) =apap(x) =Dap(x) =0, 

ai'UI'(x) = (0-M2) Up(x) =0. 

The :field X (x) is arbitrary provided that 

JxJ~oo. 

The substitution of ( 4 ·1) into (3 · 36) gives**> 

Introducing the phase :field B(x) by 

(na)rr(x) =M2J72B(x), 

we obtain 

which can be split into two equations 

(0-M2)rr(x) =0, 

(0-M2)J72B(x) =0. 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

(4·6) 

(4·7) 

(4·8) 

(4·9) 

*> The existence of a noncovariant long range term can explicitly be demonstrated by showing 
that the set of equations (3·27), (3·28) and (3·29) admit a solution under the constraint q·a(q) 
=0.15> See also 3). 

**> np is a positive time-like vector and 

8A'==8l+nl (n8), 

p2:=8l•8l•. 
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Spontaneous Breakdown of Symmetry and the Gauge lnvariance 303 

We observe here an important fact that all the equations involving the phase 

field B(x) are invariant under 

B(x) ~B(x) +constant. 

The relations 

[O~,..-a,.a.]A.< 0 l(x) =M2 U,.(x) +n,.n-(x) -M2a,.'B(x), 

a"A~'< 0 l(x) = M 2P'2B(x) + Dx(x), 
f72 

(4·10) 

(4·11) 

(4·12) 

which can easily be derived, enable Eqs. (3 · 39) and (3 · 43) to be rewritten as 

PoA(x) = e; [~ ~ 2 P' 2 B(x) +x(x) J 

=em [-1.--PB(x) + x(x)] 
g f72 

(4·13) 

(4·14) 

by the aid of (4·9). The conservation of j"1(x) follows at once from (4·6) and 

(4·3). 

The Goldstone commutator of j"1(x) and p/(x) is 

on account of (A·27). Combining (4·15) with (C·12), we obtain 

<OI [jpo(x), p6(x')] IO)~(xo-xo') =inp_!!!__~<'l(x-x'), 
g 

which agrees with (2 ·12). 

(4·15) 

(4·16) 

As was pointed out before, all the equations involving B(x) are invariant 

under ( 4 ·10). This fact makes it plausible that the constant gauge transforma

tion is now carried by the field B (x). That it is really so can be justified for

mally as follows: We first rewrite using ( 4 ·13) the generator of the constant 

gauge transformation in terms of physical fields 

G= S dCJp(x)jp6(x) = S dCJp(x)j"1(x) 

=- ~ J dCJp(x) [M2 Up(x) +npn-(x) -M2ap'B(x)]. (4·17) 

The canonical transformation 
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induces 

A, Aurilia, Y. Takahashi and H. Umezawa 

U.,=expiaG 

U.,-1if;(x) U.,= if; (x), 

Ua - 1B(x) U.,=B(x) + a . 
e 

(4·18) 

(4·19) 

(4·20) 

We see therefore that the constant gauge transformation (2 · 8) is taken over by 
the phase field B ( x) . 

Finally, it is worth remarking that Eqs. (3 · 36) and ( 4 · 9) have their coun
terparts in the theory of superconductivity.16'' 17' This shows that the well-known 
analogy between the theory of superconductivity and the Nambu-Jona-Lasinio 
theory holds even in the presence of long range forces. 

Acknowledgements 
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Appendix A 

A gauge invariant massive vector field 

There are at least two ways in which the Maxwell field can be generalized 
to a massive field. The Maxwell equations can be written as 

fJP.FI'.(x) =0, 

8-,Fp.(x) +fJp.F.-,(x) +fJ.FAP(x) =0. 

(A·1) 

(A·2) 

Equation (A·2) implies that there exists a vector field Al'(x) such that 

Fp..(x) =fJp.A.(x) -a.AI'(x). 

Consequently, (A ·1) can be written as 

[08p..-8p.fJ.]A.(x) =0. 

If we adopt a prescription 

to obtain a massive field equation, we arrive at 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

which is known as the Proca equation. On the other hand, we can generalize 
differently: Multiply (A· 2) by 8-,. Then on account of (A ·1), we obtain 

(A·7) 

We now adopt the prescription (A·5) to obtain 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 305 

(A·8) 

with 

Wl'.(x) =a I' V.(x) -a. Vl'(x), (A·9) 

wh~re Vl'(x) is a vector :field. Equation (A·9) has an advantage of being gauge 
invariant. Indeed, as was shown in Ref. 14), the field VI' (x) agrees with the 
Proca field Ul'(x) when the gauge is fixed. 

It is interesting to note that the :field Wl'.(x) satisfying (A·8) and (A·9) 
is equivalent to the skew-symmetric divergenceless field satisfying the Klein
Gordon equation, i.e., 

(D-M2}¢1'v(x) =0, 

c/Jpv(x) +c/J.I'(x) =0, 

al'¢1'v(x) =0. 

(A·10) 

(A·ll) 

(A·12) 

The :fields ¢~'" (x) and W~'" (x) are mutually dual. Equations (A ·10) ~(A ·12) 
are derivable from a Lagrangian, as was shown in 14). We observe here that 
the vector :field VI' (x) is a product of the Euler-Lagrange equations (A ·11) and 
(A ·12). It is very difficult to construct a Lagrangian which leads to equations 
(A·8) and (A·9) directly. If we set 

.£(x) = --1-a)>.cal' V.(x) -a. Vl'(x))a~>.(al' V.(x) -a. Vl'(x)) 
4M2 

1 
--(al' V.(x) -a. Vl'(x)) (al' V.(x) -a. Vl'(x)) 

4 
(A·13) 

and take a variation with respect to V.(x), we obtain, instead of (A·8) and 
(A·9), 

or 

(D -M2)al' Wl'.(x) =0, 

Wl'.(x) =a~' V.(x) -a. Vl'(x) 

(D -M2) (0~~'"-a~'a.) V.(x) = 0. 

(A·l4) 

(A·15) 

(A·16) 

The :field Vl'(x) satisfying (A·16) has attractive features that (i) it is complete
ly gauge invariant, and (ii) it is identical to the asymptotic :field appearing in 
the Nambu-Jona~Lasinio field interacting with a massless pseudovector :field. The 
quantization of the Proca :field is quite straightforward, whereas that of the Max
well :field causes some difficulty. 

In order to obtain the most general solution of (A ·16), we separate the 
1/P"2 singularity and put 

1 
Vl'(x) =al'(x) +nl'rn(x) +al'x(x) + Ul'(x). (A·17) 
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306 A. Aurilia, Y. Takahashi and H. Umezawa 

The field n-(x) and the phase field defined by 

M 2P2B(x) = (na)n-(x) 

satisfy 

(0-M2)n-(x) =0, 

(0-M2)f2B(x) =0. 

(A·18) 

(A·19) 

(A·20) 

It is interesting to note that (A· 20) can be expressed in an integral form 

OB(x) = -- d 8x' P12B(x') M2s 1 

4n- lx-x'l 
(A·21) 

which is exactly the same as that obtained by Leplae et al. in discussion of the 

superconductivity.17> It should also be noted that Eqs. (A·18), (A·20) and (A·21) 

are all invariant under 

B(x) -'>B(x) +constant. 

Equations (A ·18), (A ·19) and (A· 20) are equivalent to 

M'P'B(x) = (na)n-(x), 

M 2P2(na)B(x) = (f2-M2)n-(x). 

(A·22) 

(A·23) 

(A·24) 

To quantize the fields B(x) and n-(x), we demand that Eqs. (A·23) and (A·24) 

are consistent with 

It is not difficult to see that 

iB(x) = [B(x), HB], 

iic(x) = [n-(x), HB]. 

[B(x), n-(x')],,=,.,'=i~(x-x'), 

HB=- d 3xrB(x) -rB(x) + -- d 8xd 8x' M 2 s 1 s 
2 8n-M2 

x {rn-(x) 1 r'n-(x') + M'n-(x) 1 n-(x')} 
lx-x'l lx-x'l 

(A·25) 

(A·26) 

(A·27) 

(A·28) 

fulfill the required condition. The quantization of a"(x) and U"(x) is well 
known. 

Finally, we show that (A· 8) is equivalent to the relativistic London equa-
tion16> 

a· 
E=x'[a~ +'P], 
H= -x'rxj, 

r-H=O, 

(A·29) 

(A·30) 

(A·31) 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 307 

p ·E=p' 

PxE+ fJH =0 
at · 

PxH- fJE =j. 
at 

From (A·34), (A·30) we obtain 

a 1 Px (PxH)- -PxE= --H. 
at l 2 

The use of (A· 33) into (A· 35) gives 

Similarly, from (A·34), (A·32) and (A·29) we obtain 

The two equations (A· 36) and (A· 37) can be combined to give 

.Multiplying (A·38) by Op, we arrive at 

(o- :2 ) coa""-a"a.)A.(x) =O. 

Appendix B 

A table of integrals /or the Nambu-Jona-Lasinio model 

(A·32) 

(A·33) 

(A·34) 

(A·35) 

(A·36) 

(A·37) 

(A·38) 

(A·39) 

The relevant integrals in the Nambu-Jona-Lasinio model come from the an

alytic expression of various fermion-anti-fermion loops. The (ps) (ps) fermion 

loop corresponds to 

(B·1) 

where 

Sc(P) =- iy·p-m. 
P2 +m2 -ze 

(B·2) 

The dependence on l of JP(l) can be established on the ground of Lorentz 

invariance and can be explicitly given by rewriting (B ·1) in the form of a dis

persive integral 
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308 A. Aurilia, Y. Takahashi and H. Umezawa 

(B·3) 

where 

(B·4) 

A cutoff has been introduced in (B · 4) since the integral (B ·1) is quadratically 

divergent. 

It is well known thael• 5l the dynamics of the Nambu-Jona-Lasinio model, in 

addition to the "normal" perturbative solution with vanishing physical fermion 

mass, also allow the existence of a massive physical fermion, provided the self

consistency condition 

(B·5) 

is satisfied with m=f=O. 

It proves useful for practical purposes to use the expression of JP(l) to 

cast (B · 5) into the form 

i.e., 

(B·7) 

Taking now into account (B·6), or equivalently (B·7), we can write JP(l) as 

JP(l) = 2
1
9 

-lJ(l), (B·S) 

where I(l) is easily seen to be, from (B · 3) and (B · 4); 

(B·9) 

It is worth noticing that I(l) is not singular at l = 0. We shall also introduce 

the analytic expressions of (ps) (pv) , (pv) (ps) and (pv) (pv) fermion loops and 

their corresponding dispersive forms, namely, 

JPPA(q)=- ( 2 ~)' J d'pTr[r5sc(P+ !q)irpr5Sc (P- !q)J 

=2mqpl(l), (B·lO) 

JPAP(q)=- ( 2 ~)' J d'pTr[irpr5Sc (P+ !q)r5sc(P- !q)J 

= -2mqpl(q2), (B·ll) 
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Spontaneous Breakdown of Symmetry and the Gauge Invariance 309 

where 

with 

J"~(q) =- (2:)' f d 4pTr[ir"r5Sc (P+ !q)ir.r5sc(P- !q)] 

=JA(l) [~".- q~;·]+4m2J(q2)q~;·' 

Observe that 

dJA( -z) =- f"' dk2 f;,(k2) <O 
dz , J4m• (z- k2) 2 

Hence, JA( -z) is a decreasing function of z. However we have 

and 

limJA( -z) =!!!:_ 1-~ -->O. 2 iA' [ 4 2 J 1/2 dk2 
z-.4m• 6n2 4m' k2 k2 

Thus 

From (B ·16) follows that 

satisfies 

If we use the identity 

1 

we obtain from (B·13) 

(B·12) 

(B·13) 

(B·14) 

(B·15) 

(B·16) 

(B·17) 

(B·18) 

(B·19) 

(B·20) 

(B·21) 

(B·22) 

(B·23) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/1

/2
9
0
/1

9
1
9
7
4
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



310 A. Aurilia, Y. Takahashi and H. Umezawa 

As. a last remark, we notice the following obvious indetities: 

Jp.P.A(q) +J/·p(q) =0' 

JA(O) -4m2l(O)=O, 

q"JP~(q) =4m2q.l(q2), 

JP~(q)q.=4m 2 q"l(q 2 ). 

(B·24) 

(B·25) 

(B·26) 

(B·27) 

The identity (B · 25), in particular, allows an alternative 

which follows immediately from the definition (B ·13): 

expression of JA(l) 

JA(q2) =4m'l(q2) +lJ..t(q2), (B·28) 
where 

(B·29) 

Appendix C 

Commutation relations of fermion current 

The fermion contribution to the current is given by 

j~(x) =D-e'J~( -D) (0~,..-a"a.) (i~(x)r.r 5 ¢(x)). (C·l) 

We first note that the factor 1/(z-e'JA( -z)) is complex due to the cut along 
the real axis in z-plane (z>4m2). Thus, 1/(z-e2JA(-z)) in front of the pair 
creation term is hermitian conjugate of that in front of the pair annihilation 
term. We shall prove in this appendix the following relations: 

<OI [j~ (x),j{s (y)J IO)=O, 

<OI [j! (x),j! (y)] jO)=O, 

<ol [o,j,~ (x),jf{ (y)J IO)=O, 

<ol [jf. (x),j,~ (y)] IO)=Rlo,~(x-y), 

<ol[~o,jf. (x),j,~ (y) ]lo>= -R2P'~(x- y), 

<OI [o,jf. (x),jl;, (y)] IO)= -R1P'~(x-y), 

<ol[~jf{(x), ~j{s(y)]lo>=O, 

(C·2) 

(C·3) 

(C·4) 

(C·5) 

(C·6) 

(C·7) 

(C·8) 

<ol[~jf{ (x), ~o,jfs (y) ]lo>=R,~,,~(x-y) -Rao,o~(x- y), (C ·9) 

(C·lO) 
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<oi[~j:;(x), ~a4j.~ (y)] IO)= {R2(0'".+ n"n.) -RsfJ/a.'}b'(x-y), 

(C·ll) 

which are valid at x 0 = y 0• It will also be proved that at any x and y 

<OI [i¢"(x)r5¢(x),j:;(y)] IO)=O, (C·12) 

<oi[j4~ (x), ~(a~,- :,a~a,) jf; (y) ]lo)=O. (C·13) 

The constants appearing in the right-hand side of the above equations are given 

in terms of the renormalization constant 

and 

as 

~=lim J"'( -z), 
1•1-+<X> 

M' 
Rl=~-Za- 2 , 

e 

1 
R2=~(1-Za), 

e 

Ra= _1._{~-- 1 -} 
e1 M' e'J"'(O) · 

(C·14) 

(C·15) 

(C ·16) 

(C·17) 

(C·18) 

In order to prove the above relations, we introduce the spectral representa

tion and take various operations involved. 

Let us define 

G~.(x-y) =<OI T(i¢(x)r "r5¢(x), i¢(y)r.r5q)(y) IO) 

=- Tr[ir"r5 ~ Sc(x-y)ir.r5 ~ Sc(y-x)]. 

As was shown in Appendix B, we have the spectral representation 

(C ·19) 

(C·20) 
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where 

(C·21) 

(C·22) 

(C·23) 

Hence the spectral representation of the commutator 

G,..(x-y) =<OI [i¢(x)r,.r5¢(x), i¢(y)r.r5(p(y)] IO) (C·24) 

is given by 

(C·25) 

Using (C·l) and (C·25), we have 

(OI [j;';(x),j,!' (y) J IO)= ID --<e2J~( -D) 12 coaM-8,.8~) coa.p-8.8p)G~p(x-y) 

=i ID-e2J':(-D)I 2 (Da,..-8,.8.) f_""""dk 2((k 2)A(x-y;k). (C·26) 

If we use the well-known relations 

J(x-y;k)=O, 

8 ' 
-J(x-y; k) = -a(x-y) 
8xo 

at x 0 = y 0, and the continuity equation 

8,.jJ.(x) = 0' 

Eqs. (C·2), (C·3), (C·4) and (C·8) follow at once. 

The proof of (C · 5) is as follows: From (C · 26), we have 

Hence, at equal time x 0 =y0, we have 

(C·27) 

(C·28) 

(C·29) 

(C · 30) 

(C·31) 
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where 

Rt = f"' dk2 k2t;. (k2) . 

J4m' W-e2JA-( -k2) 12 
(C·32) 

It now remains to show that the integration (C · 32) gives (C ·16). For this 

purpose, we note (B · 23), i.e., 

t;.(k2) = _l_ ImP·( -k2). (C·33) 
7r 

(C · 34) 

The contour c1 is indicated in Fig. 1. If we add the contour ca indicated in 

Fig. 2, we can evaluate the integration (C · 34). The result depends on the pole 

in the circle c2 and the value at lzl---7oo. Thus, we arrive at 

(C · 35) 

with 

~=limP·( -z), (C · 36) 
1•1--+CX> 

Za= [1-e2 dJA(-z)]-1 . 
dz Z=M.Z 

(C ·37) 

This establishes the relation (C·5). The proof of (C·6), (C·7), (C·9), (C·10) 

and (C ·11) is similar. 

To prove ( C · 12), we make use of the relation 

(C · 38) 

I M2 

----+-.... 

I 

c, 

~ 
.... 

~ 

4m2 

Fig. 1. The contour q. Fig. 2. The contour c2• 
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Hence 

(OJ [i¢"(x)r.¢(x),j:;(y)]JO)= 2 ~ D-e 2 J~( -D) (08,..-a"a.)apGp.(x-y) 

=0 (C·39) 
as a consequence of (C·25). 

Lastly, Eq. (C ·13) follows directly from (C · 26). 

Appendix D 

Derivation of the Goldstone commutator from the Bethe-Salpeter kernel 

In this appendix we show that the vacuum expectation value of the Goldstone 
commutator is directly related to the Bethe-Salpeter kernel. The Bethe-Salpeter 
kernel is defined by 

Using the equal-time commutator 

we can derive 

and 

OtpKafi~P (xh x2, Xa, x,) =(OJ T(at,.Vla (xt), cp11 (xa), ¢~(xs), cpP (x,)) I 0) 

- i8<'> (x1- x,) (r,)a11(0J T(¢~ (xa), cpP (x,)) I 0)8,., 

-i8<'> (x1-x,) (r,)ap(Ol T(cp11 (x2), ¢~(xa))J0)8,., 

aa,.Kafi~P (xh Xa, X a, x,) =(OJ T(¢a(Xt), a2pcpfl (xa), ¢"(xs), cpP (x,)) J 0) 

+ i8<'> (xa- Xt) (r,)a11(0J T(¢" (xa), cpP (x,)) I 0)8 "' 

+ i8<'>(x2 -xs) (r,)"P(OJ T(cpp(x,), ¢a(Xt)) 10)8,.,. 

(D·1) 

(D·2) 

(D·3) 

(D·4) 

If we put x1=x2=x and xa=x,=x', and multiply by (ir,.r.)a11 and Ciro)p~· we 
obtain 

a I' [ (ir ,.r.)flaKafll!p (x, x, x'' x') (ir.)p~] =a "(OJ T(jp6 (x)' Po (x')) I 0) 

= -i8(t-t')(OJ [j'"(x), P6(x')] JO) 

=2i8<'>(x-x')(OJT(¢p(x), cpp(x)) JO), 

(D·5) 
where use has been made of 

and 

j/'6 (x) = icp (x) r "r.¢ (x)' 

p.(x) =icp(x)r.¢(x) 

(D·6) 

(D·7) 

(D·8) 
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