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We study the spontaneous-emission of a single atom located between two parallel infinite plates where one
of the plates is partially reflective and the plate separation is of the order of the wavelength of the atomic
transition. We pay particular attention to the nature of the field modes in such a finite finesse cavity, including
the full three-dimensional nature of the field. We then compute the decay rate of an excited atom placed inside
such a cavity. The angular distributions of the spontaneous-emission and of the cavity field vacuum fluctuation
variances are investigated. Finally, we examine the output field from an atom inside a finite finesse microcav-
ity. We show that the radiation transmitted outside such microcavity forms a nondiffracting Bessel beam.

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.55.2f

I. INTRODUCTION

The microwave regime has many practical advantages
over the optical regime for the realization of cavity QED
effects @1,2#. Single-mode high-Q microwave cavities are
easier to engineer than their optical counterparts: single-
mode microwave cavities have dimensions of the order of
millimeters while single-mode optical cavities must be as
small as a few micrometers. The optical regime requires
high-quality factors and often relies on mode degeneracies.
In addition, electric-dipole moments associated with optical
transitions are much smaller than those associated with mi-
crowave transitions of Rydberg atoms. Such high-quality
factors are difficult to reach, given that ordinary metal mir-
rors tend to be rather lossy in the optical regime.

Despite all these difficulties, cavity QED in the optical
regime has attracted a great deal of interest@3#. Inhibition of
spontaneous-emission was demonstrated in the optical re-
gime in a single-mode cavity@4,5#, with mirror separation of
the order of an optical wavelength~a few thousands of ang-
stroms!, and in a confocal resonator, with mirror separation
of the order of 1 mm, exploiting the large mode degeneracy
to create substantial cavity modified fields@6#. More re-
cently, An et al. @7# employed a confocal resonator, with
mirrors of extremely high reflectivity yielding aQ of about
83105, to operate the first one-atom laser.

It has been proposed that the concept of energy band gaps
could be extended to photons@8,9#. Electronic energy band
gaps arise for electrons in solids where the atoms are ar-
ranged periodically in space@10#. The similarity @9,11–13#
between Schro¨dinger’s equation and Helmholtz’s equation
suggests that a periodic dielectric would give rise to gaps in
the electromagnetic mode density, i.e., to the absence of
modes for certain frequency intervals. Now, if a defect is
introduced in the periodic dielectric, a single mode can be
created within the gap, just as a defect in a crystal can gen-
erate a discrete energy state within an energy band gap@10#.
This would then constitute a single-mode high-Q cavity that
could be engineered to operate in the optical regime. In order
to have a true photonic band gap, the dielectric must be
periodic in all three dimensions@13,12#. Nonetheless, peri-
odicity in one dimension only already gives rise to some
interesting effects. A mirror can be built by stacking alter-

nating layers of two different kinds of material, one with
very high dielectric constant and another with very low di-
electric constant@14,15#. The overall reflectivity of the stack
can be made very high due to interferences between the par-
tial reflections on each layer@16#. For this reason such a
mirror is called a distributed Bragg reflector, or DBR for
short.

DBR mirrors found an important application in the devel-
opment of vertical cavity semiconductor lasers@17#, where
the vertical configuration reduces the length of gain media
crossed by light on each round-trip in the cavity from a few
hundred micrometers to only about 1mm @18#. In order to
make such a device lase, the number of round-trips has to be
increased. A conventional semiconductor laser relies on the
30% reflectivity given by the interface of air with the cleaved
edges of the semiconductor block to provide the few round-
trips it needs to lase@19#. Recent developments in molecular-
beam epitaxy and ion implantation have now enabled the
etching of distributed Bragg reflectors in a scale of microme-
ters @17#. Such DBR mirrors have been used to build planar
Fabry-Pe´rot microcavities, which allowed the operation of
vertical cavity semiconductor microlasers with threshold cur-
rents much lower than in conventional semiconductor lasers
@14,15,20#. Because DBR microcavities have dimensions of
the order of the lasing wavelength, they are expected to show
some cavity QED effects such as modified spontaneous-
emission rates that would give microlasers unconventional
properties, e.g., thresholdless lasing@21,22# and faster re-
sponse to modulation than conventional semiconductor la-
sers @23#. Distributed Bragg reflectors are far from being
perfect mirrors. Their reflectivity decreases appreciably for
oblique incidences@24#. However, they do not, presumably,
represent the ultimate limit of technology. We have retained
in our model, described in Sec. II, one key feature of semi-
conductor microlasers, their planar Fabry-Pe´rot configura-
tion.

The question we address here is the following: what kind
of cavity QED effects, arising from the planar geometry
alone, can be expected in a planar Fabry-Pe´rot microcavity
as we vary the finesse? The planar Fabry-Pe´rot microcavity
we study in this paper is an open cavity where the atom-field
system is always in the weak-coupling regime. Instead of
calculating the modes of the cavity as an isolated system and
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then introducing the interaction with the outside by adding to
the master equation a Liouvillian term describing cavity
losses@25#, we calculate in Sec. III the modes of the whole
system: cavity and outside world. In the weak-coupling re-
gime, a cavity cannot change the irreversible nature of spon-
taneous emission in free space, but it can modify the
spontaneous-emission exponential decay rate@26#. In Sec. IV
we study these modifications and examine their dependence
on the finesse of the cavity. In Sec. V we examine the effect
of the cavity on vacuum fluctuations. We will see that such a
planar cavity can not only change the global spontaneous-
emission rate but also make emission more directional. Then,
in Sec. VI we investigate the consequences of this increased
directionality on the radiation that escapes from the cavity.
We calculate the field outside the cavity due to the
spontaneous-emission of a single atom inside and we find
that it is the field of a nondiffracting ‘‘Bessel beam’’@27#.
Finally, we summarize our results in Sec. VII. Our prelimi-
nary results were summarized earlier@28#.

II. THE CAVITY MODEL

We construct the simplest possible model of a planar
Fabry-Pe´rot retaining the following features: the transpar-
ency of even the best mirrors that lets some of the radiation
escape to the outside and the open character of such a cavity
whose modes can never become completely discrete. A pla-
nar Fabry-Pe´rot has no lateral mirrors. As a consequence,
even in the case where the plates are perfect reflectors, only
the component of the wave vector normal to the plates can
assume discrete values; all other components remaining con-
tinuous parameters. The second feature requires the adoption
of a fully three-dimensional model. The first feature implies
that the cavity is not an isolated system. In this paper we
study not only the radiation in the cavity but also that which
is transmitted outside. In order to be able to do so, we in-
clude the mirror transmissivity in a direct and explicit way in
our model and abandon the usual separation between cavity
modes and external modes. Such an approach has been
adopted by a number of authors@29–38#. An added bonus of
this approach is that it is not limited to low transmissivity
@39,40#.

Having stated what we want to include in the model, we
can now exclude everything else that might complicate our
analysis. We will assume that the mirrors are infinitesimally
thin having no internal structure and no absorption. The in-
clusion in the model of the material medium of the mirror
and absorption would make the quantization of the electro-
magnetic field much harder@41–45#. In fact, we will think of
these mirrors as mere boundary conditions. We will also as-
sume that the transverse dimensions are much larger than the
plate separation so that we can approximate finite mirrors by
mirrors extending all the way to infinity. Finally, there are
two further simplifications: we will assume that radiation can
only escape through one of the mirrors, the other one being a
perfect reflector, and that there is no material medium either
in the cavity or outside. Our idealized Fabry-Pe´rot is shown
in Fig. 1. The mirrors in our model are mathematical planes,
which have no thickness and extend all the way to infinity.
The perfect mirror can be simulated by a plane of infinite
conductivity. The semitransparent mirror, however, poses a

problem. In electromagnetic theory there are two kinds of
materials that can be semitransparent: partial conductors and
dielectrics. We do not wish to consider the former because
they exhibit absorption. The latter will not absorb if the fre-
quency dependence of the dielectric constant can be ne-
glected, i.e., if they can be treated as nondispersive dielec-
trics @46#. Any dielectric layer, however, will become
completely transparent if it is made infinitesimally thin~see
Sec. II B!. In order to avoid this, the dielectric constant has
to increase accordingly as the thickness decreases. In the
following subsections we show how we can simulate our
semitransparent plane by such an idealized layer of dielectric
material. We begin in Sec. II A with a review of plane-wave
reflection at dielectric interfaces. Then, in Sec. II B we cal-
culate the reflection and transmission coefficients for a plane
wave incident on a dielectric slab. Finally, in Sec. II C we
use this result to obtain the reflectivity, transmissivity, and
dielectric constant of our semitransparent plane.

A. Dielectric interfaces

Let us consider a plane wave incident, from the vacuum,
onto a dielectric medium. Unless the impedances of both
media exactly match@46#, there must be a reflected wave in
addition to the transmitted one. The appearance of reflected
and transmitted waves is an effect of the interferences be-
tween the incident wave and those emitted by each excited
dipole in the dielectric medium. We will assume that they are
all plane waves. The dielectric is homogeneous. This is sum-
marized in Fig. 2.

The continuity of the component of the electric displace-
ment perpendicular to the interface, the component of the
electric field parallel to the interface, and the magnetic field
~we assume that there is no magnetic medium! yield

EI j e
ikI•r1ERje

ikR•r5ETje
ikT•r, ~2.1!

EIze
ikI•r1ERze

ikR•r5
«d
«0
ETze

ikT•r, ~2.2!

kI`EIe
ikI•r1kR`ERe

ikR•r5kT`ETe
ikT•r, ~2.3!

FIG. 1. Scheme of our microcavity where we have drawn the
two infinite parallel planes corresponding to perfect and semitrans-
parent mirrors separated by a distancel . This microcavity is an
idealization of a real one where we neglect, among other things, the
internal structure of the mirrors, absorption of radiation by the mir-
rors, and edge effects due to the finite extent of the mirrors.
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where j5x,y refer to components on the interface plane,
«d is the dielectric constant of the dielectric medium,«0 that
of the vacuum,I refers to the incident wave,R to the re-
flected wave, andT to the transmitted wave. The variabler
gives the position on the interface plane andk I ,kR ,kT are
the projections of the corresponding wave vectors on the
interface plane.

For these equations to hold at every point on the interface
plane, we must have

kI5kR5kT[k. ~2.4!

From Eq. ~2.4! and the wave equations for incident, re-
flected, and transmitted waves, we can deduce Snell’s law
@46#. The wave equations satisfied by these waves yield the
dispersive relations between the wave number and the fre-
quency for each medium

S v

c D 25kI
25kR

2 ~2.5!

and

v2«d
c2«0

5kT
2 . ~2.6!

As the frequency is the same in both media, these relations
imply that n0kT5ndkI , wheren05Am0«0 andnd5Am0«d
are the refractive indices of the vacuum and the dielectric,
respectively. Using these results in~2.4!, we obtain

sinu I
sinuT

5nd /n0 , ~2.7!

sinuR5sinu I , ~2.8!

whereu I , uR , anduT are the angles of incidence, reflection,
and refraction measured from the normal to the interface.

Equation~2.4! also implies that all three waves lie on the
same plane. If we then use Eq.~2.5!, we can write

kI5k1 ẑkIz , ~2.9!

kR5k2 ẑkIz , ~2.10!

kT5k1 ẑkTz . ~2.11!

We now determine from the boundary conditions the am-
plitudes of the reflected and transmitted waves produced by
the incident wave. Before doing so, we notice that the
boundary condition for the magnetic field~2.3! will in gen-
eral couple different components ofEI andET . It does not
couple, however, the components perpendicular to the plane
of incidence with those lying on the plane of incidence. This
is a consequence of the symmetry of the problem. For each
wave, the electric field has to be on the plane perpendicular
to its wave vector. The intersection of such three planes as-
sociated with each wave is a line perpendicular to the plane
of incidence. We notice then that whenever the electric field
of a wave is perpendicular to the plane of incidence, its mag-
netic field will lie on the plane of incidence and vice versa.
So if we examine the boundary conditions again, we see that
there are two sets of pairs of independent equations, one set
involving only components perpendicular to the plane of in-
cidence and another involving only components on the plane
of incidence. Using the subscript' to designate the compo-
nents perpendicular to the plane of incidence andi to desig-
nate those on the plane of incidence, we can write these
equations as

EI'1ER'5ET' ,

kIEI'cosu I2kRER'cosuR5kTET'cosuT ~2.12!

and

EI isinu I1ERisinuR5~«d /«0!ETisinuT ,

EI icosu I2ERicosuR5ETicosuT . ~2.13!

If we now substitute the dispersion relations~2.5! and~2.6!,
Snell’s law~2.7!, and Eq.~2.8! in Eqs.~2.12! and~2.13!, we
find the following expressions for the normal and parallel
components of the reflected and transmitted waves:

ER'5
cosu2A~«d /«0!2sin2u

cosu1A~«d /«0!2sin2u
EI' , ~2.14!

ET'5
2cosu

cosu1A~«d /«0!2sin2u
EI i , ~2.15!

ERi5
~«d /«0!cosu2A~«d /«0!2sin2u

~«d /«0!cosu1A~«d /«0!2sin2u
EI i , ~2.16!

ETi5
2A«d /«0cosu

~«d /«0!cosu1A~«d /«0!2sin2u
EI i , ~2.17!

where we have calledu I simply u. These are Fresnel formu-
las for reflection and refraction of plane waves on dielectric

FIG. 2. Schematic representation of the reflection of a plane
wave from the surface of a dielectric medium. A plane waveEI

with wave vectork propagating in the vacuum is incident at an
angleu I on the surface of a dielectric medium of dielectric constant
«d giving rise to a reflected waveER with wave vectork at an angle
uR and a transmitted waveET with wave vectork at an angleuT .
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interfaces@46#, used in the next subsection to obtain expres-
sions for the transmissivity and reflectivity of a slab of di-
electric material.

B. Thick dielectric film

Now we consider a plane wave incident on a slab of di-
electric of thicknessD. The incident wave will suffer a series
of reflections on each interface, being partially transmitted in
each reflection as shown in Fig. 3. According to the Fresnel
formulas~2.14!–~2.17!, on the first interface, the amplitudes
of the reflected and transmitted waves are given by

FER'

ERi
G5F r 1'~u! 0

0 r 1i~u!
GFEI'

EI i
G ~2.18!

and

FET'

ETi
G5F t1'~u! 0

0 t1i~u!
GFEI'

EI i
G , ~2.19!

where

r 1'~u!5
cosu2A~«d /«0!2sin2u

cosu1A~«d /«0!2sin2u
, ~2.20!

t1'~u!5
2cosu

cosu1A~«d /«0!2sin2u
, ~2.21!

r 1i~u!5
~«d /«0!cosu2A~«d /«0!2sin2u

~«d /«0!cosu1A~«d /«0!2sin2u
, ~2.22!

t1i~u!5
2A«d /«0cosu

~«d /«0!cosu1A~«d /«0!2sin2u
. ~2.23!

Similarly, on the second interface

FER'

ERi
G5F r 2'~u8! 0

0 r 2i~u8!
GFEI'

EI i
G ~2.24!

and

FET'

ETi
G5F t2'~u8! 0

0 t2i~u8!
GFEI'

EI i
G , ~2.25!

where

r 2'~u8!5
cosu82A~«0 /«d!2sin2u8

cosu81A~«0 /«d!2sin2u8
, ~2.26!

t2'~u8!5
2cosu8

cosu81A~«0 /«d!2sin2u8
, ~2.27!

r 2i~u8!5
~«0 /«d!cosu82A~«0 /«d!2sin2u8

~«0 /«d!cosu81A~«0 /«d!2sin2u8
, ~2.28!

t2i~u8!5
2A«0 /«dcosu8

~«0 /«d!cosu81A~«0 /«d!2sin2u8
. ~2.29!

The total transmissivityT and reflectivityR of the slab
can be obtained by summing the contributions from all the
multiple reflections shown in Fig. 3,

ET5TEI5ET11ET21•••

5eidt2~u8!t1~u!EI

1ei3dt2~u8!r2~u8!r2~u8!t1~u!EI1•••

5eidt2~u8!H (
n50

`

@r2~u8!eid#2nJ t1~u!EI

~2.30!

and

ER5REI5ER11ER21•••

5r1~u!EI1ei2dt2~u8!r2~u8!t1~u!EI1•••

5S r1~u!1eidt2~u8!

3H (
n50

`

@r2~u8!eid#2n11J t1~u!DEI , ~2.31!

where t1 is the 232 matrix on the right-hand side of Eq.
~2.19!, t2 is that on the right-hand side of~2.25!, r1,r2 are
those in ~2.18! and ~2.24!, and the phase differenced is
given by

d5
v

c
A«d

«0
D cosu8. ~2.32!

Performing the sums in~2.30! and ~2.31! we find

T5FT' 0

0 Ti
G ~2.33!

and

T5FR' 0

0 Ri
G , ~2.34!

FIG. 3. Reflected and transmitted waves can be thought as re-
sulting from the sum of all multiple reflections in the slab. The
notation used in the calculations is explained in this figure.
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where

T'5
t1'~u!t2'~u8!exp~ id!

12@r 2'~u8!exp~ id!#2
, ~2.35!

Ti5
t1i~u!t2i~u8!exp~ id!

12@r 2i~u8!exp~ id!#2
, ~2.36!

R'5
r 1'~u!1r 2'~u8!exp~ i2d!

12@r 2'~u8!exp~ id!#2
, ~2.37!

Ri5
r 1i~u!1r 2i~u8!exp~ i2d!

12@r 2i~u8!exp~ id!#2
. ~2.38!

If we now use Snell’s law~2.7! to eliminate the angle of
refractionu8, we find that Eqs.~2.26!–~2.29! can be written
as

t2'~u8@u#!5
2A~«d /«0!2sin2u

cosu1A~«d /«0!2sin2u
, ~2.39!

r 2'~u8@u#!5
A~«d /«0!2sin2u2cosu

cosu1A~«d /«0!2sin2u
, ~2.40!

r 2i~u8@u#!5
A~«d /«0!2sin2u2~«d /«0!cosu

~«d /«0!cosu1A~«d /«0!2sin2u
, ~2.41!

t2i~u8@u#!5
2A«d /«0A~«d /«0!2sin2u

~«d /«0!cosu1A~«d /«0!2sin2u
. ~2.42!

Comparing these equations with Eqs.~2.20!–~2.23!, we find
the following relations between the reflectivities and trans-
missivities on the second interface and those on the first in-
terface

r 2'~u8@u#!52r 1'~u!, ~2.43!

r 2i~u8@u#!52r 1i~u!, ~2.44!

t2'~u8@u#!5t1'~u!22r 1'~u!, ~2.45!

t2i~u8@u#!5
«d
«0
t1i~u!22A«d

«0
r 1i~u!. ~2.46!

We also notice that

t1'~u!511r 1'~u!, ~2.47!

t1i~u!5@11r 1i~u!#A«0
«d
. ~2.48!

Substituting Eqs.~2.43!–~2.48! in ~2.35! to ~2.38!, we obtain

T'5
@12r 1'

2 ~u!#exp~ id!

12@r 1'~u!exp~ id!#2
, ~2.49!

Ti5
@12r 1i

2 ~u!#exp~ id!

12@r 1i~u!exp~ id!#2
, ~2.50!

R'5
@12exp~ i2d!#r 1'~u!

12@r 1'~u!exp~ id!#2
, ~2.51!

Ri5
@12exp~ i2d!#r 1i~u!

12@r 1i~u!exp~ id!#2
, ~2.52!

where

d5
v

c
DA«d

«0
2sin2u. ~2.53!

From Eqs.~2.49!–~2.53!, we can see that an infinitesimally
thin dielectric film,D→0, of finite dielectric constant«d will
be completely transparent because

lim
D→0

T'51, ~2.54!

lim
D→0

Ti51, ~2.55!

lim
D→0

R'50, ~2.56!

lim
D→0

Ri50. ~2.57!

C. Semitransparent plane

In this subsection we will show that we can keep the
dielectric film semitransparent as it becomes infinitesimally
thin, if we let the dielectric constant«d increase proportion-
ally so that«dD remain constant. When«d becomes much
larger than«0 , the reflectivities at the first interface approach

r 1'~u!→2A«0
«d
cosu21, ~2.58!

r 1i~u!→122A«0
«d
secu ~2.59!

and the phase differenced approaches

d→
v

c
A«d

«0
D. ~2.60!

Now we let«dD5«0h, whereh is a constant, and we sub-
stitute Eqs.~2.58!–~2.60! in Eqs.~2.49!–~2.52! and take the
limit D→0, «d→`. We obtain

lim
D→0
«d→`

«dD5h«0

T'5
2 cosu

2 cosu2 i ~v/c!h
[t'~u!, ~2.61!

lim
D→0
«d→`

«dD5h«0

Ti5
2

22 i ~v/c!h cosu
[t i~u!, ~2.62!
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lim
D→0
«d→`

«dD5h«0

R'5
i ~v/c!h

2 cosu2 i ~v/c!h
[r'~u!, ~2.63!

lim
D→0
«d→`

«dD5h«0

Ri5
2 i ~v/c!h cosu

22 i ~v/c!h cosu
[r i~u!. ~2.64!

So unlike the example given at the end of Sec. II B, this is
a true semitransparent plane. The parameterh controls the
transparency of the plane. From Eqs.~2.61!–~2.64!, when
h vanishes the plane becomes completely transparent and
when h→` the plane becomes a perfect reflector. A one-
dimensional version of such a semitransparent plane was em-
ployed by a number of authors@29–31,33,36,32#. However,
to our knowledge, only Ley and Loudon@36# have published
expressions for the reflectivity and transmissivity of their
one-dimensional version of our infinitesimally thin semi-
transparent mirror. Our expressions agree with theirs when
we takeu50, which corresponds to normal incidence.

The reflectivities and transmissivities given in Eqs.
~2.61!–~2.64! are all that we need to introduce the semitrans-
parent plane in our cavity model. Nonetheless, let us derive
an expression for the spatial dependence of the dielectric
constant, because such an expression has been used as a
starting point in the literature more often than Eqs.~2.61!–
~2.64!. In the case of the infinite slab we have studied in Sec.
II B, the dielectric constant of the whole of space~we are
assuming that there is nothing else in space apart from the
infinite slab! is given by

«~z!5@Q~z2 l !2Q~z2 l2D!#«d1«0 , ~2.65!

whereQ(z) is the Heaviside step function, i.e.,Q(z)50 for
z,0 andQ(z)51 for z.0. We have now placed the coor-
dinate axes so that thez axis intersects the slab fromz5 l to
z5 l1D. When we take the limit that leads to the semitrans-
parent plane, we obtain

lim
D→0
«d→`

«dD5h«0

«~z!5F lim
D→0

Q~z2 l !2Q~z2 l2D!

D Gh«01«0

5H Fh
dQ~z8!

dz8 G
z85z2 l

11J «0 . ~2.66!

As the derivative of the step function is thed function, we
can rewrite Eq.~2.66! as

«~z!5@hd~z2 l !11#«0 . ~2.67!

III. MODE STRUCTURE

In much of quantum optics it is assumed that the cavity
modes remain those of a perfect isolated cavity, the interac-
tion with the outside being introduced in the master equation
by adding a Liouvillian loss term@25#. This approach is not
advantageous when the finesse is low@39,40#. In this paper
we will avoid this approach and calculate the true modes of

the whole system: cavity plus outside. What is often treated
as cavity modes are really the so-called Fox-Li quasi modes
@47#. These quasimodes result from interferences due to suc-
cessive reflections on the cavity walls that modulate the oth-
erwise continuum set of propagating modes in free space
~Fig. 4!. When the finesse is high, the Fox-Li quasimodes
coincide with those of a perfect lossless isolated cavity ex-
cept that they have a small width, which is a function of the
finite finesse@39#. For the true modes, we have also made a
number of other checks of the modes we have determined,
including an alternative determination of these modes di-
rectly from Maxwell’s equations, verifying the field commu-
tation relations, and recovering one-dimensional results from
our three-dimensional expressions. For reasons of brevity,
we include only the limit of perfect reflectivity as this has the
extra benefit of helping us to understand the more interesting
case of high but finite finesse.

A. Multiple-reflections approach

In the absence of a cavity, the free-space field can be
written in the form of a plane-wave expansion. If we deter-
mine how the microcavity modifies each plane-wave compo-
nent, we can then sum the modified components and obtain
an expression for the total quantized field in the whole sys-
tem. As in Sec. II, we decompose the electric field of each
plane wave into two parts, a component perpendicular to the
plane of incidencea5' and another component lying on
the plane of incidencea5i ,

EI ,a5 v̂I ,aEI ,a
0 eikI ,a•r, ~3.1!

where v̂I ,a gives the direction of this electric-field compo-
nent andEI ,a

0 its amplitude. Successive reflections on the
mirrors of the cavity modify these plane-wave components.
We obtain the field inside the cavity due to the plane-wave
componentEI ,a simply by adding the multiple reflections
depicted in Fig. 5@16#. In order to do so, we use the reflec-
tivities and transmissivities of the semitransparent plane we
have determined in Sec. II C. As to the perfect mirror, we
assume it is a perfectly conducting plane. Because perfect
conductors make the component of the electric field on their
surfaces vanish, a plane wave whose electric field is perpen-
dicular to the plane of incidence, just after being reflected off
the perfect mirror, must have its electric field multiplied by

m'521. ~3.2!

FIG. 4. Schematic representation of Fox-Li quasimodes appear-
ing inside the cavity as modulations on the continuum of free-space
modes caused by the interferences produced by multiple reflections
on the cavity mirrors.
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On the other hand, when the electric field lies on the plane of
incidence, it must be multiplied by

mi51 ~3.3!

after being reflected. Using this notation, we can write

Ecav,k,a5EC1,a1EC2,a1•••

5EI ,a
0 ta~u!S v̂I ,aH (

n50

`

@e2idmar a~u!#nJ eikI ,a•r
1 v̂R,aHma (

n50

`

@e2idmar a~u!#nJ eikR,a•r D
5EI ,a

0 ta~u!F v̂I ,ae
ikI ,a•r

12mar a~u!e2id
1

mav̂R,ae
ikR,a•r

12mar a~u!e2idG ,
~3.4!

where v̂R,a gives the direction of the electric field of the
reflected wave and

d5
v

c
l cosu ~3.5!

is the extra phase gained on each trip inside the cavity.
The field outside the cavity due to the plane-wave com-

ponentEI ,a is obtained by summing the plane waves on the
external side of the semitransparent plane,

Eout,k,a5EI ,a1ER1,a1ER2,a1••• ~3.6!

5EI ,a
0 H v̂I ,aeikI ,a•r1 v̂R,aF r a~u!

1
ta~u!2mae

2id

12r a~u!mae
2idGe2 i2deikR,a•rJ

5EI ,a
0 H v̂I ,aeikI ,a•r

1 v̂R,a
r a~u!1@ ta~u!22r a~u!2#mae

i2d

12r a~u!mae
i2d

3e2 i2deikR,a•rJ .

These modified plane-wave components are the modes of the
system. When we substitute them for the modes of free space
in the usual procedure of field quantization@35,33,36,48# we
obtain the following expression for the positive-frequency
component of the electric field inside and outside the micro-
cavity ~our result agrees with that of De Martiniet al. @49#,
when their general result is particularized for this case!:

Ea
1~r !5E d3k$E'

a~r ,k!ê'~ k̂!a'~k!1@E i ,1
a ~r ,k!êi ,1~ k̂!

1E i ,2
a ~r ,k!êi ,2~ k̂!#ai~k!%, ~3.7!

where the integration is restricted to the half space, i.e., posi-
tive kz , because of the presence of the perfect mirror. We
use the labela5cav for the field inside the cavity anda 5
out for the field outside the cavity. The mode functions are
given by @28#

E'
cav~r ,k!5 iE vace

ik•rL'sin~kzz!, ~3.8!

E i ,1
cav~r ,k!5 iE vace

ik•rL icos~u!sin~kzz!, ~3.9!

E i ,2
cav~r ,k!52E vace

ik•rL isin~u!cos~kzz!, ~3.10!

E'
out~r ,k!5 iE vace

ik•rL'@sin~kzz!2L sec~u!sin~d!

3sin~kzz2d!#, ~3.11!

E i ,1
out~r ,k!5 iE vace

ik•rL i@sin~kzz!2L cos~u!sin~d!

3sin~kzz2d!#cos~u!, ~3.12!

E i ,2
out~r ,k!52E vace

ik•rL i@cos~kzz!2L cos~u!sin~d!

3cos~kzz2d!#sin~u!, ~3.13!

where k is the projection ofk on a plane parallel to the
mirrors, k̂ is the unit vector in the direction ofk , u is the
angle betweenk and thez axis,L5hk is a measure of how
reflective the top mirror is for a given frequencyv5ck, and

Evac5A 2\v

~2p!3«0
~3.14!

is the cavity modified vacuum field strength. An extra factor
of 2 as compared to the free-space vacuum field strength
appears because of the perfect mirror atz50 that restricts
the fields to the half space. The functionsL' andL i de-
scribe the cavity resonances and are given by

L'5
cos~u!

cos~u!2Leidsin~d!
, ~3.15!

L i5
1

12Leidcos~u!sin~d!
. ~3.16!

The polarization is given by the unit vectorsê'( k̂)5 ẑ`k̂,
êi ,1( k̂)5k̂, and êi ,2( k̂)5 ẑ. The operatorsak,a ,ak,a

† are the
field annihilation and creation operators, respectively, for the
modek,a, with

@ak,a ,ak8,a8#50 ~3.17!

FIG. 5. Diagram of multiple reflections in the planar Fabry-
Pérot cavity with the variables used in our calculations indicated in
the figure.
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and

@ak,a ,ak8,a8
†

#5d~k2k8!da,a8. ~3.18!

B. Limit of perfect reflection

We have seen in Sec. II C that whenh→`, the semi-
transparent mirror becomes a perfect mirror with

lim
h→`

r'521, ~3.19!

lim
h→`

t'50, ~3.20!

lim
h→`

r i51, ~3.21!

lim
h→`

t i50. ~3.22!

In this subsection we will examine what happens to the mode
structure inside the cavity in this limit.

Let us define the operatorsA'(k) andAi(k) such that

a'~k!5L'
* ~k!A'~k!, ~3.23!

ai~k!5L i* ~k!Ai~k!. ~3.24!

Then the positive-frequency component of the electric-field
operator inside the cavity can be written as

Ecav
1 ~r !5E d3k$U'

cav~r ,k!ê'~k!A'~k!1@Ui ,1
cav~r ,k!êi ,1~k!

1Ui ,2
cav~r ,k!êi ,2~k!#Ai~k!%, ~3.25!

where

U'
cav~r ,k!5E'

cav~r ,k!L'
* ~k!, ~3.26!

Ui ,1
cav~r ,k!5E i ,1

cav~r ,k!L i* ~k!, ~3.27!

Ui ,2
cav~r ,k!5E i ,2

cav~r ,k!L i* ~k!. ~3.28!

We notice thatU'
cav(r ,k) is proportional touL'u2, while

bothUi ,1
cav(r ,k) andUi ,2

cav(r ,k) are proportional touL iu2. As
we have mentioned earlier, the functionsL'(k… andL i(k…
describe the cavity resonances. Let us investigate what hap-
pens touL'u2 and uL iu2 when the semitransparent mirror
becomes a perfect reflector.

From Eq.~3.15!, we obtain

uL'~k!u25
~1/L2!cos2u

@~1/L!cosu2~1/2!sin2kzl #
21sin4kzl

. ~3.29!

When h→`, cosu/L is a very small quantity, which we
denote byG. So Eq.~3.29! becomes

uL'~k!u25
G2

@G2~1/2!sin2kzl #
21sin4kzl

. ~3.30!

Resonances will occur at values ofkz such that

sin2kzl52G. ~3.31!

The solution for smallG is

kz5kz,n5
p

l
n, ~3.32!

where n50,61,62, . . . . If we expand the trigonometric
functions in Eq.~3.30! aroundkz,n , we obtain

1

2
sin2kzl'G',n1~kz2kz,n!l , ~3.33!

sin4kzl'G',n
4 , ~3.34!

where

G',n5
kz,n
hk2

. ~3.35!

Substituting Eqs.~3.32!–~3.34! into Eq. ~3.30!, we obtain

uL'~k!u25 (
n52`

`
G',n
2

~kz2kz,n!
2l 21G',n

4 . ~3.36!

Whenh→`, the Lorentzian functions in Eq.~3.36! become
d functions so that

lim
h→`

uL'~k!u25
p

l (
n52`

`

d~kz2kz,n!. ~3.37!

Repeating the same analysis foruL iu2, we obtain

uL i~k!u25 (
n52`

`
G i ,n
2

~kz2kz,n!
2l 21G i ,n

4 , ~3.38!

where

G i ,n5
1

hkz,n
. ~3.39!

Again, whenh→`, the Lorentzian functions in Eq.~3.38!
becomed functions, thus

lim
h→`

uL i~k!u25
p

l (
n52`

`

d~kz2kz,n!. ~3.40!

From Eqs.~3.8!–~3.10!, ~3.26!–~3.28!, ~3.37!, and~3.40! we
see that, in the limit whereh→`, Eq. ~3.25! yields @the
negative values ofn in the infinite sums in Eqs.~3.37! and
~3.40! do not contribute because the integral in Eq.~3.7! is
restricted tokz>0#

lim
h→`

Ecav
1 ~r !5 i

p

l (n50

` E d2kEvace
ik•rF ẑ`k̂A'~kz,nẑ1k!

3sinkz,nz1S k̂
kz,n
k
sinkz,nz

1 i ẑ
k

k
coskz,nzDAi~kz,nẑ1k!G . ~3.41!
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We must now determine the commutation relations satis-
fied by the operatorsA'(kz,nẑ1k) andAi(kz,nẑ1k). If we
substitute Eq.~3.23! into the commutation relation~3.18!, we
obtain

@A'~k!,A'
† ~k8!#L'

* ~k!L'~k8!5d~k82k!. ~3.42!

Multiplying both sides byL'(k)L'
* (k8) and taking the

limit h→`, we find

p

l (n,n8
d~kz2kz,n!d~kz82kz,n8!@A'~k!,A'

† ~k8!#

5(
m

d~kz2kz,m!d~k82k!. ~3.43!

If we now integrate Eq.~3.43! over kz from kz,n2e to
kz,n1e and overkz8 from kz,n82e to kz,n81e, with e being
small enough to include onlykz,n andkz,n8, we obtain

@A'~kz,nẑ1k!,A'
† ~kz,n8ẑ1k!#

5
l

p
d~k82k!E

kz,n82e

kz,n81e

dkz8d~kz82kz,n!

5
l

p
d~k82k!dn8,n . ~3.44!

So, apart from a normalization factor ofAp/ l , the operator
A'(kz,nẑ1k) behaves as a continuous annihilation operator
in k and as a discrete annihilation operator inkz . For this
reason, we make a slight change of notation, defining

a',n~k![Ap

l
A'~kz,nẑ1k!, ~3.45!

where

@a',n~k!,a',n8
†

~k8!#5dn8,nd~k82k!. ~3.46!

Moreover, from Eq.~3.17!, we obtain

@a',n~k!,a',n8~k8!#50. ~3.47!

Similarly, for Ai(kz,nẑ1k) we find

@ai ,n~k!,ai ,n8
†

~k8!#5dn8,nd~k82k!, ~3.48!

@ai ,n~k!,ai ,n8~k8!#50, ~3.49!

whereai ,n(k) is defined by

ai ,n~k![Ap

l
Ai~kz,nẑ1k!. ~3.50!

ExpressingA'(kz,nẑ1k) andAi(kz,nẑ1k) in terms of the
annihilation operatorsa',n(k) andai ,n(k), we obtain@50#

lim
h→`

Ecav
1 ~r !5 iAp

l (n50

` E d2kEvace
ik•rF ẑ`k̂â'~k!sinkz,nz

1S k̂
kz,n
k
sinkz,nz1 i ẑ

k

k
coskz,nzDai~k!G .

~3.51!

Before we return to the finite reflectivity case, it is inter-
esting to study the changes in spontaneous emission induced
by such a perfect parallel plates cavity. We notice that be-
cause there is still a continuum of modes available, an atom
will always be in the weak-coupling regime in such a cavity.
The mode structure, however, is radically different from that
of the free space; the cavity only allows modes with certain
discrete values of the component of the wave vector normal
to the plates. So spontaneous emission will remain an irre-
versible exponential decay process, but the decay rate can be
dramatically different from that of free space. We will now
calculate this decay rate for a single atom inside the cavity,
in the two-level atom and dipole approximations@51#.

As we are in the weak-coupling regime, we can use Fer-
mi’s golden rule to compute the spontaneous-emission decay
rateg in the cavity and find

g5
2p

\2 E dk3 (
a5',i

z^↓,k,aud•Ecav~ra!u↑,0& z2

3d~v2va!, ~3.52!

wherera is the position of the atom in the cavity,va is the
atomic transition frequency,d is the atomic dipole operator,
u↓,k,a& is the state in which the atom is not excited and the
field modek of polarizationa has one photon, all the other
modes having no photons, and the stateu↑,0& is the state in
which the atom is excited and the field has no photons. Let
us consider the case where the atomic dipole is parallel to the
plates. After substituting Eq.~3.51! in Eq. ~3.52!, we obtain

gr5
vad

2

2p«0\ l
(
n50

` E
0

2p

dfE
0

`

kdkFcpn

val
cosf2sinf G2

3sin2S np

l
zaD d~v2va!. ~3.53!

The angular integration yields

gr5
vad

2

2«0\ l
(
n50

` E
0

2p

dfE
0

`

kdkF S cpn

val
D 221G

3sin2S np

l
zaD d~v2va!. ~3.54!

For any differentiable functiony(x) with an inversex(y)
and any functiong(x) we have

E dx g~x!d„y~x!…5E dy g„x~y!…
d~y!

dy/dx
. ~3.55!

Using ~3.55!, we can change the variable of integration in
Eq. ~3.54! to v, recovering the well-known@50# expression
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for the decay rate of an atom between two perfect mirrors
with a dipole moment parallel to the mirrors:

gr5g0 (
n50

@2l /l#
3l

4l H 11S nl

2l D
2J sin2S np

l
zaD , ~3.56!

where @2l /l# is the largest integer number of half wave-
lengths of the atomic transition that can fit in the plate sepa-
ration l andg0 is the free space decay rate given by

g05
va
3d2

3p\«0c
3 . ~3.57!

For a dipole normal to the plates, a similar calculation yields
the well-known@50# result

gz5g0H 3l

4l
1 (

n51

@2l /l#
3l

2l F12S nl

2l D 2Gcos2S np

l
zaD J .

~3.58!

In Fig. 6, we plot the decay rates, given by~3.56! and
~3.58!, for an atom at the center of the cavity as a function of
the plate separationl @50#. We notice that there is no spon-
taneous emission when the dipole is parallel to the plates and
the plate separation is narrower than half the atomic wave-
length. The reason is that at wavelengths larger than 2l , the
only modes available are those wheren50 whose polariza-
tions are normal to the plates and therefore not interacting
with the dipole. Another way of understanding this is to
think of the images of the dipole on the plates@52–56# draw-
ing an analogy with many-atom cooperative decay@57#.
When the dipole is parallel to the plates and the plate sepa-
ration is shorter than half the atomic wavelength, the radia-
tion emitted by each image adds up to cancel completely the
radiation emitted by the real dipole. Then we see that com-
plete inhibition of spontaneous emission can only happen
when the plates are perfect reflectors. Any small transmissiv-
ity would upset this delicate balance between the images and

the dipole, allowing some degree of spontaneous emission in
the cavity. We will return to this point in Sec. IV.

There is no such complete inhibition of spontaneous emis-
sion for a dipole normal to the plates because then the dipole
will interact with then50 modes. This is also the reason
why gz diverges in Fig. 6 when the plate separation de-
creases to zero. Because the energy density in then50
vacuum modes is inversely proportional to the volume be-
tween the plates when the plate separation decreases, the
coupling with the field increases, leading to the divergence.
Before such a divergence occurs, the interaction between the
atom and the atoms on the surface of the plates, which we
have neglected in this simple model, should become impor-
tant. In the next section we see that when the top plate is no
longer a perfect reflector,gr will also display such a diver-
gence.

IV. SPONTANEOUS-EMISSION RATE

In this section we investigate how the spontaneous-
emission rate changes when the finesse of the cavity in-
creases@26#. Let us start by considering the case of very low
finesse where the top mirror is almost completely transpar-
ent. Then we can assume thath is much smaller than the
atomic wavelength so that

La5
va

c
h!1. ~4.1!

We will now calculate the spontaneous-emission rate up to
first order inLa .

For a dipole normal to the plates, Eqs.~3.7! and ~3.52!
yield, up to first order inLa

gz5
va
3d2

p«0\c
3E

0

1

dxS 11Lax sin2
va

c
lx D ~12x2!cos2

va

c
zx.

~4.2!

This integral can be solved analytically for the general case;
however, it is more instructive to consider special cases.

First we notice that whenLa vanishes, Eq.~4.2! reduces
to

gz53g0F132S c

vaz
D 2cos2va

c
z1S c

vaz
D 3cos2va

c
zG . ~4.3!

This is the well-known expression for the spontaneous-
emission decay rate of an atom near a perfect mirror when
the atomic dipole is normal to the mirror@52,58,50#. As we
can see from Eq.~4.3!, we do not need a cavity to change the
spontaneous emission rate. In fact, the first controlled experi-
mental study of modified spontaneous emission@59# con-
cerned the fluorescence of dye molecules near a single mir-
ror.

In order to study the effect of the top mirror we must take
LaÞ0 in Eq. ~4.2!. Let us do so and compute the first-order
cavity effects. Consider a half wavelength cavity. When both
plates are perfect reflectors, the spontaneous-emission rate is
three-halves of that in free space at any point inside the cav-
ity for a dipole normal to the plates. So our first-order cor-
rection will depend on the position and for each position it
will be a correction in the direction that will bring the

FIG. 6. Plot of the decay rate of an atom between two perfect
mirrors as a function of mirror separation. The full line corresponds
to an atom with its electric-dipole moment parallel to the mirrors
and the dotted line to a dipole moment normal to the mirrors. The
decay rates are given in units of the decay rate in free space and the
mirror separation in units of the atomic transition wavelength.
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single mirror decay rate given by~4.3! closer to the constant
rate of three-halves of the rate in free space. In fact, after
some lengthy algebra, we find that when the atom is at the
center of the cavity, Eq.~4.2! yields

gz53g0H 131
1

p2 1
vah

c

85

72p3 J , ~4.4!

so that the semitransparent mirror enhances spontaneous
emission to bring it closer to three-halves ofg0 . On the
other hand, when the atom sits on the perfect mirror, we find

gz53g0H 232
vah

c

3

2p3 J ~4.5!

and the semitransparent mirror inhibits spontaneous emis-
sion, again bringing it closer to three-halves ofg0 . Similar
results can be shown forgr .

Let us now consider the case of a highly reflective top
mirror. Substituting Eqs.~3.36! and ~3.38! in ~3.7! and then
in ~3.52!, we obtain for a dipole parallel to the plates

gr5
3

2
g0E

0

1

d~cosu! (
n50

@2l /l# H G i ,n
2

~kz2kz,n!
2l 21G i ,n

4 cos2u

1
G',n,a
2

~kz2kz,n!
2l 21G',n,a

4 J sin2kzz, ~4.6!

whereG i ,n is given by Eq.~3.39! andG',n,a by

G',n,a5
kz,nc

2

hva
2 . ~4.7!

When the plate separation is only a few atomic wavelengths
and h is much larger than the atomic wavelength, we can
approximate bothG i ,n andG',n,a by

G i ,n'G',n,a'
c

hva
[Ga . ~4.8!

Here we have to be careful because unlessh→`, G i ,0 will
diverge, as can be seen from Eq.~3.39!. As we have men-
tioned before, this means thatL i does not have a resonance
at n50 unlessh→`. It is a consequence of the fact that the
semitransparent mirror will not reflect radiation that is inci-
dent at an angle ofp/2 with the normal except in the perfect
mirror limit. There is no problem, however, in replacing
G i ,0 by Ga becauseuL iu2 appears in Eq.~4.6! multiplied by
cos2u so that, in this case, then50 Lorentzian function will
vanish giving no contribution in Eq.~4.9!. Then Eq.~4.6!
becomes

gr5
3

2
g0E

0

1

dx (
n50

@2l /l# Ga
2

~vax/c2kz,n!
2l 21Ga

4

3~x211!sin2
va

c
zx. ~4.9!

If we now write the sine function as a sum of exponentials
and extend the integration to the entirex axis ~whenGa is
much smaller than one, the part of the integration over the

tails of the Lorentzian functions will give a negligible con-
tribution to the total integral!, we obtain

gr5
3l

8l
g0 (

n50

@2l /l# H S nl

2l D
2

11J H 12e22zGa
2/ lcosS 2pn

z

l D J ,
~4.10!

where again@2l /l# is the maximum integer number of half
atomic wavelengthsl that can fit the plate separationl .

A similar calculation yields the following expression for
the spontaneous-emission rate in the high reflectivity limit
when the atomic dipole is normal to the plates:

gz5
3l

4l
g0H 11 (

n51

@2l /l# F12S nl

2l D 2G
3F11e22zGa

2/ lcosS 2pn
z

l D G J . ~4.11!

Comparing Eqs.~4.10! and ~4.11! with the corresponding
expressions for two perfectly reflecting parallel plates~3.56!
and ~3.58!, we notice the only difference is the decaying
exponentials in Eqs.~4.10! and ~4.11! that stem from the
transparency of the upper mirror. This does not bring any
significant differences from the perfect mirror case for a di-
pole normal to the mirrors. For a dipole parallel to the mir-
rors, however, we notice the dramatic change mentioned in
Sec. III B. This is shown in Fig. 7, where we plot the ratio
gr /g0 given by Eq.~4.10! as a function of the plate separa-
tion in units of atomic wavelengths for an atom at the center
of the cavity. We can see from Fig. 7 that as long as there is
at least a small amount of cavity loss due to mirror transmis-
sivity, spontaneous-emission will not be completely sup-
pressed. In other words, this means that when the upper mir-
ror is not a perfect reflector, there will be modes, other than
the kz50 modes, whose frequencies lie within the atomic
resonance and whose polarization is not orthogonal to the
atomic dipole.

Finally, we discuss the spontaneous-emission rate for a
l/2 cavity when the atomic dipole is parallel to the plates.

FIG. 7. Plot of the spontaneous-emission rate in units of the rate
in free space as a function of plate separation for an atom at the
center of the cavity with its dipole moment parallel to the mirrors.
The dotted line correspond to the case where both mirrors are per-
fect (Ga50) and the full line to the case whereGa50.3.
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This is the case where an atom with a sufficiently narrow~a
linewidth smaller thanp/ l ) atomic line will couple to the
(n51) cavity resonance only. In Fig. 8 we plot the ratio of
the decay rate in the cavity to that in free space as a function
of the position of the atom for four different finesses. We see
that when the reflectivity of the upper mirror is low, sponta-
neous emission is not suppressed on the upper mirror and the
maximum rate is not exactly at the center and is less than
three times the rate in free space. As the reflectivity in-
creases, the maximum rate increases towards three times that
in free space and becomes very small on the upper mirror.

V. VACUUM FLUCTUATIONS

Vacuum fluctuations play an important role in the
spontaneous-emission process@60,61#. In free space, such
fluctuations are isotropic. A cavity, however, modifies the
mode structure of its surrounding space, leading to different
vacuum fluctuations. We show in this section that our planar
microcavity introduces a preferred direction, the direction
normal to the plates, radically changing the vacuum fluctua-
tions associated with emission in this direction~for two per-
fect mirrors, this directionality has already been investigated
within the framework of classical antenna theory and the
image method@56#!. As a result, spontaneous emission will
become anisotropic@23#. This anisotropy can be used to in-
crease the probability of spontaneous emission in a particular
direction. In a laser, if this particular direction is chosen to be
the direction where laser light is generated, most of the pho-
tons produced by spontaneous emission would go into the
lasing modes instead of being wasted to other modes and the
threshold would be reduced@21,22,62,63#.

In general, atoms are more strongly affected by the com-
ponent of the electric field in the direction of its electric
dipole @48#. We consider here the case where the atomic
dipole is parallel to the mirrors and choose thex axis to be in

the direction of the dipole. We examine the vacuum field
fluctuations in thex component of the electric field, whose
variance provides a good measure of these fluctuations. We
notice, however, that for this given polarization (x compo-
nent of the electric field! and frequency~atomic resonance!,
there are, in general, several modes of the field, one for each
wave vectork. We have devised a way of plotting the vari-
ance, at a given position in space, of each mode correspond-
ing to this chosen polarization and frequency: we plot the
surface spanned by a vector whose direction coincides with
that of a wave vectork and whose length gives the variance
of the corresponding mode. The advantage of plotting this
way is that for any given mode whose variance is shown in
the graph, we can immediately see what is the direction of
emission for emission in that mode. The variance of a mode
at a given position is a measure of how likely is an atom
occupying that position to emit in that mode. This kind of
plot will automatically show in which directions an atom
sitting at a given position will be more likely to emit, making
any anisotropy explicitly evident in the graph. As an illustra-
tion, we plot in Fig. 9 the variance of thex component of the
electric field at a given frequencyv in free space, given by

@DEx
free~r ,k!#25

1

4

\v

4p3«0
@12~ k̂• x̂!2#. ~5.1!

We notice that this variance is almost isotropic except that
the constraintE•k50 makes it look rather like a doughnut,
with a hole in the middle because thex component of the
electric field gets smaller and smaller ask approaches the
x axis.

Now let us examine how these fluctuations change when
we are in a cavity. We consider a cavity whose length is half
of the wavelength of the atomic transition and we will com-
pute the variance at the center of the cavity. In a one-
dimensional model with perfect mirrors, this would corre-
spond to the case where the cavity supports a single mode
only, whose maximum is at the center of the cavity.

FIG. 8. Plot of the decay rate, in units of the
free-space decay rate, as a function of the posi-
tion of the atom. In~a! we show the case of a
single perfect mirror. In~b! we show the case of
a half wavelength cavity withLa51. In ~c! we
repeat the plot for the same cavity but with a
much higher finesse (La5103). In ~d! we show
the case of two perfect mirrors for comparison.

3598 53S. M. DUTRA AND P. L. KNIGHT



From Eq.~3.7! we obtain the following expression for the
variance of modek at positionr inside the cavity

@DEx~r ,k,t !#
25

\v

4p3«0
@ uL i~k!u2cos2u cos2f

1uL'~k!u2sin2f#sin2kzz. ~5.2!

The variance in the presence of a single perfect mirror
changes with the nature of the semitransparent mirror above
it forming the top of the cavity. For a perfect mirror alone,
i.e., h50, the fluctuations are constrained to the half space
but are still quite isotropic, as can be seen in Fig. 10. When
the semitransparent upper mirror is present as well, i.e.,h
Þ0, we notice a substantial increase in the fluctuations in the
z direction, perpendicular to the mirrors, as we can see in
Fig. 11. As the reflectivity increases, i.e., whenh increases,
this anisotropy becomes more pronounced. In Fig. 12 we
compare plots for increasing values ofh to show how the
fluctuations tend to dominate around thez direction as the
reflectivity increases. As the reflectivity increases, we ap-
proach the results of Dowlinget al. @56# obtained for two
perfect mirrors.

We have also examined the fluctuations at other positions
inside the cavity as well as for other cavity lengths. How-
ever, the case discussed above seems to be the most interest-
ing because it is the case where an atom with a sufficiently
narrow~a linewidth much smaller thanp/ l ) atomic line will
couple to the (n51) cavity resonance only.

VI. SPONTANEOUS-EMISSION PATTERN

We have been concerned so far only with the radiation
inside the cavity. This cavity, however, can let some of the
radiation escape outside when the upper mirror is not a per-
fect reflector. In this section we shall venture outside the
cavity and study the radiation that leaks out. We will con-
sider the simplest possible case where there is a single atom
in the cavity. We will then calculate the field outside pro-
duced by the spontaneous emission of the atom inside the
cavity. A similar calculation was also performed by De Mar-
tini et al. @49#. Their calculation, however, only yields the
electric field along a line normal to the mirrors passing
through the atom and does not describe the dependence of
the field on thex and y coordinates. We will obtain such
dependence explicitly. This will lead to a curious result that
shows how the anisotropy of spontaneous emission in the
cavity, discussed in the preceding section, manifests itself
outside the cavity.

In the interaction picture, the positive-frequency compo-
nent of the electric field outside the microcavity~3.7! is
given by

Eout
1 ~r !5E d3k e2 ivt$E'

out~r ,k!ê'~k!a'~k!

1@E i ,1
out~r ,k!êi ,1~k!1E i ,2

out~r ,k!êi ,2~k!#ai~k!%.

~6.1!

In order to calculateEout
1 we must find how the time evolu-

tion of annihilation operators in Eq.~6.1! is affected by the
interaction with the atom in the cavity.

FIG. 9. Variance~in units of\ck/4p3«0) of thex component of
the electric field plotted for each mode of frequencyck as the
length of the vector from the origin that points to the surface in the
figure in the directionk̂ of the mode. The toroidal shape appears
because of the polarization constraintE• k̂50.

FIG. 10. Variance of thex component of the electric field~in
units of\v/4p3«0) for an atom in front of a single mirror with the
atomic dipole moment parallel to the mirror. The perfect mirror
divides space into two halves destroying the toroidal shape we have
seen for free space. We notice that the maximum value of the vari-
ance in this case is four times larger than the maximum value in
free space.
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For an atom atra with a dipole parallel to the mirrors
~along thex axis!, we obtain the following equation of mo-
tion for the annihilation operators:

d

dt
aa~k!5 imEa

cav* ~ra ,k!x̂•êa~ k̂!ei ~v2va!ts~ t !, ~6.2!

where m is the transition dipole moment of the atom,
a5',i , ands is the lowering atomic operator. Because this
microcavity does not confine the field in all three spatial
dimensions, but only in one dimension, there are no Rabi
oscillations@64# and the time evolution of the atomic lower-
ing operator is given, to a reasonably good approximation
@49#, by the modified Weisskopf-Wigner exponentially de-
caying solution

s~ t !5s~0!e2~ iva1g/2!t1Ls , ~6.3!

whereLs is the Langevin noise term associated with the
dipole coupling to the vacuum field~needed to preserve the
commutation relations of the operators!. The precise form of
Ls is unimportant because we do not study here the noise
properties of the emitted light. The decay constantg is the
cavity-modified spontaneous-emission decay rate at the po-
sition of the atom given by

g5
m2

2p2\e0
E vd3k@ uL i~k!u2cos2f cos2u

1uL'~k!u2sin2f#d~v2va!sin
2kzza . ~6.4!

We can then integrate Heisenberg’s equations for the field
annihilation operators in the rotating-wave approximation
and obtain the following expression for the field operators:

aa~k,t !5aa~k,0!e2 ivt1 imEa
cav* ~ra ,k!x̂•êa~k!

3
e@ i ~v2va!2~g/2!#t21

i ~v2va!2~g/2!
e2 ivts~0!, ~6.5!

wherea5',i . This is then inserted into the expression for
the electric field outside the cavity~6.1!, yielding

Eout
1 ~r ,t !5Evac,out

1 ~r ,t !1Es,out
1 ~r ,t !, ~6.6!

where the first term on the right-hand side is the cavity-
modified vacuum

Evac,out
1 ~r ,t !5E d3k e2 ivt$E'

out~r ,k!ê'~ k̂!a'~k,0!

1@E i ,1
out~r ,k!êi ,1~ k̂!

1E i ,2
out~r ,k!êi ,2~ k̂!#ai~k,0!% ~6.7!

and the second term is the field emitted by the atom

Es,out
1 ~r ,t !5 ims~0!e2 ivatE d3k

e2gt/22e2 i ~v2va!t

i ~v2va!2g/2

3E~k,r ,ra!, ~6.8!

with E given by

FIG. 11. Variance of thex component of the electric field~in
units of \v/4p3«0) for an atom between two parallel mirrors, the
lower one being a perfect mirror and the upper one semitransparent
with La51. We notice that emission is much more directional here
than it is for free space or for a single mirror.

FIG. 12. Comparison between plots of the variance of thex
component of the electric field~in units of\v/4p3«0) for an atom
with dipole moment parallel to the mirrors for increasing finesse.
The more isotropic variance here is the one for a single mirror
(La50), then there is the one forLa51 and the caseLa55 where
emission is quite biased in thez direction.
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E~k,r ,ra!5E'
out~r ,k!E'

cav* ~ra ,k!x̂•ê'~ k̂!ê'~ k̂!

1@E i ,1
out~r ,k!êi ,1~ k̂!1E i ,2

out~r ,k!êi ,2~ k̂!#

3@E i ,1
cav* ~ra ,k!x̂•êi ,1~ k̂!

1E i ,2
cav* ~ra ,k!x̂•êi ,2~ k̂!#. ~6.9!

As we are interested in the case where spontaneous emis-
sion is enhanced, we will consider the high reflectivity limit
we have discussed in Sec. IV. In Sec. III B we have obtained
approximate expressions foruL'u2 and uL iu2 in the high
reflectivity limit. In this section we will also need approxi-
mate expressions for the products of these functions with the
factors linear inL that appear in the mode functionsEa

out in
Eq. ~6.9!. Proceeding in the same way as we have in Sec.
III B, we obtain, after some algebra, the following approxi-
mate expressions for these products:

uL i~k!u2L cosu sind5 (
n52`

`
~21!nG i ,n

2

~kz2kz,n!
2l 21G i ,n

4

3H 11
l

G i ,n
~kz2kz,n!J ,

~6.10!

uL'~k!u2
L sind

cosu
5 (

n52`

`
~21!nG',n

2

~kz2kz,n!
2l 21G',n

4

3H 11
l

G',n
~kz2kz,n!J . ~6.11!

Let us now assume that then51 cavity resonance is only
slightly ~the detuning is much smaller than the mode separa-
tion p/ l ) detuned from the atomic transition wavelength. We
also assume that the detuning is such that the atom is in the
regime where spontaneous emission is enhanced. In other
words, the atomic resonance is somewhere between the
n51 and then52 resonances, but much closer ton51 than
n52 because the detuning is small. We can then neglect all
the Lorentzians in Eqs.~3.36!, ~3.38!, ~6.10!, and~6.11!, ex-
cept for the one wheren51. If we now make the change of
variable k→k2ka in the original integral over the wave
numberk in Eq. ~6.8! and extend the integration to the whole
real axis as the tails of the Lorentzian functions give a neg-
ligible contribution to the integral, we notice that there are
two kinds of integrals involved in that total integral. They
have the forms

I 15E
2`

`

dk
~k1ka!

3~e2gt/22e2 ivt!eiukGa8
2

@k1 ig/2c#@~k cosu2kc1kacosu!2l 21Ga8
4#
, ~6.12!

I 25E
2`

`

dk
~k1ka!

3~k cosu2kc1kacosu!~e2gt/22e2 ivt!eiuklGa8

@k1 ig/2c#@~k cosu2kc1kacosu!2l 21Ga8
4#

, ~6.13!

whereka is 2p over the wavelength of the atomic transition,
kc5p/ l is the z component of the wave vector at the first
cavity resonance~i.e., kz,1), Ga8 is Ga with k replaced by
k1ka (a5',i) andu is a function ofx, y, z, u, andf. We
will now examine each of these two integrals in turn, starting
with I 1 .

The integrand ofI 1 has three poles given by

kI52 i
g

2c
, ~6.14!

k65kcsecu2ka6 i
Ga
2

l
secu. ~6.15!

We can rewriteI 1 as a linear combination of two integrals

I 15e2gt/2I 112I 12. ~6.16!

Let us considerI 11 first. It is given by

I 115E
2`

`

dk

3
eiuk~Ga8 / l !

2~k1ka!
3sec2u

@k1 ig/2c#@~k2kcsecu1ka!
22~Ga8

2/ l !2sec2u#
.

~6.17!

For u,0, contour integration yields

I 1152p i H Ga
2eug/2c@ka2 ig/2c#3

~@ka2 ig/2c#cosu2kc!
2l 21Ga

4

1
i

2l

ei ~@kc2 iGa
2/ l #secu2ka!u~kc2 iGa

2/ l !3sec4u

~kc2 iGa
2/ l !secu2ka1 ig/2c J ,

~6.18!

and foru.0,

I 115
p

l

ei ~@kc1 iGa
2/ l #secu2ka!u~kc1 iGa

2/ l !3sec4u

~kc1 iGa
2/ l !secu2ka1 ig/2c

, ~6.19!
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where we have assumed thatka andkc are much larger than
1/h and g/2c so that Ga8 can be approximated by
Ga51/hka after the integration.

The second integralI 12 is given by

I 125E
2`

`

dk

3
~k1ka!

3ei ~u2ct!k~Ga8 / l !
2sec2u

@k1 ig/2c#@~k2kcsecu1ka!
22~Ga8

2/ l !2sec2u#
.

~6.20!

Contour integration ofI 12 for u,ct yields

I 1252p i H Ga
2e~u2ct!g/2c@ka2 ig/2c#3

~@ka2 ig/2c#cosu2kc!
2l 21Ga

4

1
i

2l

ei ~@kc2 iGa
2/ l #secu2ka!~u2ct!~kc2 iGa

2/ l !3sec4u

~kc2 iGa
2/ l !secu2ka1 ig/2c J ,

~6.21!

and foru.ct,

I 125
p

l

ei ~@kc1 iGa
2/ l #secu2ka!~u2ct!~kc1 iGa

2/ l !3sec4u

~kc1 iGa
2/ l !secu2ka1 ig/2c

.

~6.22!

Let us now consider what will happen whenI 1 is inte-
grated overu. Here we have to remember thatu is a linear
combination of cosu and sinu. Let us examine the part of the
integral that contains factors of the kind

1

~kc6Ga / l !secu2ka1 ig/2c
. ~6.23!

If the width of this resonance in~6.23! is small enough, we
can expand cosu and sinu around the resonance and approxi-
mate the functions ofu appearing in the arguments of the
exponentials

expS @u2ct#H Fkc6 i
G2

l Gsecu2kaJ D ~6.24!

and

expS uH Fkc6 i
G2

l Gsecu2kaJ D ~6.25!

by linear functions of secu.
Assuming that

kc@
Ga
2

l
, ~6.26!

the width of the resonance in~6.23! will be given by
g/2ckc and the resonance by secuc5ka /kc . Then

sinu5A12S kckaD
2

2
kc
3

ka
2Aka22kc

2 S secu2
ka
kc

D
1~higher-order terms! ~6.27!

and

cosu5
kc
ka

2S kckaD
2S secu2

ka
kc

D1~higher-order terms!.

~6.28!

Then if

g!S kakcD
2

ckc , ~6.29!

we can substitute cosu and sinu in u in exponentials~6.24!
and ~6.25! by

cosu5
kc
ka

~6.30!

and

sinu5A12S kckaD
2

, ~6.31!

the integrals overu involving the factors~6.23! will be of the
kind

E
1

` ei ~@kc1 iGa
2/ l #secu2ka!v f ~secu!

~kc1 iGa
2/ l !secu2ka1 ig/2c

d~secu! ~6.32!

for v.0 and

E
1

` ei ~@kc2 iGa
2/ l #secu2ka!v f ~secu!

~kc2 iGa
2/ l !secu2ka1 ig/2c

d~secu! ~6.33!

for v,0. In these integrals,v does not depend on secu and
f (secu) has no singularities~poles!. Making the change of
variable secu→secu1ka /kc in ~6.32! and extending the in-
tegral to2`, we can integrate~6.32! by contour integration.
We close the contour in the upper half of the complex plane
becausev.0, but then, as the integrand has no poles in the
upper half of the complex plane, integral~6.32! vanishes.

Repeating the same procedure for~6.33!, we find that this
time the contour has to be closed in the lower half of the
complex plane becausev,0. Now if g/2c2Ga

2ka / lkc is
negative, there will be no poles in the lower half of the
complex plane and the integral~6.33! will vanish as well.

So the terms in~6.12! that involve the factors~6.23! will
not contribute to the result of the integral overu of I 1 and
therefore can be discarded when

g,2c
Ga
2

l

ka
kc
. ~6.34!

This condition implies that the atomic resonance isnarrower
than the cavity resonance~this condition is not satisfied by
present-day semiconductor gain media such asp-n junctions
and quantum wells; nonetheless, we will explore it further!.
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In this case, the atomic resonance is more important than the
cavity resonance in determining the frequency of emission.
Then, as we will show when we integrate overu the remain-
ing terms in~6.12!, the cavity resonance will influence the
direction of emission.

So, under conditions~6.26!, ~6.29!, and~6.34!, we obtain

I 15 i2p
Ga
2e~u2ct!g/2c@ka2 ig/2c#3

~@ka2 ig/2c#cosu2kc!
2l 21Ga

4Q~ct2u!Q~u!,

~6.35!

whereQ is the Heaviside step function. Applying the same
method toI 2 given by Eq.~6.13!, we obtain

I 25I 1
l

Ga
S Fka2 i

g

2cGcosu2kcD . ~6.36!

If we now use~6.35! and~6.36! in ~6.8! and integrate over
u following the same procedure outlined above and assum-
ing that

A~x2xa!
21~y2ya!

2sinuc!~z2za!sinuc , ~6.37!

we find that the terms involving exponentials ofi (z6za)C,
whereC is negative, do not have poles where the contour is
closed and therefore do not contribute to the total integral.
Moreover, because the detuning is small, i.e.,

ka2kc!kc , ~6.38!

we also find that thex andy components ofEs,out
1 are much

smaller than thez component and can be neglected. Then, far
from the cavity wherez@za ,l , we obtain the expression for
Es,out

1 ,

Es,out
1 ~r ,t !5 x̂E0s~0!F~x,y!e2~g/21 iva!~ t2@z/c#cosuc!

3sin~kcza!QS t2 z

c
cosucD , ~6.39!

where

E052
m\ka

3

2p«0Ga
~6.40!

andF is the integral overf that is still to be done

F~x,y!5
1

2pE0
2p

df exp~ i @$x2xa%cosf

1$y2ya%sinf#kasinuc!. ~6.41!

Now this integral can be recognized as the Bessel function
J0 @65,66#, i.e.,

F~x,y!5J0~A@x2xa#
21@y2ya#

2kasinuc!. ~6.42!

From Eqs.~6.39! and ~6.40!, we notice thatEs,out
1 is pro-

portional to the transmissivity of the microcavity, as ex-
pected, and depends on the mode distribution inside the mi-
crocavity, sinkcza , vanishing when the atom is at a node, i.e.,

on the surface of any of the mirrors. However, the most
interesting feature ofEs,out

1 is that it describes a nondiffract-
ing Bessel beam.

Nondiffracting Bessel beams were introduced by Durnin
@27#, who showed that there are beam-type solutions of the
wave equation for free space that do not suffer transverse
spreading as they propagate. Durnin called these solutions
Bessel beams because the dependence of the electric field on
the transverse radial coordinate is given by a Bessel function.
In a subsequent paper, Durninet al. @67# reported on an ex-
perimental realization of a Bessel beam employing a thin
circular slit ~an annulus! located in the focal plane of a lens.
When the circular slit was illuminated by collimated mono-
chromatic light, each point within the slit acted as a point
source that the lens transformed into a plane wave. The su-
perposition of these plane waves yields the Bessel beam.
Over the years, there have been many alternative proposals
on how to generate Bessel beams: Herman and Wiggins@68#
have shown that the beam produced by a conical lens is
virtually identical to aJ0 beam near the optical axis. In ad-
dition, they suggested the use of spherical lenses having

FIG. 13. Variance of thex component of the electric field at the
center of the cavity plotted for each mode of frequency
va5(11D)ckc . The fact that this surface is a cone, whose walls
form an angleuc5arccos@1/(11D)# with the z axis, shows that
emission is more likely to occur in a direction forming an angle
uc with the z axis. Such spatial frequency distribution, where the
transverse component of the wave vector traces a ring, is character-
istic of nondiffracting Bessel beams. The length over which the
beam is essentially nondiffracting is governed by the thickness of
the cone, which is determined by the finesse of the cavity. This
figure is plotted for D50.01 and Lc

2250.004, in units of
\ckc/4p3«0.
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spherical aberration as a method of producing Bessel
J0-type beams. Holographic methods have also been sug-
gested @69–71#. Indebetouw@72# proposed the use of a
Fabry-Pe´rot étalon to generate a Bessel beam. Some methods
for producing Bessel beams had been proposed even before
Durnin showed that Bessel beams do not diffract. Fujiwara
@73# reportedJ0 beams produced by using a point source and
a small-angle reflecting cone. Recently, azimuthal Bessel-
Gauss beam production in a concentric-circle grating
surface-emitting semiconductor laser was reported@74,75#.

Our result can be understood if we recall that a Bessel
beam is a beam whose spatial frequency distribution forms a
ring @72#. Now, the high finesse microcavity forces the emit-
ted light to have exactly this distribution because it con-
strains the component of the wave vector perpendicular to
the cavity mirror to assume the valuekc , so that every wave
vector of the emitted light has to form an angleuc with the
z axis defining a ring. This is shown in Fig. 2, where we plot
the variance of thex component of the electric field at the
center of the microcavity for each mode of frequency
va5cka . The larger the variance of a given mode, the more
likely it is that the atom will emit in that mode. In Fig. 13 we
have plotted, in the way described in Sec. V, the variance of
thex component of the electric field for each mode resonant
with the atomic transition. So the variance of a mode corre-
sponding to emission in a particular direction is given by the
length of the vector that points in that direction and goes
from the origin to the surface. From this plot, it is clear that
emission is more likely to happen in a cone of angleuc ,
confirming our previous discussion. In the case examined by
Indebetouw@72#, because of the large dimensions of such a
Fabry-Pe´rot étalon as compared to optical wavelengths, the
wavelength of the light source is many Fabry-Pe´rot reso-
nances away from the fundamental mode of the Fabry-Pe´rot
étalon ~in fact, the source of light is even placed outside the

Fabry-Pe´rot étalon! and it is necessary to use some extra
device, such as lenses, in order to select the right mode.

VII. SUMMARY
In this paper we have showed that cavity QED in a planar

microcavity can modify the angular distribution of atomic
spontaneous emission in such a way that nondiffracting
Bessel beams may be generated. Of course a classical dipole
in such a geometry would also generate a nondiffracting
Bessel beam as this is a consequence solely of the cavity
mode structure and detuning. However, as we are interested
in the possibility of investigating, in the future, the quantum
noise in the light from these sources, we have adopted a
fundamental quantum viewpoint of the emission. The degree
to which the beam is actually nondiffracting~i.e., the propa-
gation distance over which diffraction is eliminated! is gov-
erned by the finesse of the microcavity. We have concen-
trated here on atomic spontaneous-emission from a single
isolated two-level atom in a high-finesse microcavity. It has
not escaped our attention that a quantum-dot semiconductor
source, provided it is suitably confined to a region small
enough, may well generate such a nondiffracting output from
such a cavity and eliminate the diffractive spread, which
could otherwise plague these devices. The length over which
the beam is actually nondiffractive is governed by the cavity
length and the finesse.
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