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We report a surprising new result for wave turbulence which may have broader ramifications for general

turbulence theories. Spatial homogeneity, the symmetry property that all statistical moments are functions

only of the relative geometry of any configuration of points, can be spontaneously broken by the instability

of the finite flux Kolmogorov-Zakharov spectrum in certain (usually one dimensional) situations. As a

result, the nature of the statistical attractor changes dramatically, from a sea of resonantly interacting

dispersive waves to an ensemble of coherent radiating pulses.
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Introduction.—Spatial homogeneity, the assumption that

the property of translational symmetry, broken by each

member of a statistical ensemble of fields, is restored on

the average is one of the cornerstones of all turbulence

theories [1]. It has been used broadly since Taylor formu-

lated the theory of homogeneous turbulence and is

seldom questioned. It is an extraordinarily convenient as-

sumption for analysis. It means that statistical moments

huðxÞuðxþ rÞuðxþ r
0Þ . . .i of the fields uðx; tÞ are func-

tions only of the relative geometry r, r0; . . . . Moreover, it

ensures that the generalized Fourier transforms AkðtÞ ¼
ð2�Þ�d

R1
�1 uðx; tÞ expð�ik � xÞdx are Dirac delta corre-

lated (d is the dimension). For fields of mean zero, it says

that the pair correlation is

hAkðtÞA�
k
0ðtÞi ¼ �ðk� k

0Þnk; (1)

where the wave action density nk is the Fourier transform

of the two point average huðxÞu�ðxþ rÞi and �ðk� k
0Þ is

the Dirac delta function.

The new result of this Letter is that the spatial homoge-

neity symmetry can be broken spontaneously by an insta-

bility that broadens the correlation (1). We will derive this

result for wave turbulence, the turbulence of weakly inter-

acting dispersive waves. We consider equations of motion

i
@u

@t
¼ Luþ �u2u� (2)

for a complex amplitude uðx; tÞ in one and in two spatial

dimensions. The linear operator L is defined by Leik�x ¼
!ke

ik�x with the eigenvalue !k ¼
ffiffiffiffiffiffi
gk

p
, k ¼ jkj, corre-

sponding to the dispersion of surface gravity waves

[2–5]. � is a constant. The dynamics of (2) depends cru-

cially on the sign of �. This is shown in the numerical

experiment of FIG 1, where Eq. (2) for one spatial dimen-

sion with external driving and damping is integrated in

time. The simulation starts with wave turbulence (small

amplitude, broad spectrum) initial conditions, and the sign

of the nonlinearity is � ¼ �1. After an integration over

1000 time units, the sign of the nonlinearity is switched to

� ¼ 1, and the integration is continued for another 1000

time units. The statistical properties for t � 1000, � ¼ �1
follow the predictions of wave turbulence theory, in par-

ticular, the Kolmogorov-Zakharov (KZ) steady state spec-

trum is achieved. For t > 1000, � ¼ 1 we observe that

wave trains with high amplitude merge into coherent ob-

jects traveling with the group velocity. We will now show

that switching the sign of � leads to an instability that

breaks the spatial homogeneity symmetry.

Unlike the case of general turbulence for which there is

no consistent closure for the hierarchy of cumulant equa-

tions, wave turbulence has a natural asymptotic closure [6].

All statistical quantities, the spectral energy density, the

long time behaviors of all higher cumulants, the structure

functions, can be calculated from the solution of a single

closed equation [7] for the isotropic wave action density

nk. The kinetic equation is

@nk
@t

¼ T½nk� ¼
X

r¼1

T2r½nk�; (3)

0
0 2000

1

λ=1λ=−1

FIG. 1 (color online). Contour plot of points juðx; tÞj2 > 0:035
in one spatial dimension with periodic boundary conditions for

Eq. (2) with damping and driving. Damping is applied to modes

both at very low and at high k, driving is applied to modes with

wave numbers above the low-k damping. The sign of the

nonlinearity is � ¼ �1 for t � 1000, and � ¼ 1 for t > 1000.
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where T½nk� is an asymptotic expansion capturing all the

relevant physics of wave resonant processes [6–8]. For the

equation of motion (2) its leading term is

T4½nk� ¼ 4��2
Z

nknk1
nk2

nk3
�

�
1

nk
þ 1

nk1

� 1

nk2

� 1

nk3

�

� �ð!þ!1 �!2 �!3Þ
� �ðkþ k1 � k2 �k3Þdk123: (4)

Added to (3) is an equation for the nonlinear renormaliza-

tion of the frequency

~! k ¼ !k þ 2�
Z

nkdk; (5)

where the integral extends k space. A key observation is

that whereas the kinetic equation is the same for both signs

of �, the frequency modification is not. The finite flux KZ

solution, an exact solution of (4) is

nk ¼ n0ðkÞ ¼ DP1=3k�d; (6)

where d is the dimension of k, P is the constant energy flux

and D a dimensional constant.

The remarkable new result is: We will show that if!k ¼ffiffiffiffiffiffi
gk

p
, d ¼ 1 and � ¼ 1, the KZ solution (6) is unstable to a

perturbation which breaks the spatial homogeneity sym-

metry. Such perturbations are introduced into the theory by

allowing the Fourier transform

nkðx; tÞ ¼
Z

huðx; tÞu�ðxþ r; tÞieik�rdr (7)

of the pair correlator to depend weakly on the base coor-

dinate x. This broadened wave action density then satisfies

a slightly revised kinetic equation with a Vlasov-like left-

hand side

@nk
@t

þrk ~!k � rxnk �rx ~!k � rknk ¼
X

r¼1

T2r½nk�; (8)

where ~!kðx; tÞ ¼ !k þ 2�
R
nkðx; tÞdk. The Vlasov addi-

tion is nonlinear by virtue of the renormalized frequency

~!k, and it vanishes for homogeneous (x-independent)

states. The space-independent solutions of (8) correspond

to solutions of the kinetic Eq. (3), such as the KZ solution

n0ðkÞ ¼ DP1=3k�d.

Analysis.—We study the stability of homogeneous iso-

tropic states n0ðkÞ by adding small space-dependent per-

turbations nkðx; tÞ ¼ n0ðkÞ þ �nkðx; tÞ with �nkðx; tÞ ¼
�ðkÞ expðik � x� i�tÞ where K is the wave vector and

� is the phase frequency of the modulation. The calcula-

tion parallels that of the analysis in [9] which examines

short wave—long-wave coupling in the context of optical

bump on tail instability. We assume, consistent with pre-

vious analyses of Balk and Zakharov [10] that n0ðkÞ is

stable with respect to spatially independent perturbations.

Inserting n0ðkÞ þ�ðkÞ expðik � x� i�tÞ in (8) yields

i�ðkÞð!0
kk̂ �K̂�cÞK�2ik̂ �K̂Kn00ðkÞ�

Z

�ðkÞdk¼�T4;

(9)

where K ¼ jKj, k̂ ¼ k=k, K̂ ¼ K=K, n00ðkÞ ¼ dn0=dk.
c ¼ �=K is the phase velocity of the modulation and

!0
k ¼ d!k=dk is the group velocity of linear waves.

Complex values of c and � will signal instability. �T4 is

a linear functional of �ðkÞ. To begin we ignore �T4, and

we will discuss its small influence later. Integrating over k

we obtain

1 ¼ 2�
Z n00ðkÞk̂ � K̂

!0
kk̂ � K̂� c

dk: (10)

We begin with one spatial dimension d ¼ 1. It is conve-

nient to set k̂ � K̂ ¼ 1 and allow k to be positive or negative

with !k ¼
ffiffiffiffiffiffiffiffiffi

gjkj
p

. Integration by parts yields

1 ¼ 2�
Z 1

�1

n0ðkÞ!00
k

ð!0
k � cÞ2 dk: (11)

We analyze two distributions n0ðkÞ. The first is n0ðkÞ ¼
N0�ðk� k0Þ. Equation (11) yields ðc�!0

k0
Þ2 ¼ 2�N0!

00
k0
.

Stability depends on the sign of �!00
k0
which is �sgn� for

!k ¼
ffiffiffiffiffiffiffiffiffi

gjkj
p

. Thus for � > 0, c is complex and the mono-

chromatic solution is modulationally unstable. This result

is qualitatively similar to the Benjamin-Feir-Lighthill cri-

terion for monochromatic waves. Next we take a KZ

spectrum with a spectral maximum at k0, n0ðkÞ ¼
DP1=3jkj�1 for jkj> k0 and n0ðkÞ ¼ 0 for jkj< k0. To
keep the total wave action finite we can cut off the spec-

trum (n0ðkÞ ¼ 0) also at high jkj, which corresponds to the
effect of viscous damping. Writing the right-hand side of

(11) as two integrals, over ðk0;1Þ and ð�1;�k0Þ, setting
k ! �k in the second, and making the transformations

k ¼ !2=g, ! ¼ !0�, !0 ¼
ffiffiffiffiffiffiffiffi
gk0

p
, gives

1þ �
Z 1

1

z2

�2

�
1

ðz� �Þ2 þ
1

ðzþ �Þ2
�

d� ¼ 0: (12)

The dimensionless parameter z ¼ g=ð2c!0Þ ¼ !0
0=c is the

ratio of group velocity at the spectral peak and the phase

velocity of the perturbation. A complex z indicates

an instability. The dimensionless parameter � ¼
4�DP1=3=!0, j�j � 1, the nondimensional energy flux,

essentially measures the weakness of the turbulence. Its

smallness is also important to guarantee (see [8]) that the

ratio of the linear and the nonlinear time scale tL=tNL ¼
!�1

k =ðnk= dnk
dt
Þ, which is a function of the frequency ! and

is equal to the product of �2 and !2
0=!

2, remains small

throughout the range, !0 to 1, over which the KZ spec-

trum obtains. That ensures [8] that the wave turbulence

closure remains valid on the KZ solution of the kinetic

equation.
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Integrating (12) gives

1þ �

�

2þ 2

z
ln
1� z

1þ z
þ 1

1� z
þ 1

1þ z

�

¼ 0: (13)

For � small, the root z is close to unity and the leading

order of (13) is 1þ �=ð1� zÞ � 0 and the root is z �
1þ �. This shows that the phase speed of the disturbance

almost matches the group speed of the wave packet at the

spectral peak k0. For � and therefore � negative, the root

z � 1þ � of (13) is real and less than unity. For � and thus

� positive, we have a root jzj> 1. The appropriate

branches of the logarithm are now lnð1� zÞ � lnj1� zj 	
i�. Including the leading order imaginary term we obtain

1þ �ð 	 2i�þ 1=ð1� zÞÞ � 0, so the root for � small is

z � 1þ �
 2i��2. The wave speed c ¼ �=K ¼ !0
0=z

is complex and the solution n0ðkÞ unstable. The instability
growth rate is of order �2. Interestingly, this matches the

inverse time scale for the spectrum to relax to the KZ state.

This shows that a small spatial inhomogeneity can be

enhanced by the interaction with the almost random waves

of homogeneous weak turbulence. Landau damping and

amplification of plasma oscillations provides a useful ana-

logue for the situation here. The ensemble of wave packets

with density n0ðkÞ plays the role of the electron distribution
whereas expðiK � x� i�tÞ is the perturbing wave. The

perturbing wave is amplified (damped) if the wave number

of the spectral peak lies to the right (left) of that of the

perturbing wavetrain for which cases Reð!0
k=cÞ is greater

(less) than unity.

In two dimensions d ¼ 2, we take the KZ distribution

n0ðkÞ ¼ DP1=3k�2Hðk� k0Þ, where H is the Heaviside

function and k ¼ jkj. Then n00ðkÞ¼DP1=3k�2�ðk�k0Þ�
2DP1=3k�3Hðk�k0Þ in (10). Integrating over the angular

coordinate �, cos� ¼ k̂ � K̂ and the variable !0 ¼
ffiffiffiffiffiffiffiffi

g=k
p

=2 gives

1

8��
¼ 1

z
sin�1z� 1

4

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p � 3

4
(14)

for z ¼ !0
0=c, or with z ¼ sinð�Þ,

1

8��
¼ �cosecð�Þ � 1

4
secð�Þ � 3

4
: (15)

For� � 1, the roots of (14) and (15) are real for both signs
of �. To leading order, the root is �=2þ 2��. The per-

turbing wave train is neutrally stable. This shows that a

spatial inhomogeneity is not increased by the interaction of

waves in two dimensional weak turbulence.

Finally, we discuss the small correction due to �T4 on

the right-hand side of (13). Writing nkðx; tÞ ¼ n0ðkÞ þ
�ðkÞ expðiK � x� i�tÞ in T4½nk� and obtaining, after lin-

earization in �,

�T4 ¼ 4��2
Z

½fnk2
nk3

� nk1
nk2

� nk1
nk3

g�ðkÞ

þ P123fnk2
nk3

� nknk2
� nknk3

g�ðk1Þ�
� �ð!þ!1 �!2 �!3Þ
� �ðkþ k1 � k2 � k3Þdk123:

The upper indices of P123 denote the cyclic permutations

over 1, 2, 3. We compute this term for the one dimensional

case. Dividing (9) by ið!0
k � cÞK, integrating over k, di-

viding by
R1
�1 �ðkÞdk and nondimensionalizing all wave

numbers with k0 and frequencies with !0 (note !0
kk ¼

!k=2) gives��i�2I=2 on the right-hand side of (13). I is a
real dimensionless integral. Including this term we obtain a

higher order correction ��3I=2 in ImðzÞ of the unstable

mode expðiK � x� i�tÞ. The collision term has therefore

only a small effect on the instability, but eventually it will

erode the correlation that evolves from the instability.

Simulations.—The instability that we have described is a

statistical property of an ensemble of trajectories, whereas

the behavior shown in FIG. 1 is the manifestation of this

instability for a single trajectory. We now explore the

instability by following an ensemble of trajectories nu-

merically. First an ensemble of 400 000 initial conditions

is created. These initial states are random KZ-distributed

waves with an additional common small spatial inhomo-

geneity. Using this ensemble of initial conditions, the

equation of motion with � ¼ 1 is integrated over 70 time

units and, for comparison, the equation with � ¼ �1 is

integrated starting from the same initial conditions. No

external driving and damping is applied in this experiment.

λ=1,   =20 π/2048  k 

λ=1,   =30 π/2048  k 

λ=1,   =40 π/2048  k 

λ=−1,   =40 π/2048  k 

λ=−1,   =30 π/2048  k 

λ=−1,   =20 π/2048  k 

1.2

1

0

0.8

100

FIG. 2 (color online). Time evolution of the correlation

jCðk; K; tÞj2 ¼ jhAkðtÞA�
kþKðtÞij2=jhAkð0ÞA�

kþKð0Þij2 with K ¼
6�=2048 for an ensemble of 400 000 trajectories for the

Eq. (2) with � ¼ 1 and with � ¼ �1. The initial conditions

are Kolmogorov-Zakharov distributed nk � k�1 with a Gaussian

amplitude distribution and random phases for jkj � 20�=2048
and nk ¼ 0 for jkj< 20�=2048 (the wave number space is

��< k � �). A small spatial modulation is superimposed on

these random initial conditions, and this modulation is the same

for each member of the ensemble. The system is not externally

damped or driven. This correlation grows for � ¼ 1, reflecting
an instability of wave turbulence against spatially inhomoge-

neous perturbations. There is no such instability for � ¼ �1, and
the correlation decays.
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Figure 2 shows time evolution of the ensemble average

jhAkðtÞA�
kþKðtÞij2 for various values of k with the same

modulation K of the initial conditions. We observe that

jhAkðtÞA�
kþKðtÞij2 grows in time for � ¼ 1, indicating the

amplification of the small initial spatial inhomogeneity.

This shows that the nonequilibrium state of wave turbu-

lence is not a statistical attractor in this case. In contrast,

this correlation decays for � ¼ �1, which shows that

homogeneous wave turbulence is attractive and small spa-

tial inhomogeneities vanish. This decay effect can be at-

tributed to the nonlinear terms in (8). In particular, the

collision term will, via four wave interactions, remove

energy from the perturbing waves. Longer simulations

for the case � ¼ 1 show that the correlation eventually

decays after the initial surge. Again, we attribute this to the

nonlinearities in (8). The system eventually settles down at

a statistical attractor which inherits the spatial homogene-

ity symmetry of the equation of motion. This new state

becomes visible in Fig. 1 at high t, where moving localized

structures appear. We have studied these coherent struc-

tures and their influence on the statistical properties of

turbulence in [5].

Conclusions.—We have discovered an instability that

breaks the spatial homogeneity of wave turbulence by

enhancing small long-wave modulations. In this process,

the random waves of wave turbulence feed energy into

spatial modulations. We have shown this using a linear

stability analysis of the statistical state of homogeneous

wave turbulence. This analysis is based on the generic

kinetic equation with a Vlasov term (8). The results are

therefore expected to apply to many nonlinear wave sys-

tems and not just to the model (2). Our findings are con-

firmed by numerical simulations of an ensemble of

trajectories of Eq. (2) for wave turbulence initial conditions

with a small spatial inhomogeneity.

The instability occurs in (2) for the same sign of the

nonlinearity (� ¼ 1) for which monochromatic waves are

Benjamin-Feir unstable. In fact, the Benjamin-Feir-

Lighthill criterion follows from our analysis for a delta-

distributed spectrum. However, the breaking of spatial

homogeneity for a Kolmogorov-Zakharov spectrum is a

statistical process that is obtained by averaging over many

interactions of waves that decrease or increase spatial

inhomogeneity. Wave turbulence is neutrally stable for

� ¼ �1. We suppose that the Benjamin-Feir-Lighthill cri-

terion is a necessary condition for this instability.

The outcome crucially depends on the dimension:

Remarkably, isotropic wave turbulence in two dimensions

is more robust in that it is not subject to this instability. The

random waves transfer no energy to the inhomogeneity in

two dimensions, and the perturbation is neutrally stable.

Quasi-one-dimensional wave systems are apparently the

most vulnerable and likely candidates for this instability.

The nonequilibrium state that finally emerges from this

instability is radically different from wave turbulence. As

we have shown in [5] the system is then governed by

radiating pulses that lead to a spectrum that is steeper

than the Kolmogorov-Zakharov spectrum of wave turbu-

lence. Examples for the spontaneous formation of coherent

structures in turbulence are rogue waves in the ocean [11]

and in nonlinear optics [12], and solitons in nonlocal non-

linear media [13]. Radiating solitons have previously been

discussed in nonlinear optics [14]. We emphasize the point

that whereas spatial homogeneity is broken, eventually that

property is restored when there are enough coherent pulses

in the system. It is fascinating that the breaking of spatial

homogeneity is the means through which the system leaves

one unstable fixed point (the KZ solution) and reaches the

stable attractor of an ensemble of radiating pulses [5].
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