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Abstract. We summarize and review our theoretical and experimental work on spontaneous
emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We
present a new result: a method for calculating the normal-mode solutions—and hence the
spontaneous emission of embedded emitters—in an arbitrary, linear, lossless, one-dimensional,
PBG structure.

1. Introduction

We present results of theoretical and experimental investigations into spontaneous emission
alteration and nonlinear optical effects in periodic thin-film multilayer devices—one-
dimensional photonic bandgap (PBG) materials [1]. We begin with a brief section on
one-dimensional photonic bandgaps and photonic band edges [1, 2]. We then introduce
the concept of nonlinear optical effects in PBG structures by modelling the operation of
an all-opticalχ3 PBG switch [3]. Next, we model theoretically aχ3 thin-film device that
exhibits passive anisotropic optical transmission—the optical analogue of the electronic
diode [4, 5]. Next, we show, theoretically and experimentally, the enhancement of the
spontaneous emission power spectrum of an emitter that is localized within a PBG structure
for frequencies near the photonic band edge. This enhancement is obtained without the use
of a typical microcavity [6–9]. Two slightly different AlAs–AlGaAs–GaAs, semiconductor,
one-dimensional, PBG structure, light-emitting diodes (LEDs) were designed and fabricated.
The emission spectra of these structures were measured and compared with that of a
reference GaAs LED. We use a novel matrix-transfer method for modelling the emission
rate from within the structures. Finally, we discuss some new exact analytical results for
the mode density, normal-mode fields and spontaneous emission in one-dimensional PBG
structures.

2. Photonic bandgaps

In the one-dimensional case, a PBG structure may be something as well known as the
distributed Bragg reflector (DBR). A simple DBR consists of multiple layers of alternating
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high- and low-index materials arranged periodically. The thickness of each layer is chosen
so as to satisfy the Bragg quarter-wave condition, that is

d = λ0

4n
(1)

whereλ0 is the reference wavelength of the structure, andd andn are the thickness and
refractive index of a particular layer, respectively. For a typical DBR, there is a range of
wavelengths (called the photonic bandgap), centred about the reference wavelengthλ0, for
which the structure is almost totally reflecting (that is, no propagating photon modes are
allowed through the structure). Figure 1 shows a typical transmission spectrum for a DBR.
The range of wavelengths demarcating the photonic bandgap is shown in the figure. It is
important to note that the width of the gap is directly dependent on1n = nH − nL, the
refractive index difference: all other things being equal, the gap will be wider for larger

Figure 1. Typical transmission spectraT (λ) of a one-dimensional PBG structure. Notice the
three transmission resonances on either side of the gap.

Figure 2. Local intensity at the short and long band-edge resonance wavelengths. Intensity is
localized in the low- and high-index regions, respectively.
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index differences [1]. (Here,nH andnL are the high and low refractive indices, respectively.)
In this paper, we will be studying effects at wavelengths near the transmission resonances
at the edges of the photonic bandgap (figure 1), as discussed in detail in [1].

Two features of optics at the photonic band edges makes these frequency regimes
particularly interesting. First, is the rapid transition from poor transmission to very good
transmission (that is, the steep slope of the transmission curve at the band edges), and
second, is the fact that the electric fields are almost totally localized in either the high- or
low-index layers. Figure 2 shows the local optical field intensity inside a typical DBR for
incident plane waves—for two different cases—and illustrates this second effect.

3. Optical switch

To demonstrate the principle of operation of a PBG optical switch [3], we now consider a
DBR with high-index layers which exhibit aχ3 nonlinear optical response given by

nH = n0+ n2I (2)

wheren0 is the linear refractive index,I is local intensity andn2 is the positive nonlinear
refractive index. Now consider a low-intensityprobe beam, tuned to a wavelength
corresponding to the long-wavelength band edge (see figure 3). Also consider a high-
intensitypumpbeam, which is slightly detuned from the probe beam, which can be turned
on or off. When the pump beam is off, the probe beam encounters a band-edge transmission
resonance (full curve in figure 3), and is therefore transmitted. When the pump beam is
turned on, the high-intensity pump light will be localized in the high-index layers, the
refractive indices of which increase with high intensity, and so the gap widens (see the
broken curve in figure 3). Now the probe beam encounters a highly reflecting structure,
and so is not transmitted. Thus the probe beam may be controlled (effectively turned on or
off after the PBG structure) by turning the pump beam on or off [3].

Figure 3. An optical switch: the bandgap widens as the intensity of the incident pump radiation
increases.
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4. Optical diode

The method of operation of the optical diode is similar to that of the switch described
previously [4]. We begin again with aχ3 nonlinear DBR. This time, however, the index
of each period after the first is increased by a small amount over the previous period. The
result is a ramped-index DBR, as shown in figure 4. Because the indices in the first few
periods on the left-hand side are lower than those in the first few periods on the right-hand
side, the left-hand side of the structure can be said to have alocal photonic band edgethat
is at a shorter wavelength than the right-hand side of the structure. In other words, for some
specific wavelength of incident light, the portion of the ramped DBR on the right-hand side
of the figure is highly reflecting, while the portion on the left-hand side is highly transmitting.
Thus, light incident from the left may indeed penetrate further into the structure before being

Figure 4. An optical diode configuration: the linear index ramp is accompanied by aχ3

nonlinearity.

Figure 5. The local intensity in the linear diode is dependent on the direction of incidence—the
key to its operation.
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reflected than would light incident from the right, as can be seen in figure 5, produced by
a nonlinear matrix transfer code [5]. Figure 5 shows the localized intensity inside alinear
ramped index structure. Note that for light incident from the left, the intensity is localized
in the high-index layers and that there is strong optical-field enhancement in the first several
periods. For light incident from the right, not only is the field enhancement comparatively
weak, but the field is localized inbetweenthe high and low layers, as expected for a good
DBR reflector. Thus, by introducing an optical nonlinearity into the high-index layers (one
with a negativen2), we may now allow the light incident from the left to dynamically shrink
the width of the bandgap (by lowering the index of the high-index layers) as it propagates,
while nearly preventing light incident from the right from doing so. Thus, high-intensity
light, of a specific wavelength, incident from the left would be more apt to be transmitted
through the structure than the same type of light incident from the right.

Some of the present authors predicted that this type of diode action is, in fact, generally
possible for the special case of incident pulses [4]. Figure 6 shows the main result from
this study; a significant fraction of a right-moving pulse is transmitted, while nearly all of
a left-moving pulse is reflected.

Figure 6. Diode operation for pulses: much of the high-intensity pulse incident from the left is
transmitted, while that from the right is reflected.

In a later publication, our group then used actual material parameters and a specially
modified matrix transfer method to model plane waves incident onto a physically realizable
χ3 nonlinear optical diode structure [5]. This study used parameters for a polydiacetylene
(9-BCMU) and rutile (TiO2) and incident intensity values that were of the order of
10 MW cm−2. While we confirmed the results of the previous studies, our investigation
also showed that a ramp in the index profile was not necessary. In part, we found that
ramping the index was analogous to increasing theoptical thicknessof the layers across the
structure, which could simply be accomplished by increasing thethicknessof each layer
across the structure, rather than increasing the index. This innovation loosened the stringent
fabrication requirements demanded by the optical diode. In this study, it was the low-index
layers that exhibited the nonlinearity, and so it was the short-wavelength band edge that
was the region of interest. In figure 7, the full curve in the figure is the transmission
spectrum of the structure, for low light intensities (linear case), in the spectral region of
the short-wavelength band edge. The short-broken curve is the transmittance spectrum for



398 I S Fogel et al

Figure 7. The steady-state nonlinear matrix-transfer calculation at 13 MW cm−2 indicates
anisotropic transmittanceT (ω) for right- and left-incident radiation. The low-intensity (full)
curve is the same for both directions.

light incident from the right at 13 MW cm−2 and the long-broken curve is the transmittance
spectrum for light incident from the left at the same intensity. An important implication of
this figure is that for a wavelength of about 641 nm (and an input intensity of 13 MW cm−2),
light incident from the left will experience approximately 25% transmittance through the
structure, while light incident from the right will experience only 5% transmittance. Thus
we realize five times as much transmitted light through the structure for light incident from
the left as for light incident from the right. As the inset of figure 7 shows, the ratio of
left to right transmittance through the structure increases with increasing intensity. Another
interesting note is that for intensities greater than around 15 MW cm−2, the device exhibits
optical bistability for light incident from the leftonly.

In recent work we found that a ramp in the optical thickness of the layers across the
structures was not necessary to realize optical diode behaviour. We found that practicallyany
directional asymmetry in the design of the structure led to an asymmetry in the left- to right-
incident field profiles. By testing many different structures, we found that the deposition of
a single thin film with carefully chosen index and thickness, on top of a symmetric structure
could lead to wildly different left- and right-incident field profiles. For example, a single
layer of rutile (n = 2.7), with an optical thickness of 0.15 of a wavelength, on one side of an
otherwise symmetric AlAs–GaAs DBR led to nearly six times as much localized intensity
in the high-index layers for light incident from one direction than for light incident from the
opposite direction. Difficulties in growing many layers of rutile and polydiacetylene have
hindered the experimental demonstration of this effect. We are seeking materials with as
good nonlinear refractive index and absorption, but better fabrication properties.

5. Spontaneous emission

In a paper by two of the authors (JPD and CMB), the prediction was made that the
spontaneous emission spectrum of a radiating dipole embedded inside a PBG structure
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would be altered so as to be enhanced (compared to its free-space radiation power) at
frequencies near the photonic band-edge resonance [1, 6, 7]. A numerical analysis by our
group confirmed this theoretical finding, and set the stage for our most recent experimental
work [9]. Another result from [6] is a semiclassical derivation of the following expression
for the emission power spectrum for the embedded point dipole emitting at a frequencyω

and located at a positionx:

P(ω, x) = Cρ(ω)|a(ω, x)|2 (3)

whereρ(ω) is the density of the photon modes,a(ω, x) is the value of the electric-field
normal modes at the position of the dipole, which both depend on the frequencyω, and
C is a constant that is possiblyω dependent and that depends on, among other things, the
material parameters of the emitting dipole (there have been other, quantum electrodynamical
derivations of this expression [8]). To eliminate the constantC from our calculations, we
used a parameter that we call the emission enhancement,Ienh, which is simply the ratio of
the emitted power spectrum of a PBG test sample to that of a reference sample:

Ienh= P(ω)PBG

P(ω)ref
. (4)

Thus, by measuring the power spectra of a one-dimensional PBG test sample and that
of a similar reference sample, anexperimentalvalue for the emission enhancement could
be obtained. Meanwhile, by calculating the density of modes and the normal-mode field
for both the test sample and the reference sample, acalculated value for the emission
enhancement could be obtained. In this way a good comparison may be made between the
theory and the results from the experiment. A brief explanation of both the experimental
and modelling procedures is given here, but a more complete description may be found in
[9].

Both the normal-mode fielda(ω, x) and the density of modesρ(ω) were found using
a standard matrix transfer method for calculating the electric field inside stratified media
[1, 10]. By dividing the intensity of the electric field by the total energy under the curve,
the electric field mode was normalized:

|a(ω, x)|2 = |E(ω, x)|2∫ D
0 n2(x)|E(ω, x)|2 dx

(5)

wherex is the direction perpendicular to the interfaces, and 0 andD are the initial and final
x coordinates of the structure, respectively, andn(x) ∈ {nH, nL} is the spatially varying
refractive index. Furthermore, the value of the normal-mode-field-squared was averaged
over the region of the emitted layer:

〈|a(ω)|2〉 = ∫ b
a
|a(ω, x)|2 dx

(b − a) (6)

wherea and b are the initial and finalx coordinates of the emitting layer, respectively.
Now, assuming light incident onto the structure from the left, the transmission coefficient
of the structure is simply the ratio of the right-travelling electric field just to the right of
the structure (Eout) to the right-travelling electric field just to the left of the structure (Ein).
This number is, in general, complex, and so it may be written equally well in either polar
or Argand notation:

t (ω) = Eout

Ein
=
√
T eiφ = u(ω)+ iv(ω) (7)
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where t (ω) is the transmission coefficient as a function of frequency,
√
T and φ are the

amplitude and phase oft , respectively, andu andv are the real and imaginary parts oft ,
respectively, where we defineT ≡ |t |2. The phase of the transmission coefficient may be
thought of as the phase accumulated by a plane wave as it traverses the structure. If the
structure’s total thickness isD, then an effective wavenumberkeff may be introduced such
that the phase thickness of the structure is equal to the product of the effective wavenumber
and the structure’s thickness:

φ = keffD. (8)

Rewriting this in terms of the real and imaginary parts oft yields

tan[keffD] = v

u
(9)

which may then be written as a dispersion relation as follows:

keff(ω) = 1

D
tan−1

[
v(ω)

u(ω)

]
. (10)

Now, the one-dimensional density of modes is simply the magnitude of the derivative of
the wavenumber with respect to frequency,

ρ(ω) =
∣∣∣∣ dk

dω

∣∣∣∣ = 1

D

∣∣∣∣u′v − v′uu2+ v2

∣∣∣∣ (11)

where the primes denote derivatives with respect to frequency.

Figure 8. Design strategies for samples A and B in our experiment. Full curves are the calculated
reflectivity of samples with respect to the GaAs LED emission spectrum (broken curve).

For the experiment, we designed two different PBG test samples and used one reference
sample. All of the samples were designed as p–i–n doped AlAs–AlGaAs–GaAs surface-
emitting LEDs, with GaAs as the emitter. For an emitter embedded in a high-index layer
(as we have in this case), the theory predicts that the emission will be enhanced at the
long-wavelength band edge more than at the short-wavelength band edge, since here the
electric-field intensity at the location of the dipole is largest. Also, the emission should
be suppressed at frequencyω inside the photonic bandgap. With these ideas in mind, we
designed the first PBG test sample (called sample A) to have its long-wavelength band
edge overlapping with the reference GaAs emission spectrum, with more of the reference
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spectrum lying outside the bandgap than inside it (figure 8, left). We designed the second
PBG test sample (called sample B) to have its short-wavelength band edge overlapping
with the reference spectrum, with more of the reference spectrum lying inside the bandgap
than outside it (figure 8, right). According to the theory, sample A should emit far more
radiation than sample B. Figure 9 is a schematic diagram of the structure of samples A and
B. Both test samples consisted of 20.5 periods of Alx=0.2GaAs and AlAs, with the central
AlGaAs layer replaced by an emitting GaAs layer. With the exception of the p-cap, the
optical thickness of each layer is exactly one quarter of a wavelength (for some reference
wavelength). The two test samples were identical in form; only the actual thicknesses
of the layers were different (corresponding to different reference wavelengths for the two
samples). A three-layer Al0.4Ga0.6As–GaAs–Al0.4Ga0.6As p–i–n light-emitting diode was
used as a reference sample—corresponding to a control bulk emitter. Each layer in the
reference sample had a thickness much greater than a vacuum wavelength (∼ 875 nm)
corresponding to the peak of the GaAs emission, and so quantum-confinement effects are
negligible.

Figure 9. Schematic diagram of samples A and B. The emitter layer is also a quarter-wave
layer, i.e. there is noλ/2 or λ cavity.

Figure 10 shows a comparison between the measured and calculated emission
enhancements. The close agreement between the shapes of the spectral enhancements of the
matrix-transfer calculation and measurement is easily seen. Because of the very different
characteristics of the test samples and those of the reference sample, both of the measured
emission enhancements were divided by the same constant number. The relative heights
and shapes of the two curves were not changed.
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Figure 10. Measured and calculated emission enhancements. An enhancement of 1 corresponds
to no enhancement—the emissivity of the bulk material.

The measuredemission enhancement of each PBG sample was found by dividing the
emission spectrum of each PBG sample by that of the reference sample (see equation (4)).
Since the reference sample had an intrinsic layer thickness and current–voltage characteristic
different from the two PBG samples, we could not directly compare the absolute emission
power of the reference sample with those of the PBG samples. It was necessary to scale the
measured PBG sample emission spectra by some constant number (the same scaling number
was used for samples A and B). We chose an injection current through the reference sample
of 63 mA, but we found that varying the current (from 18–78 mA) did not alter the shape
of the measured surface-emission enhancement. This insensitivity to the injection current
is due to the broad emission spectrum of the reference sample.

6. Analytical results

In the previous section, we saw that a numerical matrix transfer code could be used to
calculate the spontaneous emission powerP(ω, x) (equation (3)), in a one-dimensional
quasi-PBG structure, giving excellent agreement with experiment. In actual devices, we
rarely have an exactly periodic structure, due to the DBR substrate, the active quarter-wave
region, etc. However, much can be learned and analytical results can be obtained assuming a
lossless, exactly periodic one-dimensional PBG structure. For example, an exact expression
for the density of modes,ρ(ω), equation (11), can be obtained [1].

Consider figure 11(a), where we show the transmission of light through a linear, lossless,
refractive index profilen(x) on the compact domain(a, b), of lengthd = b−a. The complex
transmittancet (ω) = u(ω)+ iv(ω) is given by equation (7), and the mode densityρ(ω), by
equation (11). Let us assume thatt (ω) can be calculated for this index profilen(x), either
analytically or numerically. Let us now assume that this potentialn(x) is repeatedN times
to form an exactly periodic index profile, as shown in figure 11(b). The finite periodic
structure hasN periods and lengthD = Nd = N(b − a). We now wish to compute the
complex transmittance,tN = uN + ivN , of the stack in terms of that of the single period.
Let us suppose that the transfer matrix for the single period in figure 11(a) is given byM̂,
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Figure 11. In (a) we show the transmittancet and reflectancer of a one-dimensional unit cell
with index variationn(x). In (b) we repeat the unit cellN times to make a finite one-dimensional
PBG.

implicitly defined by[
1
r

]
= M̂

[
t

0

]
(12)

wherer is the complex reflectance. We are assuming that an optical field of electric field
amplitude 1 is incident from the left, and no field from the right, as in figure 11(a). From
energy conservation and time-reversal symmetry, it can be shown thatM̂ has the very
general form [1]

M̂ =
(

1/t r∗/t∗

r/t 1/t∗

)
(13)

where the asterisk denotes complex conjugation. The eigenvalue equation forM̂ is easily
seen from equation (13) to beµ2−2µRe{1/t}+1= 0, where the two eigenvaluesµ± are
related byµ+µ− = det|M̂| = 1 by unimodularity.

We would now like to make a very important point. Suppose, for the sake of discussion,
we were to impose the periodic boundary condition,n(x) = n(x + d), for x ∈ (−∞,∞),
and then seek the corresponding Bloch eigenfunctionsuB, appropriate for aninfinite-period
potential with unit celln(x), x ∈ (0, d]. We know that the Bloch functions change only in
phase, and not in amplitude, from cell to cell in the infinite periodic potential. This phase-
per-unit-cell is called theBloch phaseβ, associated with the infinite periodic structure.
For these Bloch eigenfunctions,uB, we have then, from the definition of aneigenvector,
the eigenvector equation̂MuB = µ±BuB = e±iβuB, where the last term comes from the
definition of the Bloch phaseβ. Hence, the eigenvalues for the Bloch functions are of
the form µ±B = e±iβ , sinceµ+Bβ

−
B = 1. Now, since the eigenvalue equation holds for

all eigenvaluesµ of M̂, in particular, it holds for the Bloch eigenvaluesµ±B . Inserting
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µ±B = e±iβ into the eigenvalue equation, and equating real and imaginary terms, yields the
very important relation that

Re{1/t} = cosβ (14)

whereβ is again the Bloch phase for the hypothetical infinite periodic structure.
From the Cayley–Hamilton theorem, one can show that the unit cell transfer matrixM̂,

equation (13), obeys its own eigenvalue equation, namely

M̂2− 2M̂ cosβ + Î = 0 (15)

where Î is the 2× 2 identity matrix, andβ = β(ω) is the Bloch phase. Now the transfer
matrix for the entireN -period stack, figure 11(b), is simply the product of the matrices of
the unit cells, i.e.M̂N = M̂N . Using the matrix-valued eigenvalue equation (15), we can
prove by induction that [1]

M̂N = M̂
sinNβ

sinβ
− Î

sin(N − 1)β

sinβ
. (16)

This is an extremely important result, in that it expresses the transfer matrix of the stack,
M̂N , in terms ofM̂, β andN . SinceM̂ is assumed to be known for the unit cell, henceβ
is also known, and we have an expression for theN -period stack in terms ofN and the
properties of the unit cell. The stack matrix̂MN = M̂N also obeys the general form

M̂N =
(

1/tN r∗N/t
∗
N

rN/tN 1/t∗N

)
(17)

where tN and rN are the complex transmittance and reflectance of the entire stack (see
figure 11(b)). Combining equations (16) and (17), we get

1

tN
= 1

t

sinNβ

sinβ
− sin(N − 1)β

sinβ
(18a)

rN

tN
= r

t

sinNβ

sinβ
(18b)

which now gives us the complex transmittance and reflectance of the periodic stack,tN and
rN , respectively, in terms ofN and known propertiest, r andβ of the single unit cell. If we
define the transmission functions for the unit cell and the stack byT ≡ |t |2 andTN ≡ |tN |2,
we may use equations (18) to obtain

1

TN
= 1+ sin2Nβ

sin2 β

[
1

T
− 1

]
(19)

from which we see that the stack is transparent,TN = 1, whenever eitherT = 1 or whenever
Nβ is an integer multiple ofπ . The latter case corresponds to the transmission resonances
of the stack as depicted in figure 1.

Using equations (18), combined with equation (11) for the density of modesρ, we may
derive an exact analytical expression for the density of modes for the stack,

ρN(ω) = 1

D

[
sin2Nβ/(2 sinβ)

][
η′ + ηξξ ′/(1− ξ2

)]−N(ηξ ′/(1− ξ2
))

cos2Nβ + η2
[
sin2Nβ/

(
sin2 β

)] (20)

where we have definedξ ≡ u/T and η = v/T , and wheret = u + iv is the unit cell
transmittance andT ≡ |t |2. Here the prime denotes differentiation with respect toω. Once
again, the expressionρN for theN -period stack is given entirely in terms of properties of
the unit cell.
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Now we have almost enough information for an exact analytical expression for the
spontaneous emission powerPn(ω, x), equation (3), of a dipole in thenth unit cell at
position x and frequencyω. Such an expression corresponds to a new result. We have
ρN(ω), and now we need the normal-mode functionan(ω, x) as a function of the position
x in the nth cell. We describe here, for the first time, how to compute this. Consider
figure 11(b), where the boundary conditions are 1 andrN on the left of the stack andtN
and 0 on the right. All these quantities are known, equation (18), and hence, in principle,
determine the field anywhere inside the stack uniquely. Let us consider a generic arbitrary
unit cell in theN -period stack, call it thenth cell with n = 1, 2, 3, . . . , N . The form of
the right- and left-propagating electric fields,E±(x), in a given unit cell is assumed to be
known from the solutions of Maxwell’s equations for the unit cell. (For example, if the
unit cell has a linear index rampn(x) = a+ bx, thenE±(x) are expressible in terms of the
two independent Airy functions Ai(x) and Bi(x).) Hence, the general form of the electric
field in thenth cell,En(ω, x), has the form

En(ω, x) = An(ω)E+(x)+ Bn(ω)E−(x) (21)

whereAn(ω) andBn(ω) depend onω but are independent ofx and are uniquely determined
by the boundary conditionsrN and tN on the edges of the stack, as well as the number
n. The inverseof the partial-stack transfer matrix̂Mn−1 propagates the left-stack boundary
condition

[
1
rN

]
to the right-hand side of thenth unit cell, and the matrix̂MN−n propagates

the right-stack condition
[
tN

0

]
to the right-hand side of the samenth unit cell. (A matrixM̂m

propagates right-to-left and itsinversepropagates left-to-right.) Equation (16) can be used to
reduceM̂n−1 andM̂N−n to a function of onlyN and the unit cell quantitieŝM andβ. When
we are done, we have an expression forAn(ω) andBn(ω), and henceEn(ω, x), in terms
of n,N and properties of the elementary unit cell. The expression is too lengthy to give in
full here, and will be presented in a future work [11]. This is the first analytic expression
for the electric normal modes in a finite one-dimensional PBG, and as a consequence of
equation (20) for the density of modes, and equation (3), an exact analytic expression for the
spontaneous emission of an emitter embedded in a finite, one-dimensional periodic structure.

The only remaining point to connect the electric field modesEn(ω, x), equation (21),
to the modesan(ω, x) used in the spontaneous emission calculation, is to normalize the
modesEn(ω, x) to the total energy in the field. The general form of this normalization is
given by equation (5), where the denominator represents the Maxwell electric-field energy
densityUN in the structure [6]. For our periodic structure, this simplifies to

UN(ω) =
∫ Nd

0
n2(x) |E(ω, x)|2 dx

=
N∑
n=1

∫ nd

(n−1)d
n2(x) |En(ω, x)|2 dx

≡
N∑
n=1

Un(ω) (22)

whereEn(ω, x) is given by equation (21), andUn(ω) is the electric-field energy density in
thenth unit cell. We can now compute the correctly normalized normal modesan(ω, x) in
the nth unit cell, namely

an(ω, x) = En(ω, x)√
UN(ω)

(23)



406 I S Fogel et al

or, in other words, we are normalizing the modes to the total electric-field energyUN inside
the N -period stack. Hence we have a prescription for computingan(ω, x) analytically,
givenEn(ω, x) in equation (21).

For a point dipole in thenth cell oscillating at frequencyω and located at a position
x in the stack, with(n− 1)d < x 6 nd, the spontaneous emission power emitted on axis,
Pn(ω, x), is proportional to the one-dimensional spontaneous emission rateγ and is given
as in equation (3) as

Pn(ω, x) = CρN(ω) |an(ω, x)|2 (24)

wherean(ω, x) is given by equation (23) andρN(ω) is given by equation (20). For a point
dipole oscillating at frequencyω, the radiating current densityJ (x, t) has the form

J = ωp cos(ωt) δ(x) (25)

wherep is the dipole moment [6]. For such a radiating element, we have [6]

C = 1
2π

2ω2p2 (26)

which completes the analytical analysis of this one-dimensional model.

7. Conclusion

We have shown results of several investigations into some of the interesting band-edge
phenomena associated with PBG structures. We began by demonstrating the principle of
operation of the nonlinear band-edge optical switch [3]. We then introduced the nonlinear
thin-film optical diode and showed results from numerical investigations into the problem
[4, 5]. It was shown numerically that more than five times as much transmission in
one direction as in the opposite direction should be possible using realistic materials and
intensities. Then, we gave results from an experimental investigation into spontaneous
emission alteration at the photonic band edge. A novel numerical method for calculating
such an emission alteration was also presented and we showed that it accurately predicts
the experimental results. Finally, we showed how the density of modes and, for the first
time, how the optical normal modes of an exactly periodic, one-dimensional, PBG structure
may be obtained analytically. This result gives an exact, closed-form expression for the
atomic spontaneous emission rate in such a one-dimensional structure. The ability to alter
and model the spontaneous emission of active media in such a way may find important new
applications in such fields as flat-screen LED displays and high-efficiency LEDs.
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