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Shape transitions in developing organisms can be driven by active stresses, notably, active

contractility generated by myosin motors. The mechanisms generating tissue folding are

typically studied in epithelia. There, the interaction between cells is also coupled to an elastic

substrate, presenting a major difficulty for studying contraction induced folding. Here we

study the contraction and buckling of active, initially homogeneous, thin elastic actomyosin

networks isolated from bounding surfaces. The network behaves as a poroelastic material,

where a flow of fluid is generated during contraction. Contraction starts at the system

boundaries, proceeds into the bulk, and eventually leads to spontaneous buckling of the sheet

at the periphery. The buckling instability resulted from system self-organization and from the

spontaneous emergence of density gradients driven by the active contractility. The buckling

wavelength increases linearly with sheet thickness. Our system offers a well-controlled way

to study mechanically induced, spontaneous shape transitions in active matter.
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C
ontracting materials have many potential applications
related to artificial muscles, sensing of mechanical stimuli,
and active self-assembly of three-dimensional struc-

tures1,2. In particular, two-dimensional intrinsically contractile
sheets may find applications as actively functional band-aids that
speed up wound healing or in form of beating patches that could
support heart function. Artificial contractile materials are often
based on synthetic molecular motors3 or use liquid crystals1 that
require external cues such as electrical stimuli, light, or tem-
perature for activation and control. However, tremendous chal-
lenges must be overcome before synthetic active materials can be
used for human health. An alternative approach is to employ
reconstituted biological materials, notably viscous or elastic acto-
myosin networks similar to those found in living tissues. In
addition to being obviously biocompatible, such systems
demonstrate spontaneous contractility and self-organization4–7.
The characteristics of contraction can be readily controlled by
changing global parameters, such as the concentration of mole-
cular motors or of passive cross-linkers4–7. In addition, contrac-
tion patterns and dynamics can be regulated by spatially
patterned activation of myosin motors8,9.

Contracting materials are part of essentially all biological
organisms. They allow cells to sense mechanical properties of the
environment10 or enable deformations that can be used to deform
the organism, which could be exploited for morphogenetic pro-
cesses during development11. In these cases, buckling has been
observed when a contractile epithelium was subjected to aniso-
tropic contraction12 and/or coupled to an elastic substrate13. How
intrinsic contractions in absence of coupling to a substrate can
intrinsically generate three-dimensional structures, however, has
not yet been explored.

In fact, in developing biological systems, the formation of folds
and other three-dimensional structures from two-dimensional
objects is often attributed to in-plane growth14–20. However, there
are systems, where structure formation occurs in absence of
growth, for example in hornbean leaves21 or during gastrulation
of animal embryos11,13,22,23.

These examples suggest that spontaneously contractile mate-
rials could promote out-of-plane deformations of sheets. Cur-
rently, however, we lack good model systems for fundamental
studies of such phenomena. A notable exception is provided by
thin, elastic chemically crosslinked gel sheets that show large-
scale buckling upon non-uniform lateral contraction24. However,
in this case, spatial variations in contraction result from pre-
imposed gradients in the cross-linker density. Furthermore, in
many cases—naturally occurring or artificial—contractile sheets
are coupled to a substrate or other elastic structures8,9,11,20–23,
presenting an additional difficulty for studying contraction
induced folding.

Here, we demonstrate the fabrication and dynamical properties
of initially homogenous, thin, suspended, elastic acto-myosin
sheets of controllable extent and elastic properties. These gel
sheets spontaneously contract through the activity of myosin
motors with no need for external stimuli save for the presence of
ATP in solution. Even more remarkable, the gel sheets can self-
organize into folded structures: buckles appear spontaneously in
the absence of externally applied mechanical constraints and
without imposed spatial variations of the gel composition or
mechanical properties. The characteristic length scale of the fol-
ded pattern is proportional to the gel thickness and can thus be
easily controlled. By analyzing the solvent flow during the gel
contraction dynamics, we show that the acto-myosin gel behaves
as a poroelastic active material. Using a theory of actively con-
tractile, poroelastic gels, extended to include the catch-bond
behavior of myosin motors, we explain the observations and the
physical basis of the contraction dynamics. Overall, our results

show that buckling can be spontaneously generated by motor
activity and does not require mechanical coupling to the envir-
onment or pre-imposed gradients in sheet material properties.

Results
Formation of thin contractile actin sheets. Internally driven
contractile gels were generated by polymerizing actin in the pre-
sence of the strong passive cross-linker fascin and clusters of
myosin II motors5,25 (Fig. 1a, Methods). Only if actin poly-
merization occurred in the presence of motors and cross-linkers,
contractile elastic gels were produced where the motors were
embedded in the network5,7,25. To generate thin sheets, we simul-
taneously introduced actin monomers, myosin, and fascin in
chambers with a large aspect ratio

ffiffiffiffiffiffi

A0

p

=h, where A0 is the chamber
area in the x- and y-directions and h the height in the z-direction
(Fig. 1a). The chamber surfaces were treated to avoid sticking of the
actin gel (Methods). After adding a drop of the protein mixture, the
chamber was sealed with a cover glass. The chambers were only
partially filled to avoid sticking of the gel to the lateral boundaries.
In this way, a circular symmetric drop was obtained. Its size
depended on the chamber height, which varied between 70 and 250
μm, and the drop volume, which was between 0.3 and 7 μL.
Typically, the drops had initial radii R of 0.12–0.5 cm.

After mixing 5M G-actin with 16.7 nM myosin motors and
280 nM fascin, defining the time t= 0, the system evolved in
three phases (Fig. 1b, Supplementary Movie 1). In the first phase,
which lasted 4 min, actin filaments nucleated and polymerized
spontaneously. The protein distribution remained homogenous
down to scales of several μm as one can infer directly from the
fluorescence images and from the actin and myosin pair
correlation functions G(r) (Fig. 1b, c, Supplementary Figure 1a–d,
Methods). Note that concomitant with actin polymerization, the
distribution of motors, while remaining homogenous, coarsens
(Supplementary Figure 1e, f). In the second phase, which lasted
1 min, the system evolved into an interconnected network of actin
bundles if both, fascin and myosin clusters, were present5,25

(Fig. 1a, b). The network remained macroscopically homogenous
and isotropic (Fig. 1b, c gray dots) with a mean mesh size ξ0= 60
± 16 μm (mean ± SD, Nmeshes= 75; Ngels= 1) at the end of this
phase (Fig. 1d). This property is also reflected by the pair
correlation function G(r) (Supplementary Figure 2). After this
phase, the myosin motors dominantly localized at intersection
points of filament bundles (Fig. 1a). In the third phase, the gel
started to contract (Fig. 1b, c). The existence of this phase
required prior formation of filament bundles that are mechani-
cally sufficiently stable and a connection of these bundles by
myosin motor clusters5,7,25. Consequently, the velocity of myosin
clusters was the same as the local gel displacement velocity
(Supplementary Figure 3, Supplementary Movie 2). Note that the
three phases were probably not mutually exclusive as network
reorganization could still have been accompanied by actin
polymerization.

Contraction was isotropic throughout the process. This is in
line with observations made on contracting actin gels that are
attached at the periphery, where motors have been activated by
light in specific areas and where it was shown that the final state
presents the same aspect ratio as the initial state9. In the course of
contraction, the radius r, which is determined from the projected

gel area Agel, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Agel=π
q

, decreased by 80%, such that rfinal=

0.2R (Fig. 1e, f, Supplementary Figure 5, Supplementary Movie 3).
The contraction phase can be divided into two sub-phases: in the
beginning, the edge velocity v ¼ dr

dt increased approximately
linearly with time until it reached its maximal value vmax at time
tmax (Fig. 1g). For times later than tmax, the edge velocity decayed
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to zero exponentially with a characteristic time τ= 20 s. As
particle image velocimetry (PIV) analysis shows, contraction
always began at the gel boundaries (Fig. 1e, Supplementary
Movie 3). The local gel contraction velocity decreased linearly
from the gel boundary towards the gel center (Fig. 1h). During
contraction, the network mesh size decreased (Fig. 1i), whereas
the filament bundles remained straight, as confirmed by
comparing the end-to-end distance lend-to-end and contour length
lcont of filament bundles (Supplementary Figure 4c). This is
different from contracting, dilute actin networks, where the weak
cross-linker α-actinin was used instead of the strong cross-linker
fascin and where individual actin filaments buckled26,27. Since
our network started contracting from the boundary, the mesh size
increased from the boundary to the center of the gel
corresponding to decreasing gel volume fraction in that direction

(Supplementary Figure 4). For an initially homogenous sheet, this
contraction mode resulted in an increase of the gel density first at
the periphery (Supplementary Figure 5f–i) and only later
propagated into the gel interior (Supplementary Figure 5j). The
density increase occurred gradually until it saturated at late times
(Supplementary Figure 5j). In the stationary state, the contractile
forces and the gel elasticity were equilibrated and the gel was
homogenous again.

Contracting actin sheets can spontaneously buckle. We now
turn to the dynamics along the short axis, the vertical z-direction.
Similar to its lateral contraction, the gel contracted from an initial
thickness e of 160 µm (the chamber height) to about 50 µm
(Fig. 2a, Supplementary Movie 4). The vertical contraction began
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Fig. 1 Spontaneous formation and contraction of elastic acto-myosin sheets. a Sketch of experimental cell chambers of height h and lateral extensions Lx

and Ly. Partial filling generates sheets of various radii. Fluorescence micrograph of an actomyosin network at contraction onset (t= 285 s): actin (green)

and myosin aggregates (red) showing actin bundles crosslinked by motor aggregates as illustrated in the schematic. b Fluorescence micrographs of a

polymerizing and actively reorganizing actomyosin network. Actin network reorganization is visible for t > 240 s, contraction starts at t= 308 s. The arrows

at t= 298 s illustrate the mesh size. c Fluorescence intensity at three different points for the gel in b. Phase (i) represents homogenous actin

polymerization and bundle formation. Phase (ii) corresponds to the reorganization of filament bundles by myosin motors, which leads to local accumulation

of actin at some points and dilution at others. During phase (iii), the gel contracts macroscopically. White and black circles represent the actin densities in a

small region of 40 μm in diameter (local information), gray circles in a large region of 600 μm in diameter (global information). d Distribution of mesh size

for the gel in b at contraction onset ξ0 (t= 308 s) based on Nmeshes= 75 meshes. e Fluorescence images of actin obtained from a top view of a contracting

circular gel. Green arrows indicate the gel contraction velocity field obtained from PIV. Chamber height h= 150 μm, initial gel radius R= 1.38 mm, and drop

volume 0.9 μL. f–h Gel radius (f) and contraction velocity (g) as a function of time, and contraction velocity profile at t= 210s (h) for the gel in e. i

Distribution of mesh sizes for the gel shown in a. Mesh size distribution at contraction onset (t= 285 s, black columns, Nmeshes= 55) and at advanced

stages of contraction (t= 370 s, gray columns, Nmeshes= 90). Scale bars: 100 μm (a), 100 μm (b), 500 μm (e); actin was labeled with Alexa-Fluor 488,

myosin with Alexa-Fluor 568
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earlier than the lateral one with a faster relaxation of the vertical
contraction velocity, τz/τ ≈ 1/3 (Supplementary Figure 6). Lateral
contraction started only after the vertical contraction was essen-
tially completed: during lateral contraction, the gel thickness e
decreased slightly from 57 to 52 µm (Fig. 2b). This corresponds to
an effective Poisson ratio ν ≈ 0. At advanced stages of planar
contraction, the gel spontaneously started to buckle at about 580 s
which corresponds to 1.5τ after tmax (Supplementary Figure 6), as
is evident from the developing bright and dark stripes that emerge
perpendicularly to the boundary (Fig. 2c, Supplementary Figure 7,
Supplementary Movie 5). The emerging folds were directed
perpendicularly to the boundary (Fig. 2d, white arrows) and had a
roughly sinusoidal shape (Fig. 2d, e, Supplementary Movie 6). We
characterize this structure by means of “wavelengths”, i.e., the
distances between adjacent intensity maxima and adjacent

intensity minima. The steady state thickness of that gel was b=
23.5 ± 3.4 μm (mean ± SD, Nthicknesses= 69 for Ngels= 1, Meth-
ods) and was uniform throughout the gel (Fig. 2e). We deter-
mined the average wavelength of the buckled state by measuring
the distances between adjacent folds. To this end we used a
confocal slice and analyzed the fluorescence intensity along a line
tracing the border of the gel (Supplementary Figure 8, Methods).
Analyzing the gel profile in the xz and yz planes close to the gel
boundary gave very similar values (Fig. 2d, e). The distribution of
wavelengths of the folds had an average value of λ= 196 ± 33 μm
(mean ± SD, Nwavelengths= 24 for Ngels= 1. Supplementary Fig-
ure 8). In two-dimensional cuts across the xy plane, the folds
appeared as areas of increased and decreased fluorescence
intensity (Fig. 2e). The resulting folds were visible as straight
bright strips at low magnification (Supplementary Figure 9).
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Fig. 2 Buckling of an acto-myosin sheet. a Spinning disk confocal fluorescence micrographs of actin in the xz plane of a contracting gel. The blue arrow

marks the time when lateral contraction sets in and indicates the direction of contraction. Vertical scale bar: 100 μm, horizontal scale bar: 50 μm. b

Evolution of gel height e and buckling amplitude Am for the gel in a. The blue arrow marks the time when lateral contraction sets in and the gray arrow

marks the time when the sheet starts to buckle at the periphery. c Spinning disk confocal fluorescence micrographs of the actin gel in a in the xy plane (top

view), the xz plane (top side view), and yz plane (left side view). Side views (xz and yz planes) are measured along the white dotted lines. Scale bar: 180 μm.

d Laser scanning confocal micrograph of a three-dimensional view of a buckling gel at steady state. Inset: side view of the gel indicating the wavelength λ,

final gel thickness b, and buckling amplitude Am. Scale bar: 100 μm. e Top view (xy plane) and side views (xz and yz planes) along the white lines of the gel

in d. Horizontal scale bar: 200 μm. Vertical scale bar: 80 μm. Drop volume is 4.9 μL (a–c) and 4.6 μL (d, e). Chamber height h= 160 μm (a–c), h= 80 μm

(d, e). Initial gel radius R= 3.1 mm (a–c), R= 4.3 mm (d, e). Actin was labeled with Alexa-Fluor 488 (green in a, c, e, blue in d), myosin was labeled with

Alexa-Fluor 568 (green in d, red in e). d, e Same gel as in ref. 5 Fig. 7f
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The contracting actomyosin sheet is a poroelastic gel. To obtain
a better understanding of the system dynamics, we now char-
acterize the material properties of the system taking into account
the actin gel, the myosin motors, and the aqueous phase within
the gel. It has been proposed that actin gels in living cells behave
as poroelastic materials28–30. There are two distinguishing fea-
tures of such materials28: First, the generation of a flow of the
penetrating solvent caused by active myosin contractility. Second,
diffusive stress relaxation characterized by an effective diffusion
constant that depends on the drained elastic modulus, the solvent
viscosity, and the gel porosity.

We first checked whether myosin contractility generated a
solvent flow. To measure the solvent flow, we added fluorescent
beads to the solution. We used beads of 2.3 μm in diameter
during the initial and intermediate phases of contraction, when
the average pore size was larger than 15 μm, and beads of 200 nm
diameter in the later contraction phase, when the pore size was
smaller. The fluorescent beads, on average, moved in the outward
radial direction as the gel contracted toward its center (Fig. 3a, b,
Supplementary Movie 7). The beads’ radial velocity vr was up to
20 times larger than the gel edge velocity as long as they were

inside the gel (Fig. 3c, d, Supplementary Figure 10, Methods). As
the beads moved outwards from the gel center, their velocities
initially increased dramatically by more than an order of
magnitude. This was consistent with the gel contraction velocity
profile, which also increased from the cell center to the periphery
(Fig. 1h). The beads slowed down as they approached the
boundary, where the gel densified. The filled circles in Fig. 3d
indicate the time, when the beads left the gel. Outside the gel, the
beads still moved for some time. Note that this movement was
not due to inertia, because the Reynold number is less than 2 × 10
−4 even for the largest bead velocity of 100 μm s−1 and bead size
of 2.3 μm. For later times, the average velocity of the beads
decreased and fluctuated (Fig. 3d).

We attributed the fluctuations in the bead velocities to the
porous structure of the actin network. To test this hypothesis, we
investigated with higher resolution bead trajectories towards the
end of the contraction process, when all movements had slowed
down. Indeed, the trajectories of the beads were tortuous (Fig. 4a,
Supplementary Figure 11) and their velocities fluctuated between
2 and 10 µm s−1 (Fig. 4b). The bead velocities increased with their
distance from the actin bundles (Supplementary Figure 12).
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Hence, the beads moved fastest in the center of a pore and
slowest, when they were close to a bundle reflecting the local
structure of the gel. In this advanced phase of gel contraction, the
local solvent speed was on average faster than the local gel

contraction velocity by a factor of 2.5 ± 0.7. The gel velocity-
solvent velocity correlation function shows that locally, the fluid
flow was always opposite to the gel flow (Fig. 4c, Methods).
Again, the bead speed increased from the gel center towards the
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gel boundary (Supplementary Figure 13). All this indicates that as
the gel contracted, the solvent was driven out as expected for a
poroelastic material.

We now turn to the second property of poroelastic systems,
namely that stress relaxation is determined by an effective
poroelastic diffusion constant D. Explicitly, the relaxation time
scales as r2max=D, where rmax is the system radius at the beginning
of the relaxation process, that is, at the time when the gel
contraction velocity has reached its maximum. The value of D is
proportional to an effective, concentration-dependent elastic
modulus κ of the gel and inversely proportional to an effective
friction constant γ that accounts for the permeation of water
through the actin network, such that D � κ=γ (Supplementary
Notes). The friction coefficient γ scales as η=ξ2, where η is the
solvent viscosity and ξ scales with the mesh size of the gel—i.e.,
the distance between crosslinks in the actin gel. The elastic
modulus has units of energy per unit volume and is
inversely proportional to the volume of a pore, whereas
the friction coefficient γ depends on the pore facet
perpendicular to the solvent motion. For the actin network,
the pore size can be approximated by the mesh size.
Initially, the gel is isotropic. Yet, at the time the lateral
contraction velocity reached its maximum, the contraction in
the z-direction was already essentially completed as
mentioned above (Fig. 2b). Thus, the distance between two
crosslinks of filament bundles is ξk within the contraction plane
and ξ? perpendicular to it, consequently, κ � 1=ξ2kξ? and
γ � η=ξjjξ?

31,32. Again, we take the values of these quantities at
the time when the contraction velocity has reached its maximum,
so that ξk � rmax. Altogether, we thus have τ � ηr3max.

To test the dependence of the relaxation time on the solvent
viscosity, we changed the latter by adding various amounts of
glycerol. We conducted three experiments for each amount of
glycerol. With increasing values of the viscosity, the duration of
the polymerization and of the reorganization phases were
extended (Supplementary Figure 14). In contrast, the linear
acceleration and maximal contraction velocity did not change
significantly (Supplementary Figure 14), suggesting that network
organization during the polymerization and the reorganization
phases adapts to changes in the solvent viscosity. The measured
relaxation times obeyed the scaling relation derived above
(Fig. 4d) further confirming the poroelastic nature of our system.

Having shown that the system is poroelastic, we can formulate
a physical description of the contraction dynamics within the
framework of active generalized hydrodynamics33,34. The system
state is given in terms of the gel and solvent densities. Their time
evolution is determined by the continuity equations that describe
mass conservation of the two phases (Supplementary Notes). The
respective gel and solvent velocity fields that appear in the
continuity equations are obtained by balancing the forces due to
gradients in the total mechanical stress in the gel with the friction
forces resulting from motion of the actin gel relative to the
surrounding fluid:

γ ∂tu� vð Þ ¼ ∇ � σel þ σact
� �

: ð1Þ

Here, u denotes the displacement field of the actin gel and v is the
solvent’s velocity field. Furthermore, σel is the drained elastic
stress of the gel, which depends on the drained bulk and shear
elastic constants K and μ, respectively (Supplementary Notes).
The embedded motors generate an active contractile stress σact.
Within the framework of active generalized hydrodynamics it is
expressed as −QζΔμII35. In this expression, Δμ is the difference
between the chemical potentials of ATP and its hydrolysis
products, which drives the contraction process. The factor ζ is a
phenomenological constant linking the active processes to the

causing thermodynamic force Δμ. In general, ζ depends on the
filament and motor densities. We take it to be constant and
account for the density of crosslinking motors through the
fraction Q of bound motor molecules. Equivalently, the
magnitude of the active stress is determined by the active force
dipoles, generated by the molecular motors36, and is given by the
force dipole density. We assume the active stress to be
macroscopically isotropic and thus multiply its expression by
the identity operator II. Equation (1) together with mass
conservation (gel plus solvent) and the Stokes equation for the
solvent describe the contraction of an active poroelastic gel
(Supplementary Notes). This approach is simpler than those
taken in refs. 8,37, where a nonlinear dependence of the stress on
the filament or myosin densities, respectively, were considered for
contracting cytoskeletal networks. In ref. 9, a static spring
network without shear elasticity was used to describe contraction.
Furthermore, all these works neglected the solvent dynamics,
which we have shown above to be important at least in our
system.

We next hypothesized that the acceleration phase of the
contraction dynamics was due to changes in the fraction of bound
myosin motors that increases with the mechanical stresses in the
gel. In terms of force dipole stresses, this means that the force
dipole moment changes. Indeed, myosin forms catch bonds38 that
are strengthened in a macroscopically contracting network,
because the actin filaments in-between the contractile myosin
clusters (that act on filaments of opposite orientation) are
stretched during network contraction. The fraction of bound
motors Q is thus determined by

∂tQ ¼ kon 1� Qð Þ � koff σel
� �

Q: ð2Þ

The rates kon and koff, respectively, denote the myosin
attachment and detachment rates. Whereas we take kon to be
independent of the elastic stress, the detachment rate koff
decreases with increasing elastic stress of the actin network σel

reflecting the motor’s catch-bond characteristic according to
Bell’s law39 (Supplementary Notes).

We solved the dynamic equations numerically using a finite
difference scheme (Supplementary Notes). We use the experi-
mental parameter values estimated from the relaxation dynamics
and the buckling of the contractile sheets, see below. Notably, we
use an effective elastic modulus of 0.05 Pa. For determining the
friction coefficient between the solvent and the gel, we use a mesh
size ξ||, ξ⊥= 1200 μm2 taken from the experiment in Fig. 1b at
tmax, where we took ξ⊥= ξ||/3 (taken from experiments, see
below), and an effective viscosity of 0.05 Pa·s. This value accounts
for molecules dissolved in the penetrating solvent that increase
the viscosity with respect to pure water. In our numerical
calculations, we mimicked the polymerization and reorganization
phases by increasing the fraction Q of bound motors from 0 to Q0

linearly in time. During this phase, Q is kept spatially
homogenous. We took Q0= 0.15 as estimated in ref. 5.
Afterwards, the value of Q evolved according to Eq. (2).

Our numerical solution of the dynamic equations for an
initially homogenous, circular symmetric, elastic gel disc with an
initial radius of 1.5 mm represented a radial contraction of the gel
that starts from the boundaries (Fig. 4e). Contraction from the
boundary was a consequence of the initially homogenous
distribution of motor-induced force dipoles, which generated a
homogenous active stress, such that active forces canceled each
other everywhere but at the boundaries. The gel volume fraction
was always highest at the boundary and decreased toward the gel
center, until, in the final state, the gel density was again
homogenous throughout the gel (Supplementary Figure 15). In
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the final state, the gel radius was 150 μm corresponding to a final
lateral strain of 90%. Similar to the gel volume fraction, the elastic
stress was also highest at the gel boundary but was uniform
toward the end of the contraction process (Supplementary
Figure 16). In the final state, mechanical equilibrium was reached
as the effective stress diffusion current vanishes and the uniform
elastic stress balances the uniform active stress. During the
contraction process, the solvent was squeezed out of the gel at a
velocity that increased with the distance from the gel center
(Fig. 4e). The edge velocity of the contracting gel increases
approximately linearly during the initial polymerization and
reorganization phases, where the fraction of bound myosin Q was
increased but remained approximately spatially homogenous
(Fig. 4f). Subsequently, contraction accelerated dramatically until
it reached a maximal velocity of about 20 μm s−1 and then
relaxed exponentially in time toward 0 (Fig. 4f). The acceleration
concurred with a strong increase in the fraction of bound motors,
which is due to the catch-bond behavior (Fig. 4f). Throughout the
contraction process, the fraction of bound motors remained
essentially spatially homogenous (Supplementary Figure 17). This
is due to the fact that the motor binding and unbinding rates are
large compared to the time-scale of contraction and because we
chose the motor unbinding rate to react very sensitively to
stresses. The contraction velocity profile changed between the
acceleration and the relaxation phases (Supplementary Figure 18);
during the acceleration phase it was concave. It exhibited a
convex part after the maximal contraction velocity was reached.
The profile of the solvent velocity showed a similar change,
however, it was delayed with respect to the change of the gel’s
contraction velocity profile. In the late stages of the contraction
process, the fluid speed exceeded the gel contraction speed
(Supplementary Figure 18) similarly to what was measured
experimentally (Figs. 3d and 4b, Supplementary Figures 10, 12).
The good quantitative agreement between the experiments and
the numerical results points to the physics underlying the
observed behavior: contraction starts from the periphery as the
active forces are initially imbalanced only at the boundaries, the
contraction velocity increases due to the increased stress in the gel
and the motors’ catch-bond characteristics, and poroelastic
diffusion of the elastic stress yields eventually a uniform state of
mechanical equilibrium.

Next, we looked at how the contraction of the gel propagated
towards the gel center. To this end we chose to follow a value of

the gel density as it propagates from the gel boundary inwards.
The distance d traveled by the density in the reference frame of
the laboratory shows different time dependence before and after
tmax (Fig. 4g). Before tmax, it is concave showing that the velocity
at which it moves inwards increases. After tmax, the curve is
convex corresponding to a slowing down of this velocity. For
higher values of the density, the time to reach the center increases
even though the distance that needs to be traversed decreases. In
the numerical solutions, we find the same dependence of the time
needed to reach the center on the initial distance to the center as
in the experiments. However, the dependence of the distance
travelled on time is always convex in the numerical solutions
suggesting that nonlinear elastic properties that are not captured
by our description affect the dynamics of contracting actin gels
(Fig. 4h).

Estimation of the buckling wavelength. Having established the
poroelastic nature of our reconstituted actin gels, we further
investigated the buckling instability. In Fig. 5, we present the
contraction (Fig. 5a–e) and the spatiotemporal evolution of the
density (Fig. 5f–j) of a gel that buckles. Compared to gels that did
not buckle (Supplementary Figure 5), the increase of the gel
density at the periphery was relatively larger and persisted in
steady state. These two situations differed furthermore in that the
density gradients in buckling gels were steeper than in non-
buckling gels. In both cases, the density increased first at the
periphery (Fig. 5a, b, f, g). In the case of buckling, at some point,
the density at the periphery saturated, whereas the bulk density
continued to increase (Fig. 5h–j, Supplementary Movie 9). In this
case, contraction proceeded apparently in presence of a fixed
perimeter, which is only possible if the sheet buckles. This is
reminiscent of minimal surfaces under the constraint of a fixed
perimeter that is longer than the perimeter of a circle of the same
surface area. In very rare cases, we observed under the same
conditions as in Fig. 5 that the gel ruptured instead of buckling
(Supplementary Figure 19, Supplementary Movie 10). In these
cases, the gel periphery became much denser than the bulk and
was apparently much stiffer than in the buckling cases. The exact
conditions responsible for this behavior remain to be explored.

How does buckling depend on the system’s mechanical
parameters? To answer this question, we estimated these
parameters and expressed the buckling wavelength in terms of
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Fig. 5 Density fields of buckling contracting sheets. a–d Subsequent epifluorescence micrographs of a buckling contracting sheet at low magnification. The

buckles appear as straight bright strips at the gel periphery (d). Inset (d): zoom in at the bottom of the gel showing buckling. Scale bar: 200 μm. e

Kymograph of the density along the line indicated in a. f–i Density profiles along the same line corresponding to a–d. j Density as a function of time for the
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140 μm, and initial gel radius of short and long axis: R= 1.2 and 2.1 mm
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these. We can estimate the effective drained gel elastic modulus
κ ¼ 4μ

3 þ K from the relaxation time τ by κ � γr2max=τ, where rmax

is the radius at tmax (Supplementary Notes). Using the above
expression for γ in terms of the solvent viscosity η and the pore
sizes ξ|| and ξ⊥ at tmax, we obtain

κ � ηr2max=ξkξ?τ � ηRrmaxh=bξ
2
0τ ð3Þ

where R and ξ0 are the initial radius and pore size, respectively,
and b is the final gel thickness. The active stress can be estimated
from force balance at steady state, where QζΔμ ¼ κ~ε, where ~ε is
the lateral strain at the end of the planar contraction phase
relative to the extension of the sheet at t= tmax (Methods). We
considered the deformation after tmax, because for that phase the
exponential decay strongly suggests that κ is constant, which is
implicit in the last scaling relation. We can now estimate the
wavelength λc at buckling onset. For a spatially homogenous
activity, the contracting gel is analogous to a system under a
compressional external force (Supplementary Notes). For a given

external force there exists a minimal extension for which an
elastic sheet would buckle (Supplementary Notes). This length
was taken as an estimate for the buckling wavelength λc. In this
way, we get σact=QζΔμ ~ κ(2πb/λc)2. With the above expression
for the active stress and the effective elastic modulus, we finally
obtain

λc � 2πb=
ffiffi

~ε
p

: ð4Þ

After having established a relation between the buckling
wavelength and the final lateral strain, we checked its validity. We
started by determining the final thicknesses of gels assembled in
chambers of different heights and imaged with confocal
microscopy (Fig. 6). Qualitatively, we observed an increase of
the final sheet thickness and of the buckling wavelength with the
chamber height h (Fig. 6). For each chamber height, we
investigated 3–4 gels, and found a linear dependence of the final
gel thickness b on the chamber height h (Fig. 7a). In a range of
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Fig. 6 Buckled gels of different thicknesses. a Three-dimensional reconstruction of a gel with final sheet thickness b= 17 ± 2.5 μm (mean ± SD) from laser

scanning confocal fluorescence micrographs. Errors for b indicate standard deviation of experimental values of the final gel thickness measured at

Nthicknesses= 93 different places across the gel surface (Methods). b Laser scanning confocal fluorescence micrographs of the actin gel in a in the xy plane

(top view), the xz plane (top side view), and yz plane (left side view). Side views (xz and yz planes) are measured along the white lines. c, d as in a, b but for

a gel with b= 27 ± 3 μm (mean ± SD, Nthicknesses= 32). e, f as in a, b, but for a gel with b= 41 ± 2.5 μm (mean ± SD, Nthicknesses= 34). Chamber heights h:

73 μm (a, b), 100 μm (c, d), and 149 μm (e, f). Initial gel radius R and drop volume: 3.4 mm and 2.6 μL (a, b), 3.25 mm and 3.3 μL (c, d), and 3.73 mm and

6.5 μL (e, f). Scale bars: 100 μm (horizontal) and 60 μm (vertical) (insets of a, c, e) and 200 μm (b, d, f). Grid mesh size is 100 μm (a, c, e)
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chamber heights between 80 to 160 μm, b ≈ h/3. As a function of
the final sheet thickness b, the final strain ~ε varied by less than
10% (Fig. 7b). Similarly, the active stress and the effective elastic
modulus κ did not depend significantly on the gel thickness
(Fig. 7c) showing that in the range of system heights used these
are intrinsic material properties that do not depend on the system
geometry. Explicitly, we found κ≅ 0.02 Pa. In contrast, an elastic
modulus of 10 kPa has been measured for cells40. The difference
between this value and the one found for our gel is due to the
much larger distance between crosslinks in our system (50 μm at
tmax) compared to 200 nm in cells41. The ratio between the
cellular elastic modulus and that of our gel is given by the volume
ratio ξ3gel=ξ

3
cell, where ξcell and ξgel are the distance between

crosslinks in cells and gels, respectively31. This explains the factor
of 106 between the two moduli. Finally, comparison of the
experimental values of the buckling wavelength at steady state λ
with the values obtained from the scaling relation (Eq. 4) is
remarkably good (Fig. 7d). Since ~ε is essentially constant, the
wavelength is proportional to the final gel thickness. The value of
the strain averaged over all heights, ~ε ¼ 0:8 ± 0:02 (mean ± SD,

Ngels= 13), yields 2π=
ffiffi

~ε
p

¼ 7:0 ± 0:1, which agrees very well with
the measurements (Fig. 7d). Beyond a gel thickness of 80 μm we
did not observe buckling of the gel edges.

As we have shown, initially homogenous elastic sheets
contracting under the influence of molecular motors are well-
controlled systems to study mechanically induced spontaneous
shape transitions in active matter. We found that the network
behaves as a poroelastic material where a flow of fluid is generated

during contraction. The buckling instability resulted from system
self-organization and relied on spontaneous formation of density
gradients driven by active contractility.

The detailed conditions for observing buckling still need to be
explored. In particular it remains to be seen if the fluid flow is
essential for generating strong enough lateral gradients that lead
to buckling. Moreover, further experiments are necessary to
explore the range of thicknesses for which buckling occurs and
how it depends on motor and passive cross-linker concentrations
and the lateral extension of the gel.

With respect to applications, it will be interesting to combine
our system with recently introduced methods to spatially and
temporally structure the activation of myosin motors8,9. In this
way, it should be possible to generate active origami, where the
system contracts into complex, pre-designed three-dimensional
structures. By tuning the thickness of the assembly chambers, one
can generate growing and actively contracting sheets that can
mimic the growth and folding of epithelia. In particular, we
anticipate that our experimental system can be used to study the
similarity and differences between systems that fold because of
differential growth and those that spontaneously fold due to
contraction in the absence of growth.

Methods
Protein purification. G-actin was purified from rabbit skeletal muscle acetone
powder by gel filtration (HiPrepTM 26/60 SephacrylTM S-300HR, GE Healthcare),
stored on ice, and used within 2 weeks. Actin was labeled on Cys374 with Alexa-
Fluor 488. Fascin was produced as a GST-fusion protein. Purification of myosin II
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skeletal muscle was done according to standard protocols42. Myosin II was labeled
with Alexa-Fluor 568 at pairs of engineered cysteine residues (see details in ref. 5).

Experimental procedure. The motility medium contains 10 mM HEPES pH= 7.0,
1 mM MgCl2, 25 mM KCl, an ATP regenerating system (0.5 mgmL−1 creatine
kinase and 5 mM creatine phosphate), 200 μM EGTA, an anti-bleaching solution
(0.1 mgmL−1 glucose oxidase, 0.018 mgmL−1 catalase, and 5 mgmL−1 glucose),
5 μM G-actin, 280 nM fascin, and 16.7 nM of myosin II. The activity of labeled and
unlabeled myosin II motors is similar, and they were used at various ratios of
0–100% (labeled/unlabeled).

Network assembly—first, myosin II aggregates were prepared by bringing the
stock motor solution (at 0.5 M KCl) to the final KCl concentration used in the
experiment. Actomyosin network formation is initiated by transferring the
preformed motor aggregates into the motility medium (see above). Depending on
the experiment, we placed 0.3–7 μL of that solution between a glass slide and a glass
coverslip (the exact drop volumes are given for each experiment in the
corresponding figure captions). We varied the drop volume to generate circular
gels of different diameters. The gel initial diameter was determined by the chamber
height h and drop volume. To prevent protein adsorption, the glass coverslip and
slide were cleaned using piranha solution and coated with an inert polymer (PEG-
malMw= 5000 g mol−1 (Nanocs)). The effect of viscosity on contraction dynamics
was determined by adding glycerol to the motility medium. Specifically we varied
the percentage of glycerol from 0 to 34 to obtain an increase in solvent viscosity
from ηw to 2.76ηw where ηw is the viscosity of water at 25 °C43.

Cell chamber preparation. Chambers were prepared using a glass slide and a glass
coverslip or two glass coverslips. The chambers were sealed and delineated by
Teflon, Parafilm, or tape spacers located between a glass slide and a coverslip. The
choice of a given type of spacer sets the cell height h to a given range. We used
various drop volumes to generate actin sheets of different lateral extensions. In our
experiments, the chamber height h varied between 70 and 250 μm, and the drop
radius ranged between 0.12 and 0.5 cm.

Microscopy techniques. Samples were imaged within 1–2 min after mixing, with
an Olympus IX-71 or Leica DMI3000 inverted microscopes. The samples were
excited at 488 and 561 nm and the images were recorded simultaneously in two
channels using a Dual view Simultaneous Imaging System (Photometrics) with an
Andor DV887 EM-CCD camera. Movies overlaying both channels’ acquisitions
were created using the Metamorph software (Molecular devices). The 3D structure
of the sheet at steady state was determined by laser scanning confocal microscopy.
Confocal micrographs of the gel at steady state were collected using Leica SP5 laser
scanning confocal system on a DMI6000 microscope and analyzed with the LAS X
software (Leica Microsystems). To follow the dynamics of contraction in 3D, we
used spinning disk confocal microscopy. We used an Olympus IX-81 inverted
microscope, supplemented with an Andor XD system with Andor DU-897 camera
and acquisition with Andor IQ software. Analysis of the gel contraction and solvent
flow dynamics was performed using Matlab (MathWorks) and Metamorph.

Edge velocity of contractile actomyosin sheets. The analysis of the lateral
contraction velocity (i.e., edge velocity) was performed by measuring the changes in
sheet radius (extracted from changes in sheet area), which is possible for gels with a
radius of up to 1.5 mm. The sheet radius was determined by first thresholding the
fluorescence images. The area of the super-threshold region was then determined.
For each velocity plot we extracted the acceleration (a), the maximal velocity
(vmax), the time at which the maximal velocity was reached (tmax), the lateral decay
time τ, and final lateral strains ε and ~ε. Let R denote the initial radius of the sheet,
rmax the radius of the sheet at t= tmax, and rend its radius at the end of the
contraction process (t= tend). Then ε ¼ R�rend

R is the lateral strain at the end of the
planar contraction phase relative to the initial extension of the sheet at t= 0 and
~ε ¼ rmax�rend

rmax
is the lateral strain at the end of the planar contraction phase relative to

the extension of the sheet at t= tmax.
The contraction velocity of the gel edge in the z-direction was determined by

measuring the changes in gel thickness e with time. The edge velocity corresponds
to changes in the gel half-thickness. The decay time τz was then evaluated by fitting
the data with an exponential function.

Actin and myosin spatial velocity profiles. Particle image velocimetry (PIV) was
used to determine the vector velocity fields and velocity profiles of contractile
networks. PIV was also used to compare the vector velocity fields of actin (vactin)
and myosin motors (vmyosin). Analysis was performed using Matlab particle image
velocimetry (PIV) statistical tool44. Velocity vectors calculation was based on a
chosen interrogation square window with edge sizes of 40, 32, or 20 pixels with an
overlap of 20, 16, or 10 pixels between each window, respectively. Determination of
the average particle displacement field was accomplished by computing the spatial
auto-correlation of the particle images. The same procedure has been repeated for
all images of the contraction movie, providing a description of the network velocity
dynamics during contraction.

Actin velocity-myosin velocity correlation. To obtain the local actin velocity-
myosin velocity correlation (Supplementary Figure 3), we considered pairs of
velocities of actin and myosin in the gel and determined the angle θ between them:

cosθ ¼ vactin �vmyosin

vactinj j vmyosinj j, where vactinj j and vmyosin

�

�

�

�

�

� are the local actin and myosin speeds

(magnitude). The normalized difference between the local actin and myosin

velocities was evaluated from:
vactin�vmyosinj j

vactinj j . This process was performed for all

velocity pairs across the gel surface.

Measuring fluid flow during contraction. The fluid flow was characterized by
adding fluorescent beads (200 nm diameter Fluoresbrite YG Microspheres from
Polysciences and 2300 nm diameter Nile red beads from Spherotech) to the
motility medium. Large beads were used to analyze the fluid flow during the initial
and intermediate contraction phases, whereas small beads were used in the final
stage of contraction, where the mesh size would have hindered the motion of the
large beads. For the experiments, the beads were first incubated with actin
monomers and then Bovine Serum Albumin (BSA) to reduce their interaction with
the actin network. Particle tracking (Metamorph and Matlab) was used to extract
the center-of-mass position of the beads as a function of time.

Local bead velocity-gel velocity correlation. The bead velocity vbead was calcu-
lated by taking the bead’s center-of-mass position at times t, x tð Þ; y tð Þð Þbead
and t þ Δt x t þ Δtð Þ; y t þ Δtð Þð Þbead , and dividing by Δt, that is

vbead ¼ Δrbead
Δt ¼ x tþΔtð Þ�x tð Þ;y tþΔtð Þ�y tð Þð Þbead

Δt . To determine the local gel velocity vgel , we

used defects in the gel or points of filament crossings as fiducial markers. The
gel velocity was determined by taking the position at times t, x tð Þ; y tð Þð Þgel,
and t þ Δt x t þ Δtð Þ; y t þ Δtð Þð Þgel , and dividing by Δt. Thus, vgel ¼

Δrgel
Δt ¼

x tþΔtð Þ�x tð Þ;y tþΔtð Þ�y tð Þð Þgel
Δt . To obtain the local bead velocity-gel velocity correla-

tion (Fig. 4c), we considered pairs of velocities of a bead and a trackable
nearby point in the gel, e.g., a branching point or a particularly bright spot,

and determined the angle θ between them: cosθ ¼ vbead �vgel
vbeadj j vgelj j, where vbeadj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x tþΔtð Þ�x tð Þð Þ2þ y tþΔtð Þ�y tð Þð Þð Þ2
bead

q

Δt and vgel

�

�

�

�

�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x tþΔtð Þ�x tð Þð Þ2þ y tþΔtð Þ�y tð Þð Þ2gel
p

Δt .

Bead radial velocity vr. The radial velocity of the beads, vr (Fig. 3) was measured

by projecting the bead velocity vbead onto the direction, i.e., the unity vector Δr0
Δr0j j,

connecting the gel center (x0, y0) and the bead center-of-mass position at

time t. Thus, the radial velocity vr ¼ vbead � Δr0
Δr0j j ¼

x tþΔtð Þ�x tð Þ;y tþΔtð Þ�y tð Þð Þbead
Δt �

x tð Þbead�x0 ;y tð Þbead�y0ð Þ
Δr0j j , where Δr0j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x tð Þbead�x0
� �2þ y tð Þbead�y0

� �2
q

.

Density propagation in a contracting gel. Density propagation was determined
by following in time the position corresponding to a given value of the gel density
as it propagates from the gel boundary inwards. Specifically, we recorded the
density profile along a line that went through the center of the gel. For all the
recorded time points, we then followed the position of a specific density value along
this line. In Fig. 4g, we present the distance d traveled in the reference frame of the
laboratory as a function of time.

Pair correlation function G(r). The pair correlation function (or radial distribu-
tion function) allows one to quantify the structural order in materials and is
commonly used to distinguish between gases, liquids, and solids45. Specifically,
G(r) provides information about the probability of finding a particle at a radial
distance r from another particle located at another position, denoted as the origin
for convenience. Here, we use it to determine the length scale over which the
system can be considered homogenous. For a two-dimensional system the pair

correlation function is: G rð Þ ¼ hn rð Þi
2πrΔr

1
ρ, where 〈n(r)〉 is the mean number of particles

at a radial distance r from a reference particle located at the origin. G(r) is nor-
malized by dividing it by the area of a shell with radius r and thickness Δr, 2πrΔr.
Finally, ρ is the mean surface density of particles. It serves as a normalization factor
such that G(r)= 1 for a homogenous system. For a system with local order, G(r)
tends to unity above a critical length. We determined the radial density correlation
functions for actin and myosin as follows: we first suppressed the background
fluorescence by determining those 5% of all pixels with the lowest intensity and
setting their intensity to zero. Then for each pixel within the central third of the
image and with a non-zero intensity, which we call the reference pixels, we record
the number of pixels with a non-zero intensity for a given distance r. By averaging
with respect to reference pixels, we obtain 〈n(r)〉. We divide this value by 2πrΔr,
where we have used Δr= 1.6 μm to optimize the statistics. Finally, we divide by the
area of all non-zero pixels relative to the area of the full image to get the value of G
(r). In an infinite system this would imply G(r) → 1 for r →∞.
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Buckling wavelength λ, gel thickness b, chamber height h. Laser scanning
confocal microscopy was used to visualize the 3D structure of the gel sheet at
steady state and determine the colocalization of actin and myosin motors within
the gel. From the micrographs, we extracted parameters value including: the
chamber height h, the final sheet thickness b, the buckling wavelength λ at steady
state (as a measure of λc), and final vertical strain εz. The thickness b was evaluated
from three confocal cross-sections in the xz direction—one passing through the gel
center, the others at the two gel boundaries—and three similar cross-sections in the
yz direction. For each cross section, we measured the gel thickness at equidistant
positions along the gel. Typically, 30–90 values were thus extracted for each gel.
The error bars for b indicate standard deviation of these values. The mean final
thickness was then used to calculate the final vertical strain εz. Let h denote the
initial thickness of the sheet and b the final thickness of the gel sheet. Then εz ¼ h�b

h
is the vertical strain at the end of the vertical contraction phase relative to the initial
thickness of the sheet. The buckling wavelength λ was estimated from the fluor-
escence intensity along a line tracing the gel periphery in xy confocal cross-sections,
where we measured the distance between adjacent intensity maxima and between
adjacent intensity minima (see Supplementary Figure 8 for example). The mea-
surements of the buckling wavelength were done on gels with an initial radius of at
least 3 mm to have several maxima in steady state; typically, 6–12 maxima and
6–12 minima, depending on the gel size and thickness. The positions of the
maxima have been obtained by visual inspection. In addition, we looked at cuts
through the gel profile in the xz and the yz directions. We determined the position
of the maxima of the profile by visual inspection. Both methods yielded very
similar distributions of the buckling wavelength.

Estimating the gel mesh size. The initial mesh size ξ0 was estimated directly from
the actin images at contraction onset. In a first step, we identified the pores in the
network by visual inspection. This was possible, because they were delimited by
actin bundles, which were clearly detectable in the fluorescence micrographs. Then,
we determined the distances between two pairs of opposing bundles of a mesh and
obtained the corresponding mesh size from their geometric mean. After contrac-
tion was initiated, the mesh size ξ was always determined at the center of the sheet.
For each gel, we have measured the size of 55–90 pores.

Actin bundles contour length lcont, end-to-end distance lend-to-end. We con-
sidered actin bundles were limited by branching or by crosslinking points (see
Supplementary Figure 4). To determine the contour length of a bundle (lcont), we
traced the latter manually and used the ‘Region Measurements’ function of
Metamorph. To determine the end-to-end distance (lend-to-end), we measured the
distance between the two end points of a bundle.

Estimating the values of κ, σact, and λc. The values of the gel effective elastic

modulus are κ ¼ ηRrmaxh

bξ20τ
(Eq. 3), active stress σact ¼ κ~ε, and wavelength at buckling

onset λc ¼ 2π
ffiffi

~ε
p b (Eq. 4) (see main text). For a single gel, the estimation of κ required

the values of b, ξ0 , R, rmax , h, and τ. The value of b used in the expression for κ was
the average of the 30–90 values taken at different positions across the gel surface, see
above in Buckling wavelength λ, gel thickness b, chamber height h’. Also, we used the
average values of ξ0 for each gel, see above. Finally, the values of R, rmax , and τ were
evaluated as explained above in ‘Edge velocity of contractile actomyosin sheets’. The
value of the initial sheet thickness h was extracted from laser confocal micrographs.
For a single gel, the value of the active stress σact was calculated from κ and ~ε, where ~ε
is the lateral strain at the end of the planar contraction phase relative to the extension
of the sheet at t ¼ tmax (see definition in ‘Edge velocity of contractile actomyosin
sheets’). In Fig. 7, the values of b, λ, κ, ~ε, and σact were averaged over 3-4 gels that
were analyzed for each chamber height h; error bars indicate the standard deviations
for these 3–4 gels. Note that for the calculation of κ, ~ε, and σact, we used small gels (R
< 1.5mm), whereas b and λ were measured on large gels (R > 3mm). The coefficient
linking λc and b (Fig. 7d) was obtained from λc ¼ 2π

ffiffi

~ε
p b, where we took the value of ~ε

averaged over the gels for all initial heights h (Ngels ¼ 13 gels).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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