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ABSTRACT 

There is a growing awareness within the public and respective research communities that ‘one medicine’; the 

mutually beneficial co-study of animals and humans, could unlock great benefits for both. It is therefore timely 

to explore the types of research that could be enhanced through this approach. Our review examines the 

proposition that suitably aligned studies of spontaneous clinical osteoarthritis (OA) in dogs can provide a 

wealth of research material and understanding relevant also to human, which cannot currently be obtained 

from rodent or experimentally-induced models.  

INTRODUCTION 

Osteoarthritis (OA) is the end-destination of a heterogeneous group of disease processes and its research is 

therefore complicated. The importance of OA as a global disease and a modern major health challenge 

necessitate new research strategies. In 2005, 26.9 million US adults were estimated to have OA1 and it 

accounted for 2.4% of all years lived with disability (OARSI white paper 2016). OA is also a major disease 

burden in the dog, with an overall prevalence of 2.5% in UK veterinary primary care practice2, rising to  80% 

when over 8 years of age3. Duration estimates calculate that affected dogs suffer with OA for around 11% of 

their lifespan2. 

Intriguingly, dogs show distinct, OA type-specific epidemiological patterns, notably between different breeds, 

as well as a clear influence of body size, obesity, sex, neuter status and age2. Spontaneous canine OA is 

generally considered to bear close resemblance to human OA, in terms of anatomic similarity, disease 

heterogeneity, and progression4, appearing more informative than induced dog models. For example, changes 

in articular cartilage proteoglycans observed in slowly progressive spontaneous OA in dogs, regardless of their 

age, closely match those in human OA, and differ significantly from those seen in rapidly advancing 

experimental dog OA induced by anterior (cranial) cruciate ligament transection.5  

Humans and companion canine animals both live into old age, share many environments and activities, and 

now often receive identical disease management, such as prolonged administration of anti-inflammatory drugs 

or joint replacements. Academic veterinary medicine has also developed to a point that it can provide valuable 

biomedical research data; referral centers are now routinely equipped with magnetic resonance and 36 
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computerized tomographic imaging, arthroscopy, and have access to immunohistochemical and molecular 37 

diagnostics. They are also starting to pilot advances in the use of anti-inflammatory and pain modulating drug 38 

therapies for OA6-9. 39 

This review presents a narrative synopsis of key research relating to common forms of spontaneous dog OA 40 

and places them within a framework of OA types with human disease alignment. We overview molecular 41 

genetics, methods of disease and functional outcome assessment, pain studies, and future perspectives, in the 42 

hope of highlighting potential for collaborative efforts that will expand our knowledge of dog OA for the 43 

benefit of human and veterinary patients alike.  44 

 45 

ONE HEALTH, ONE MEDICINE & VETERINARY MEDICINE 46 

The ‘One Health’ concept, which recognizes that human health is closely connected to animal health and the 47 

environment, has ancient origins dating back to Hippocrates and Aristotle. Claude Bourgelat, a key founder of 48 

18th century veterinary medicine, advocated this intimacy, which was further emphasized by the 19th century 49 

physician  Rudolf Virchow who coined the term ‘zoonosis’ upon discovering that Trichinella spiralis in pigs 50 

caused human neurocysticercosis10. Despite historic recognition of this ideology, a culture of marked 51 

anthropocentricity emerged during the 1970s, shifting research emphasis to induced ‘experimental’ animal 52 

models.  53 

One Health approaches regained momentum following the outbreaks of highly pathogenic H5N1 avian 54 

influenza (1996) and Corona virus-associated Severe Acute Respiratory Syndrome (2003). Distinct from One 55 

Health, ‘One Medicine’ is now emerging as a holistic paradigm wherein veterinary and human medical 56 

research and clinical practice collaborate to increase their understanding of shared diseases and develop new 57 

therapies11. Companion animals represent a significant population, with ~70 million pet dogs in the USA 58 

alone12. Dogs typically live into old age, come in all shapes/sizes, from highly athletic to sedentary and 59 

overweight, and live intimately with humans. As they develop many age-related chronic diseases and co-60 

morbidities on a foreshortened timescale (breed-influenced life expectancy of around 8-12 years) that are 61 

analogous to humans, there is a growing view that developing our understanding and treatment of dog OA 62 

could lead to breakthroughs in human OA13. 63 

  64 

PROBLEMS WITH EXPERIMENTALLY-INDUCED ANIMAL MODELS OF OSTEOARTHRITIS 65 

Experimentally-induced OA models are available in many large and small species14. Undeniably, because they 66 

are small, easy to house, relatively inexpensive and genetic tractable, mouse models have contributed to 67 

advancing understanding of basic disease mechanisms. Regrettably, they have proved to be poor predicators 68 

of the efficacy or toxicity of new drugs in human trials15. Rodent model OA is usually either chemically or 69 

surgically induced. The veracity of such chemical induction with intra-articular papain or monosodium 70 

iodoacetate has however been questioned, with many concluding they have utility limited only to studies of 71 

‘joint pain’ and hence, surgical joint destabilization is most frequently employed.  72 
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Early work established the clinical, biochemical and histopathological changes induced by anterior cruciate 73 

ligament (ACL) transection in dog stifle joints (Pond-Nuki model)16,17, or medial meniscectomy in rabbits18. 74 

This heralded surgically-induced OA models in smaller genetically-tractable species. Surgical medial 75 

meniscus destabilization19, usually performed in 10-12-week old animals, is currently the most widely used 76 

model, but is by no means an ideal or ‘gold standard’. Genetic modification in mice undeniably offers the 77 

advantage of allowing single gene effects to be investigated20,21 and is used extensively; some mice, notably 78 

the STR/Ort strain, exhibit idiopathic spontaneous OA22. Whilst the value of these rapidly evolving murine 79 

OA models should not be underestimated, ‘natural’ companion animal disease may more closely reflect the 80 

complex genetic, physiological and environmental variation seen in human OA8,23, whilst reducing the 81 

numbers of animals used for research. 82 

  83 

ANALOGOUS CANINE AND HUMAN OSTEOARTHRITIC DISEASES 84 

Spontaneous slowly-progressing OA occurs in various mouse strains and guinea pigs, Syrian hamsters, dogs 85 

and non-human primates, where, in general, its histopathology and pathogenesis likely more closely resemble 86 

primary human OA24. This similarity is prominent also in dogs with complex naturally occurring traits that 87 

share co-morbidities, such as obesity, with humans. Whilst dog OA is likely more variable, takes longer to 88 

develop and thus requires larger numbers than mouse studies to achieve appropriately powered study design, 89 

this review outlines some common naturally occurring forms in order that readers may consider their suitability 90 

as models for human equivalents.   91 

 92 

Dysplastic hips  93 

Hip dysplasia is a frequent risk factor for OA in both humans and dogs25-28. It is estimated that 25-50% of 94 

idiopathic human hip OA is due to developmental dysplasia (DDH); many later needing replacement1,29,30. 95 

Canine hip dysplasia (CHD) shares pathoanatomical, biochemical and clinical features with DDH and is 96 

proposed to be the best spontaneous large animal model for DDH5,31
. Both show delayed capital ossification 97 

and an underpinning continuum of instability (detected by Ortolani test), with severe forms characterized by 98 

complete subluxation (Figure 2A-C) leading to focal cartilage overload and hip OA in untreated, or 99 

undertreated children and dogs30,32-34. DDH and CHD are morphologically similar; e.g. collagenous fibrils in 100 

articular cartilage of DDH patients are sparse and disordered, closely resembling TEM observations made 35 101 

years earlier in CHD.35 Many older dogs classified with normal hip conformation at two years (~adulthood) 102 

develop OA resembling human acetabular dysplasia and secondary OA in old age36. 103 

Does CHD occur with sufficient predictability to provide a feasible model? CHD occurs with 75% prevalence 104 

in Golden Retrievers and Rottweilers37. This has heralded a need for early-stage hip laxity screening38, as in 105 

humans, and improvement programs with novel laxity measures (distraction index, University of 106 

Pennsylvania), which allow screening at four months to identify dogs highly unlikely to develop OA by three 107 

years36,39. CHD resembles DDH clinically and pathologically but progresses over a compressed timeframe, 108 
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further improving its utility as a model. Many screening programs and registries employ traditional hip 109 

extended pelvic radiography (Figure 2B, C) and some have DNA banks. This highlights an opportunity to 110 

identify genetic, epigenetic, or environmental factors common to both DDH and CDH which have phenotypic 111 

characteristics similar enough to warrant simultaneous clinical and basic research, with view to augment 112 

progress in understanding, treating and preventing dog and human hip OA secondary to hip dysplasia. Recent 113 

MRI studies have explored the role of foetal movement in determining bone shape and DDH40. Although such 114 

MRI studies are currently difficult to undertake in dogs, it does suggest the possibility of a potential ‘One 115 

Medicine’ approach to advancing research in this field by careful foetal tracking of the developmental 116 

emergence of joint incongruity in DDH and CDH.  117 

CHD and DDH treatment options consist of similar symptom management, hip reconstructions and 118 

replacement methods (Figure 2D-G). Clinical features and imaging biomarkers to identify DDH, CHD and hip 119 

OA risk at an early stage would be beneficial. Trait similarities and a truncated canine lifespan make the 120 

uncovering of common early features of end-stage hip OA likely more rapid in dogs with CHD. The dog is 121 

also an excellent model of naturally-occurring hip OA41 and human total hip replacement42,43. Dogs and 122 

humans have similar bone remodelling characteristics and both require replacement for non-responsive and 123 

debilitating end-stage disease44-46. CHD and DDH are both followed up using similar clinical and functional 124 

measures, including validated clinical questionnaires, gait analysis and accelerometer measurements, and 125 

imaging techniques43,47-49, therefore making for an ideal clinical model in which OA progression and the 126 

efficacy of novel therapies can be investigated.   127 

 128 

Ruptured cruciate ligaments  129 

Canine knees have human-like anatomy50 and have been used in several surgical OA models, including 130 

transarticular impact51, tibial osteotomy52, meniscal sectioning24, articular cartilage scarification groove 131 

model53 and ACL transection16. The progressive and predictable OA changes in the ACL transection model, 132 

in particular, are often tracked in the evaluation of new therapies54 and show molecular changes regulated by 133 

the same genes as human post-traumatic and late OA55. Features typical of human knee OA, including 134 

lameness and pain, effusion, osteophytes, cartilage erosion, synovitis, subchondral sclerosis and bone marrow 135 

lesions develop in each of these models. 136 

Human ACL rupture leads to the progressive development of significant joint OA56 and the same is true of 137 

dogs 57. Spontaneous ACL rupture is common in dogs and certain breeds are particularly predisposed58,59. 138 

Analogous ACL transection is well documented to cause inflammation with cartilage and synovial reparative 139 

responses, yet ongoing instability prompts cartilage erosion and proliferation, and subchondral bone changes, 140 

mirroring spontaneous knee OA60. Spontaneous knee OA has ~20% prevalence in some dog breeds61 and ~50% 141 

develop contralateral knee ACL rupture within one year, in commonly-affected breeds such as Labrador 142 

Retrievers62. These natural homologs of experimental ACL transection also develop early osteophytes and 143 

sclerosis57 and end-stage OA over several years63,64 (Figure 1H). It is, however, highly likely that the aetiology 144 
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of rupture differs, with spontaneous canine ACL rupture typically involving non-traumatic, progressive, prior 145 

degeneration and weakening at physiological loads 65 (Figure 1I, J).  This contrasts to the trauma-related ACL 146 

rupture in humans, which is typically a result of non-contact sporting injury66. Whilst the underlying 147 

mechanisms of the canine ligament pathology remain undefined, predisposed dogs display thinner collagen 148 

fibrils in weaker ACLs, with increased expression of matrix metalloproteinase-2 (MMP2)58. Although rupture 149 

in young human ACL is considered truly traumatic, ~70% of macroscopically normal human ACLs have 150 

histological evidence of pathology consistent with early degeneration67, questioning whether there may be 151 

greater homology than previously thought.  152 

Irrespective of the route of anterior cruciate deficiency, the resultant mechanical instability and trauma in both 153 

dogs and humans, drives progressive OA and is frequently associated meniscal pathology 68, and hence dog 154 

ACL disease/OA is an excellent model of human knee OA. Data from studies of dog knee OA show that 155 

neutering increases the risk of ACL rupture as does being female and overweight6959. It has in fact been found 156 

that estrogen reduces ACL collagen synthesis in vitro70,71 and that the risk of ACL rupture in female athletes 157 

is increased on the first and second day of their menstrual cycle72. Hence the at risk female dog may offer 158 

insight into the potential roles of hormones or post-neutering weight gain73. Primary knee OA incidence in 159 

post-menopausal females is also higher than in age-matched men, suggesting possible hormonal influences.74 160 

Additionally, the common and predictive nature of dog cruciate rupture and OA, offer unique opportunities 161 

such as rising synovial fluid concentrations of IL-8 predicting contralateral cruciate ligament failure75. It 162 

remains to be seen if these are recapitulated in humans. 163 

 164 

Osteochondrosis lesions 165 

Canine shoulders not only develop age-related primary OA76 but also most-commonly osteochondrosis, with 166 

osteochondritis dessicans lesions (OCD; Figure 1A-C)77. Osteochondrosis occurs in many animals78,79 and 167 

humans and is characterised by disordered endochondral ossification, superimposed upon previously normal 168 

growth80. This accepted pattern of pathogenesis emanates from work in pigs, but data from other species lacks 169 

consistency. The location, radiographic and macroscopic appearance of lesions in femoral and humeral 170 

condyles and trochlear talus does however point strongly to shared aetiology81. In dogs, osteochondrosis 171 

predominates in medium/large breeds, affects males more than females and is often bilateral and site-specific82. 172 

Intriguingly, human males are also more frequently affected and bilateral disease is common77,83,84.  173 

Most histological human osteochondrosis studies use samples from end-stage disease, thus limiting scope to 174 

elucidate factors influencing onset. Some, nonetheless, have shown evidence of fibrocartilage at the junction 175 

between osteochondral ossification and opposed parent bone, resembling delayed or ununited fracture tissue85. 176 

This contrasts completely with reports of absence of calcified tissues in human and animal tissues, and suggests 177 

that osteochondrosis does not originate in subchondral bone86,87. Unilateral osteochondrosis in young dogs 178 

allows for sampling of early contralateral lesions and for arthroscopic autologous or biomaterial articular 179 

resurfacing88,89. There are strong links established between aberrant re-induction of endochondral ossification 180 
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processes in both human and mouse OA articular cartilage90,91. It is therefore intriguing that the canine shoulder 181 

is targeted in this particular way, much more so than the human. Future studies might focus on the role of the 182 

mechanical environment in the canine shoulder as a stimulus for the re-induction of these aberrant 183 

endochondral-like processes.   184 

Dogs exhibit astounding, several-fold size variation and clear inter-breed divergence in growth rate and/or 185 

physeal closure at puberty. Earlier physeal closure in small breeds is consistent with more rapid growth and likely 186 

OCD predisposition. Growth plates in larger Great Dane breeds have a larger hypertrophic region and more active 187 

BMP2/BMP6 signaling than miniature breeds92, suggesting that studies of OCD may give unique insight into the 188 

role of longitudinal bone growth in this form of OA. Another possible connection emerges from studies that 189 

establish a direct linkage between genetic selection for high growth rates, failure in mechano-adaptive bone 190 

changes and predisposition to skeletal diseases, as seen in chickens93,94. Whether similar relationships persist in 191 

dogs and humans has yet to be explored.   192 

 193 

COMPARATIVE GENETICS OF OSTEOARTHRITIS IN DOG BREEDS 194 

The Victorians (1837-1901) engendered immense pressure on canine evolution. Nearly all ~400 recognised 195 

dog breeds were stringently selected to create huge intra-specific phenotypic and behavioral variation; further 196 

reinforced by rigorous Kennel Club requirements. Broad linkage disequilibrium is therefore a characteristic of 197 

many breeds due to founder events and selection bottlenecks. Many breeds are, in essence, a homolog of the 198 

rare isolated human populations much coveted by geneticists. This selection concomitantly created significant 199 

naturally occurring, polygenetic disease predilection in some breeds. Intra-specific comparison of dogs 200 

(affected vs. unaffected) offers scope to identify candidate disease genes from these polygenetic conditions. 201 

Frequently, an argument is made for comparing pure breed dogs to mongrel or crossbreeds. We would argue 202 

that the advent of designer crossbreeds such as the ubiquitous Labradoodle (Poodle x Labrador) and the 203 

difficulty of defining the source breeds in most mongrels and crossbreeds, that this type of comparison is best 204 

avoided. Instead, it is more informative to compare high disease prevalence, pure breed dogs to low prevalence 205 

pure breeds, such as Labradors vs Greyhounds for hip dysplasia or cruciate rupture. As the canine genome is 206 

sequenced95, identification of genome-wide associations with fewer markers in dog breeds than is needed in 207 

outbred human populations offers significant opportunities; a few from hip and knee that have significant 208 

potential are focused upon in the next section.  209 

 210 

Hip Dyplasia: Whilst a genetic basis of DDH is almost certain96,97
 this is undisputed in CHD98. DDH occurs 211 

in 1-20/1,000 live births, across all races and predisposing factors include familial history, being first-born and 212 

breech birth position99,100. CHD frequency in different breeds varies much more markedly, reaching ~75% and, 213 

in contrast to DDH, shows no sex predilection in most breeds; female Polish Tatra Sheepdogs however have 214 

>3-fold risk over males101. This greater intra-/inter-breed variation may yet prove valuable in identifying the 215 

genetic basis of hip dysplasia. Demographics of CHD more closely mirror DDH in late onset acetabular 216 
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dysplasia101. Familial segregation studies suggest human DDH has a multifactorial genetic basis, but statistical 217 

support for this varies across populations and nationalities. It was recently reported that recurrent risk among 218 

siblings of affected families was ~10-fold greater than in controls, with high heritability (~85%)102. Dig CHD 219 

heritability estimates range from 20-60%103. Multipoint linkage and GWAS (genome wide association studies) 220 

suggest that 5-10 quantitative trait nucleotides (QTN) of modest effect, control CHD expression104. These 221 

findings are however not always replicated in different countries with different breeds105.   222 

Some 15 genes with known roles in embryonic patterning, ECM structure and remodeling, are now associated 223 

with DDH predominantly via screening for candidate polymorphisms106. Many lack replication, except CX3 224 

chemokine receptor 1 (CX3CR1, aka fractalkine, G-protein receptor) that was first identified by linkage and 225 

exome sequencing107,108 and recently a polymorphism independently linked with DDH109. CX3CR1 serves 226 

roles in mesenchymal stem cell recruitment and CX3CR1-deficient mice develop acetabular dysplasia110.  227 

Bernese Mountain dogs also possess a canine chromosome (CFA) 37 locus with significant CHD association 228 

(near FN1 gene associated with human DDH)111. Alternative CHD-associated loci identified by GWAS in UK 229 

Labrador Retrievers (>1,000), include those on CFA01 and CFA21105. Another across-breed mapping study 230 

identified a CTBP2 SNP on CFA28, linked to CHD, specifically the Norberg angle41. This and two more loci 231 

nearest TRIM2 and DPP4, were later associated with CHD by analysis of the same data by a novel iterative 232 

mixed model approach112. Intriguingly, Feldman et al. found that three patients severely affected by sporadic 233 

DDH shared an identical frameshift ZRANB1 mutation108; notable, as ZRANB1 is in the same canine linkage 234 

disequilibrium interval as the CTBP2 polymorphism on CFA2841. Similarities in DDH and CHD genetics 235 

indicate that studying CHD in these selected breeds will yield novel mechanistic insights into hip dysplasia 236 

aetiopathology in these, and potentially other species (Figure 3).  237 

Like DDH genetic studies, dog GWAS have also resisted replication across breeds and laboratories. It is well 238 

to consider that structural variants (deletions, duplications, inversions and translocations) are estimated to 239 

produce ~30% of causal variants, fine-mapped in dogs. These are often not detected using genome wide SNP 240 

arrays. In 4,200 genotyped dogs, most variants were poorly tagged by markers in a high-density mapping array 241 

of over 180,000 markers. Thus, previous canine GWAS are likely to have missed most causal variant mutations. 242 

An intronic deletion in FBN2 was associated with CHD in a linkage analysis of a direct hip laxity trait 243 

(distraction index) and also showed upregulation in samples from dysplastic dog joints113. Although there is 244 

strong evidence that the phenotype and progression of secondary OA are similar in dysplastic human and dog 245 

joints, joint genomic, transcriptomic, biomarker, and methylomic analyses are likely to be highly informative. 246 

Fresh samples can be retrieved readily from dogs undergoing joint salvage procedures and may facilitate 247 

candidate gene screening to overcome the replication barrier, as genetic links are likely to have been missed 248 

previously. Whole genome sequencing and genotype imputation is likely necessary to capture all causal 249 

mutations in canine GWAS.  250 

Legg Calve Perthes Disease (LCPD): characterized by slow femoral head destruction in children (and 251 

adolescent avascular necrosis of the femoral head (ANFH), has an ortholog in small breed dogs. Radiographs 252 

exhibit a continuum from mild disease with subchondral and epiphyseal osteolysis, to complete femoral head 253 
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obliteration (Figure 1F, G). Hip coxa plana (coxa vara and elevated femoral greater trochanter) deformity and 254 

premature OA are typical LCPD features in children and small breed dogs. Bilateral hip OA is common in 255 

human LCPD, peaks between 4-8 years of age114 and occurs ~4 times more often in boys (~1:3,000). Dogs, in 256 

contrast, show no sex predilection.  257 

LCPD and ANFH symptoms include hip pain, limping and differing limb length. Clinical signs appear in 258 

Yorkshire Terriers, Maltese, Miniature Poodles and Chihuahua during early life (~3-11 months) and peak at 259 

skeletal maturity (6-7 months). Histologic findings suggest obstructed blood supply and necrosis of the femoral 260 

capital epiphyseal bone. Vascular studies also demonstrate greater vulnerability to trauma in the femoral 261 

epiphyseal blood supply in susceptible small breed dogs when compared to non-susceptible, mixed breeds115. 262 

Interrupted blood supply and local hypoxic injury are thus common in both LCPD pathogenesis in both children 263 

and young dogs116. Human LCPD patients exhibit elevated Factor V Leiden serum levels117, polymorphisms in 264 

endothelial nitric oxide synthase118, abnormal complement and coagulation cascades, and lipid metabolism119.  265 

Whilst raised serum levels of coagulation cascade proteins were not seen in 18 LCPD-affected dogs120 it is evident 266 

that there are phenotypic, demographic, and hormonal similarities to human LCPD, including low circulating 267 

insulin-like growth factor-1 levels, reduced arterial caliber and function, and a hyperactive personality121,122 268 

(Figure 3). 269 

Familial and isolated LCPD occurs in humans123,124, with an estimated ~0.84 heritability in relatives of probands 270 

(first affected family member)125 as well as links to environmental and demographic factor(s)126. Such heritability 271 

was found in a pedigree of experimental Manchester Terriers127. Odds ratios for LCPD ranged from 4-191 in 272 

small pure breeds compared to a mixed breed population128. A COL2A1 mutation associated with LCPD in 273 

isolated human families23,129,130 has been excluded as a candidate in dogs122 and in humans with associations with 274 

apoptosis-related genes131. A major canine genetic locus with incomplete penetrance and autosomal recessive 275 

inheritance has also been proposed132. Human methylomic studies133 and others have however concluded that 276 

even familial LCPD clustering may not have a strong genetic component, since co-twin and even monozygotic 277 

twins of an affected individual have low absolute LCPD risk134. This however, does not exclude canine studies 278 

as a means of revealing common aetiopathologic pathways in non-COL2A1 associated canine and human LCPD.    279 

Anterior (Cranial) Cruciate Ligament Rupture: Non-contact rupture of human ACL has a complex etiology 280 

and >50% of operated patients have pain and secondary OA at 10-year follow-up. As in the dog, variation in 281 

outcome is influenced by age, sex, genetics, obesity, muscle strength, activity and re-injury68. Young female 282 

athletes have 3-6 fold elevated risk of ACL injury135. This doubles in those with similarly-affected relatives136 283 

and is raised further in Caucasians137, suggesting gender- and genetically-linked human determinants. Five 284 

year-old dogs consistently show degenerative microscopic and material changes in the cranial cruciate 285 

ligament (CCL human anterior equivalent) (Figure 1K). Susceptibility to CCL rupture is increased in 286 

Labradors and Golden Retrievers and their CCLs have elevated collagen turnover, decreased stiffness, and less 287 

mature collagen crosslinks than those of relatively rupture- resistant Greyhounds58. The genetics of dog CCL 288 

rupture are complex, with a 0.15-0.27 heritability in the Newfoundland which have 4 putative QTL by linkage 289 

analysis138, but non-overlapping association on CFA1, 10 and 33 by GWAS139. A case: control comparison 290 
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across four breeds, revealed SNPs key to ligament ECM composition and strength associated with CCL rupture 291 

susceptibility140. Huang et al., later reported associations on CFA7-9112 and Baker et al., on CFA24141 that 292 

reached genome wide significance for CCL rupture in Labrador Retrievers. This lack of replication is likely 293 

due to similar limitations that apply to CHD (see above).    294 

Gene polymorphisms in FBN2142, VEGFA, KDR143, COL1A1144, DCN, ACN, BGN, and LUM9, COL5A1145, 295 

and interactions between COL5A1 and COL12A1 are linked to human ACL rupture; many encoding ECM 296 

proteins and growth factors. Kim et al146 and Kaynak et al147 elegantly reviewed genetic associations with 297 

human ACL rupture and describe a COL1A1 polymorphism that replicated in several studies148-151. The former 298 

followed with a GWAS screen, which failed to unveil ACL rupture associated polymorphisms, highlighting 299 

that replication and cross-species overlap are vital in complex traits. Functional studies based on relevant 300 

temporal tissue samples that identify expression QTL which overlap with genomic QTL and, with induction 301 

of phenotype in other species  will be necessary to establish causation. (Figure 3). 302 

FUNCTIONAL OUTCOME ASSESSMENT IN OA 303 

Pain is a cardinal symptom of OA, and symptomatic management with a limited repertoire of drug groups, in 304 

particular analgesics and anti-inflammatory drugs plays a central role in veterinary152 and human treatment. 305 

This empirical and limited approach severely hampers any useful information gathering. A clear distinction 306 

between dogs and humans however, is the ability to self-report pain. Although many veterinary studies have 307 

used visual lameness and clinical pain assessments, which report only single outcome measures, force plate 308 

and radiography are most commonly used 153. This has led to objective force plate outcome measurement, 309 

becoming a common ‘gold standard’ for functional assessment in dog research. Kinetic gait analyses using 310 

force plates and pressure mats provide objective snap-shots of impairment154,155, and the size and amenable 311 

nature of dogs make them suitable for such assessments155,156.  312 

As subjective measures of pain can be readily quantified in humans, similar objective data has only had limited 313 

use157. Instead, clinical metrology instruments and a patient-centred approach to outcome assessment has 314 

become a mainstay in human OA assessment. The patient-centered approach has now been appropriated into 315 

veterinary assessments. In dogs, clinical metrology instruments or validated outcome questionnaires are also 316 

used to capture pain-related behavior over prolonged periods in home environments158, with pet owners 317 

providing proxy assessments just as parents or care-givers would159,160. Although this methodology is 318 

significantly more available than objective assessment, the proxy reporting remains an issue for their relevancy. 319 

Nonetheless, these instruments are validated, cheap and straightforward to manage and analyse, potentially 320 

expanding the ability to gain additional outcome assessments from veterinary trials. Examples include the 321 

Canine Brief Pain Inventory (CBPI) 161 that is analogous to the human Brief Pain Inventory (BPI)48,160. Such 322 

inventories, including the Liverpool OA in Dogs index162, have to: i) be valid, reliable and responsive to clinical 323 

change, ii) measure what they seek and, be validated against a gold-standard, such as force plate analysis, and 324 

iii) demonstrate reliability to generate the same outcome whenever an unchanged subject is re-assessed160. 325 

Their power in showing disturbed sleep in dogs with OA verifies their utility 163.  326 
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New miniaturised data recording technology make telemetric accelerometry or activity monitors practical in 327 

the clinical setting. These objective assessments are cheaper, less complicated than force plates and offer easier 328 

longitudinal assessments for OA interventions and disease progression156,164-166. Many other tests are useful in 329 

OA monitoring, including thermal imaging and mechanical nociceptive threshold testing167,168. Functional 330 

activity monitoring, force plate analysis, and advanced MRI are performed in dogs in a manner that mirrors 331 

human patients. Brain imaging in conscious pet dogs is also reliable and practical, with obvious potential for 332 

comparative neuroscience studies169,170.  333 

 334 

Pain models: US Food and Drug Administration (FDA) guidelines for OA drugs, devices and biological 335 

treatment are available but, as they note, pre-clinical research advances are not being translated into effective 336 

new drugs in clinical practice, leading to questions regarding the predictive utility of current animal models 337 

(http://www.fda.gov/downloads/Drugs/GuidanceCmplianceRegulatoryInformation/Guidances/ucm0338 

71577.pdf) 17115,172. Do current animal models effectively mimic OA stage, with measurable and translatable 339 

outcomes? Similarities in neurophysiology across mammals strongly suggest that pain, experienced in humans 340 

and animals is identical172. However, pain experience in OA is complicated and involves peripheral nociceptive 341 

sensitization, structural changes in joint innervation, central nervous system sensitization and neuropathic 342 

changes and a host of mediators as well as simple nociceptive input from damaged joint tissues173. Pain severity 343 

often shows poor correlation with radiographic human174 or dog OA175 or visible structural joint changes alone. 344 

New OA pain therapies thus require effective models that recapitulate OA joint changes as well as clinical 345 

symptomatology.  346 

OA pain levels are influenced by synovitis, osteochondral pathology and sensitization, not accounted for by 347 

structural radiographic change173,176. Good OA models need to reflect the natural longitudinal history of human 348 

OA and, hence, studies of spontaneous dog OA phenotypes with advanced non-invasive imaging may best 349 

resemble progression in some human OA phenotypes177,178. Semi-quantitative MRI is powerful for imaging 350 

hitherto unobserved OA processes; it is reliable, validated and has already been used in multicenter clinical 351 

trials179,180.  352 

Defined by characteristic MRI signal intensity changes, the presence, number and size of recently identified 353 

bone marrow lesions (BML) have been linked intimately with human OA pain severity181. Natural animal 354 

BML models are clearly required and their potential has now been demonstrated in studies linking BML-like 355 

structures with focal articular cartilage change and disability in the dog ACL transection model and dog CCL 356 

rupture with OA182. The search for model species for human pain needs also to carefully consider the 357 

evolutionary role of pain responses. As prey, rodents are thought to show less overt pain signs than predators, 358 

like humans and dogs. As these ‘responses’ are common end-points for measuring pain, it is pertinent that they 359 

are evolutionarily intertwined. Thus, fellow predator species, like dogs, are likely to more accurately represent 360 

human pain physiology than rodents.  361 

http://www.fda.gov/downloads/Drugs/GuidanceCmplianceRegulatoryInformation/Guidances/ucm071577.pdf
http://www.fda.gov/downloads/Drugs/GuidanceCmplianceRegulatoryInformation/Guidances/ucm071577.pdf
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Quantitative Sensory Testing (QST) has been used in laboratory settings and humans to quantify pain. QST-362 

assessed central sensitization has been demonstrated in human OA 183,184, in experimental dog OA185 and 363 

recently in spontaneous dog OA with increased mechanical and thermal allodynia186. QST efficacy has also 364 

been demonstrated in dog total hip replacements where, as in humans 187, hyperalgesia was reversed188. 365 

Clinically-affected dogs could therefore be optimal for testing anti-hyperalgesia therapies and, at the same 366 

time, realize the potential benefit. Overall, there is compelling evidence that studies in companion dogs with 367 

OA and chronic pain may reliably predict treatment efficacy in humans through randomised controlled 368 

veterinary trials (RCVTs)166,189,190. Parallel drug intervention dog studies are thus appropriate to accelerate drug 369 

trials designed to treat human pain and may speed off-license pain treatment to improve the welfare of dogs as 370 

well.  371 

 372 

A SHARED ENVIRONMENT, DIET AND OBESITY 373 

Obesity is becoming a health crisis for both humans and their pets. Thus, >40% of USA adults were obese in 374 

2015-16191 and, similarly, prevalence of dog obesity was 24% in the 1980s, rose to 41% by 200573,192 and has 375 

likely increased further. Obesity is a known risk factor for human193 and dog OA194, yet evaluating its 376 

independent influence in humans is difficult. Work with inbred experimental dog colonies, however, has 377 

clearly shown that dietary restriction reduces OA. Six week-old gender- and body weight-matched Labrador 378 

retriever pairs from closed, inbred colonies were either ‘control-fed’ (ad libitum) or ‘diet-restricted’ (75% of 379 

control-fed). Radiographic hip OA was found in 42% of control-fed dogs by 2 years (4% in diet-restricted), 380 

which increased to 52% (vs. 13%) by five and reached 83% at 15 years (50% in diet-restricted). Intriguingly, 381 

diet-restriction also increased longevity195 and weight only moderately correlated with OA severity, suggesting 382 

that other factors, related to increased food intake, exert influence196. Diet restriction also reduces severity and 383 

prevalence of shoulder76 and elbow OA197. Whilst the aetiology of obesity-related OA remains unclear, 384 

mechanical joint impact from excessive mass overloading has been proposed; this is despite the predisposition 385 

extending to hand OA in obese humans which suggests that this form of OA incitement is more systemic. A 386 

humoral role for adipose tissue in driving systemic low-grade inflammation, with increased adipokines has 387 

instead been implicated 198. Dog adipocytes have also been shown to express key adipokines and overweight 388 

dogs are commonplace, much like their owners.  389 

 390 

APPLICATIONS AND PROSPECTS 391 

There has been a growing drive to view OA not as one disease but as a syndrome encompassing heterogeneous, 392 

stratified groups of different associated populations and characteristic etiologies. This has led to a recent 393 

growth in the appreciation that new targeted therapeutic approaches might be accelerated by OA stratification, 394 

based on phenotype (or endotype), which may also lead to better alignment with preclinical animal models. 395 

We conjecture that the common dog OA types we have highlighted in this review provide models for ready 396 

alignment based upon anatomy, aetiology and pathophysiology and propose a system for their use with view 397 
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to analogous human OA (Table 1) 398 

Human disease stratification, based on phenotype has previously identified five OA subdivisions based upon 399 

joint involvement, muscle strength, obesity and psychological depression199, whilst a systematic review by 400 

Dell’Isola200 identified six groups with either central chronic pain sensitization, inflammatory, systemic 401 

metabolism, bone/cartilage remodeling, mechanical overload and minimally symptomatic OA phenotypes. 402 

Osteoarthritis Research Society International (OARSI) recommends five phenotypes based on clinical 403 

presentation criteria201 and another systematic review of knee OA identified gender, obesity and other 404 

metabolic abnormalities, cartilage damage patterns, and inflammation variables upon which distinct structural 405 

OA phenotypes might be delineated202. 406 

What are the prospects that the study of dog OA in such a One Medicine approach might therefore accelerate 407 

new developments? Currently, cancer research demonstrates the most readily adopted application of the One 408 

Medicine approach. Cancers account for >50% of dog mortalities and, like OA, its multifactorial and complex 409 

aetiology reduces the predictive value of rodent models. The Canine Comparative Oncology Genomics 410 

Consortium (National Cancer Institute, 2007) initiated an extensive, naturally-occurring canine cancer tissue 411 

bio-repository. Partnerships between veterinary/human oncologists and biologists later generated a 412 

Comparative Oncology Trials Consortium8, which rapidly revealed new facets of carcinogenesis 203,204, 413 

translated to human trials205. From the examples highlighted in this review, the authors identify four clear 414 

opportunities to take this approach forward in OA research: 415 

 1. A source of natural diseased tissue for research 416 

From the examples provided in the proposed categorization of OA types, researchers could identify a potential 417 

clinical dog syndrome and then perform studies to verify the validity of the alignment we propose (in Table 418 

1). This could, for example, involve exploring whether there are in dogs as in humans, two distinct subgroups 419 

of symptomatic knee OA patients based upon inflammatory gene expression profiles in peripheral blood 420 

leucocytes206 or whether dogs exhibit the alternative metabolic or cell senescent ‘mechanistic’ human OA 421 

phenotypes202. In addition, clinical sample retrievals such as OCD fragments, resected ruptured anterior 422 

cruciate, excised damaged meniscus, plasma or urinary or synovial fluid sampling for biomarker assessment, 423 

or resected osteoarthritic femoral heads from hip replacement procedures would facilitate greater 424 

understanding of OA mechanisms, and perhaps enhance diagnostic and prognostic criteria.  425 

It would also be possible to correlate arthroscopic, surgical and advanced imaging data with stage-specific 426 

changes in samples taken from dogs with specific OA phenotypes (Figure 1C, 1M). Examples include CCL 427 

transection and synovial fluid and serum sample analysis along with correlation with joint scores which has 428 

been performed in experimental models previously but could be evaluated in spontaneous dog OA207 with 429 

appropriate OA staging207-209 and radiographic scoring210. Compared with rodent models, in which such 430 

evaluations are not routine or even technically feasible, larger dog joints permit longitudinal study with modern 431 

imaging and tissue sampling, and potential for revealing additional insights into early and later stage OA. 432 

Indeed sampling could begin as part of a clinical trial, as soon as clinical, radiographic, CT or MRI evidence 433 
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of abnormal joint architecture is identified. For CCL rupture, dogs with unilateral CCL disease often have 434 

premonitory radiographic and clinical signs of synovial effusion. Further partial CCL tears are often associated 435 

with painful lameness in affected dogs even though instability is minimal. Measuring soluble biomarkers in 436 

biological fluids might facilitate early diagnosis or evaluation of interventions211. Getting usable samples of 437 

sufficient quantity is a practical possibility when working with large animal dog OA models (e.g. Cornell 438 

Veterinary Biobank; https://www2.vet.cornell.edu/departments/centers/cornell-veterinary-biobank).   439 

 440 

2. A means to identify the genetic underpinnings of homologous disease 441 

Inbred dogs lend themselves to genetic analysis of complex diseases; hip dysplasia, OCD and Legg Calve 442 

Perthes are excellent examples. Dogs with OA, with blood collected for routine haematology/biochemistry 443 

(for clinical management) could potentially have any residual blood directed into research. Tissues removed 444 

as part of clinical disease management could also be utilised. Making use of the broad linkage disequilibrium 445 

introduced by selective breeding with high predilection breeds versus low predilection pure breeds will help 446 

to identify candidate disease genes in these polygenetic conditions.  447 

 448 

3. An intermediary between rodent and human clinical trials with natural disease 449 

Dog OA is ideally suited for veterinary Randomised Controlled Trials (V-RCTs), because of the rigor of the 450 

functional outcome measures. Recent work comparing peak vertical force (PVF) and accelerometer data to 451 

continuously track activity at home, in spontaneous ACL disease showed excellent between-session reliability, 452 

well-aligned with locomotor activity. This indicates that PVF is a robust, reliable and reproducible non-453 

invasive tool for monitoring and assessing the effectiveness of new therapies in natural knee OA212. Such 454 

studies are free from the ethical objections associated with the use of experimental dog models and are 455 

absolutely aligned with the 3Rs agenda213. They are also cheaper and increase the possibility of biological 456 

sampling without using additional dogs. Examples demonstrating this utility include the study of anti-nerve 457 

growth factor treatment in dogs166 and humans214 and also the use of a novel anti-inflammatory agents, 458 

licofelone and doxycycline, each of which was similarly effective in spontaneous dog OA215,216 and human 459 

OA patients in Phase III trials217,218. Intra-articular hyaluronan injection in humans219 and in dogs with CHD220 460 

also showed comparable short-term symptomatic benefit without structure modifying efficacy. 461 

An example, where dog OA studies have primacy in the One Medicine approach include trials of stem cell 462 

therapy, which have advanced more rapidly in canine OA, than in humans. Allogenic mesenchymal stem cells 463 

harvested from visceral adipose dog surgical waste (from ovariectomy) have been combined with hyaluronan 464 

and injected intra-articularly into dysplastic dog elbow OA joints, with reports of reduced lameness and 465 

hyaline-type cartilage regeneration221
. Measurement of PVF and vertical impulse using force platforms 466 

suggested transitory improvement in severe hip OA following intra-articular adipose-derived mesenchymal 467 

stem cell administration222
. 468 

https://www2.vet.cornell.edu/departments/centers/cornell-veterinary-biobank
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 469 

4. Piloting of new technologies or surgical therapies 470 

A large animal with natural disease and compressed life-times has particular benefits; human scale implants 471 

and instruments can be used, such as arthroscopic treatment; therapies are piloted in a natural rather than 472 

induced disease model; and the relatively short dog lifespan allows for end of life retrieval studies. Although 473 

this may last several years (dog lifespan ~8-12 years), these durations are much longer than most, purely 474 

research, studies would entertain, and yet not be so long to be prohibitive. Total hip replacements (THR) for 475 

example, have been in veterinary clinical usage since 1976. Outcomes are good, with <20% complication rates 476 

for cementless replacement after four years42 (Figure 2G). Development of the implants for humans, including 477 

resurfacing hip replacements223, porous implants224 and hydroxyapatite coated prostheses, all relied heavily on 478 

testing in experimental dogs, and current veterinary modular hip replacements include both cemented and 479 

uncemented osseointegrative replacements. Similar complications such as aseptic loosening, bone remodeling 480 

and implant infection are seen in dogs as in humans. Post-mortem retrieval of implant material from veterinary 481 

patients, several years later is relatively cheap and easy, and could provide researchers with insights that are 482 

currently lacking. Such samples have been used to examine the mechanical, histomorphologic and 483 

radiographic features of aseptic loosening, which is a particular concern in human THR in the under 50s. These 484 

studies pointed to failure initiated by PMMA-debonding from the metal implant 225. Improved designs for new 485 

implants, if appropriately and ethically managed, could be piloted in dogs as they offer a comparatively short 486 

time-frame for retrieval when compared with a human clinical trial.  487 

Other than implants, surgical treatment of articular cartilage defects in dogs and humans has included 488 

osteochondral grafts and autologous chondrocyte implantation . Mosaicoplasty or osteochondral autologous 489 

transplantation is used in humans for full-thickness lesion repair and in dogs for treating OCD226-228.  490 

CONCLUSION 491 

This review has sought to highlight the potential benefits for dog and human health that could follow the 492 

adoption of ‘One Medicine’ approaches to basic and clinical research and practice for OA.  Human and dog 493 

OA are heterogeneous and spontaneous with many homologies, similar co-morbidities and known distinctions 494 

(Figures 2 and 3). There is much to be gained from studying a large animal with spontaneous OA, and 495 

understanding the reasons for differences may be just as informative as the similarities.  496 

A key current issue is that publication of veterinary research findings is usually restricted to veterinary-focused 497 

journals. We have consequently sought also to increase awareness of: i) V-RCTs, with a database (being 498 

developed by American Veterinary Medical Association), ii) national repositories of canine OA samples, iii) 499 

national retrieval banks for implants and, iv) clear V-RCT guidelines with standardized outcome assessments 500 

in order to allow their amalgamation into an OA ‘One Medicine’ paradigm. We emphasise that these resources 501 

have barely exploited in OA research and that their integration could generate breakthroughs in OA treatment 502 

in dogs and humans and in understanding how genetics, epigenetics, biomechanics and lifestyle impact OA 503 

aetiology and pathogenesis.  504 
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 505 

KEY POINTS 506 

 Dog OA types offer a potential stratification rationale for etiological differences and alignment to 507 

homologous human OA phenotypes 508 

 Relatively compressed time-course of spontaneous dog OA offers more ideal longitudinal research 509 

opportunities 510 

 Genetic inbreeding and dog breed OA predisposition allow for easier candidate genes identification than in 511 

outbred humans 512 

 Collaboration with veterinary researchers can provide OA samples from early stage disease  513 

 Opportunities to evaluate and translate new therapeutics into a spontaneous disease model 514 

 Comparative OA studies provide insights from different mechanical environments linked with weight-515 

bearing and non weight-bearing in quadrupedal dogs and bipedal human joints 516 

 517 

Figure 1. Canine OA locations and types.  518 

A-C. Shoulder OCD lesions in adolescent dog: (A) lateral radiograph (arrow marks the flap); (B) transverse 519 

CT and (C) arthroscopic removal.  D-E. Hip CDH: (D) Transverse  CT showing subchondral lesions and 520 

peripheral new bone formation associated with (E) OA eburnated explanted femoral head. F-G. Hip LCPD: 521 

(F) Excised femoral head with central dark line showing articular surface defect  and (G) radiograph with 522 

typical LCPD focal lucencies. H-J. Knee OA: (H) Lateral radiograph of OA canine knee with ACL rupture; 523 

(I) knee with healthy ACL and (J) spontaneously degenerate ACL (arrow shows anteriomedial band damage). 524 

K-M. Canine elbow OA: (K1-4) Anterio-posterior radiographs showing progressively increasing OA change; 525 

(L) Transverse CT of dysplastic elbow with OA and (M) Outerbridge grade III cartilage degeneration on 526 

arthroscopic examination. 527 

Figure 2. Comparative canine and human diagnostic imaging. 528 

Radiographic images of (A) dysplastic human infant luxated left hip (with permission R. Loder); (B) bilateral 529 

dysplastic and luxated hips of 3-month-old dog imaged in supine quadrupedal weight-bearing position; (C) an 530 

adult dog with severe hip dysplasia and luxoid hips imaged in a dorsolateral extended-hip position, and OA 531 

hip joints from (D) middle aged male human and (E) middle aged large breed dog, both with advanced 532 

remodeled new bone formation and sclerosis. Radiographic images of (F) a human total hip replacement, 533 

uncemented stem and cup, and (G) canine total hip replacement (cemented stem, uncemented cup). (H) T1-534 

weighted sagittal MRI of healthy canine knee. (I) Proton density turbo spin echo sequence (PD TSE) sagittal 535 

MRI human knee (Courtesy Karyn Chappell).  536 

Figure 3. Diagrammatic representation of three canine forms of OA (hip LCPD, hip CHD and knee ACL) 537 

with relationships to human homologs highlighted where applicable. Similarities to aetiopathology in canine 538 

and human OA forms of each is demonstrated.    539 
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Table 1. Proposed system for stratification of the common dog OA types with corresponding alignment 540 

to analogous human OA, based upon anatomy, aetiology and pathophysiology. * potential to classify an adult 541 

form of DDH (with acetabular dysplasia) with late onset hip OA in aged dogs that are otherwise ‘normal’ upon 542 

screening at 2 years of age. 543 

 544 
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Table 1 1073 

Canine OA Type Canine disease Canine Epidemiology Human analogy 

 

Acquired juvenile 

instability 

Hip dysplasia Juvenile large/giant breeds (prevalent in 

Retrievers, Rottweilers, German Shepherds; 

extremely rare in Greyhounds and Borzois)  

Adolescent dogs, 3-12months old* 

Progression to OA 1 year 

Developmental dysplasia of the 

hip  

 

Infants, female prevalent 

Progression to OA 30 years 

 

Acquired adult 

instability  

Anterior cruciate rupture Young adults (2 years) and older medium/large 

breeds (Rottweiler, Retrievers, Staffordshire 

Bull Terriers).  

Middle-aged to geriatric in small breeds (>6 

years, Yorkshire Terriers, West Highland White 

Terriers). 

~50% develop contralateral disease in <2 years. 

<50% with meniscal (mostly medial) pathology. 

Neutered females increased risk 

Anterior cruciate rupture and 

meniscal injuries 

 

Active adults 

 

 

 

Menstrual cycle influence 

 

Developmental 

Vascular  

Legg Calve Perthes Small breeds (Toy/Terriers – Miniature Poodles 

and West Highland White Terriers autosomal 

recessive trait. 

Adolescent  (4-11 months old) 

Adolescent avascular necrosis of 

the femoral head 

 

Developmental 

endochondral  

Shoulder OCD, knee 

OCD 

Large/giant breeds (Great Dane, Retrievers, 

Rottweilers) 

Adolescent to young adult (5 months – 1.5 years) 

Increased in males, often bilateral 

Children, adolescents, young 

adults 

 

Familiar history  
 

Increased in males often bilateral 

 

Environmental: 

obesity-related  

Elbow, hip, shoulder Any breed, notably Labrador retriever Adult 4-8 

years old  

Middle aged and older, multiple 

joints affected 

Environmental: 

athletic/trauma-

related 

Hip, elbow, hock 

(ankle), carpus, digits 

Racing Greyhound, 4-8 years old, digital 

osteoarthritis, carpal sprains leading to OA 

Athletic individuals, often 

middle aged  
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Figure 1. Canine OA locations and types.

A-C. Shoulder OCD lesions in adolescent dog: (A) lateral radiograph (arrow marks the flap); (B) transverse CT

and (C) arthroscopic removal. D-E. Hip CDH: (D) Transverse CT showing subchondral lesions and peripheral

new bone formation associated with (E) OA eburnated explanted femoral head. F-G. Hip LCPD: (F) Excised

femoral head with central dark line showing articular surface defect and (G) radiograph with typical LCPD focal

lucencies. H-J. Knee OA: (H) Lateral radiograph of OA canine knee with ACL rupture; (I) knee with healthy ACL

and (J) spontaneously degenerate ACL (arrow shows anteriomedial band damage). K-M. Canine elbow OA: (K1-

4) Anterio-posterior radiographs showing progressively increasing OA change; (L) Transverse CT of dysplastic

elbow with OA and (M) Outerbridge grade III cartilage degeneration on arthroscopic examination.

Figure 2. Comparative canine and human diagnostic imaging.

Radiographic images of (A) dysplastic human infant luxated left hip (with permission R. Loder); (B)

bilateral dysplastic and luxated hips of 3-month-old dog imaged in supine quadrupedal weight-bearing

position; (C) an adult dog with severe hip dysplasia and luxoid hips imaged in a dorsolateral extended-

hip position, and OA hip joints from (D) middle aged male human and (E) middle aged large breed dog,

both with advanced remodeled new bone formation and sclerosis. Radiographic images of (F) a human

total hip replacement, uncemented stem and cup, and (G) canine total hip replacement (cemented

stem, uncemented cup). (H) T1-weighted sagittal MRI of healthy canine knee. (I) Proton density turbo

spin echo sequence (PD TSE) sagittal MRI human knee (Courtesy Karyn Chappell).

Figure 3. Diagrammatic representation of three canine forms of OA (hip LCPD, hip CHD and knee ACL)

with relationships to human homologs highlighted where applicable. Similarities to aetiopathology in

canine and human OA forms of each is demonstrated.
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