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Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled
quantum dot metal-nanoparticle system
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We investigate the quantum optical properties of a quantum-dot dipole emitter coupled to a finite-size metal
nanoparticle using a photon Green-function technique that rigorously quantizes the electromagnetic fields.
We first obtain pronounced Purcell factors and photonic Lamb shifts for both a 7- and 20-nm-radius metal
nanoparticle, without adopting a dipole approximation. We then consider a quantum-dot photon emitter positioned
sufficiently near the metal nanoparticle so that the strong-coupling regime is possible. Accounting for nondipole
interactions, quenching, and photon transport from the dot to the detector, we demonstrate that the strong-coupling
regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The
vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or
quartet with two of the four peaks anticrossing, which survives in spite of significant nonradiative decays. We
discuss the emitted light spectrum and the effects of quenching for two different dipole polarizations.
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I. INTRODUCTION

The route to photonic vacuum engineering traditionally
employs a lossless dielectric cavity system, exploiting an
optical mode with a suitably large quality factor Q and small
effective mode volume V . The local photon density of states
(LDOS) scales proportionally with the Q/V factor. Enhancing
the LDOS through the use of small cavities1 has shown to be
a very effective method for increasing the radiative decay rate
of an emitter via the Purcell effect.2 In solid-state materials,
cavities are created using various structural designs, including
photonic crystal lattices with defects,3 and etched micropillars
made of Bragg reflectors.4 These dielectric cavities have shown
some remarkable successes in quantum optics, but the lower
limit on V in such systems is typically set by diffraction, with
V ≈ (λ/n)3, where n is the refractive index of the cavity.
Additionally, when one uses semiconductor quantum dots
(QDs), the narrow-band resonance associated with high Q

requires very long nonradiative exciton decay times, only
achievable at low temperatures.

In an effort to further increase the LDOS and decrease
the system size to subwavelength dimensions, it can be
advantageous to examine plasmonic systems where light is
confined to the surface of a metal and decays evanescently
from its surface. For example, a metal nanoparticle (MNP)
supports localized surface plasmons (LSPs)5 that are tightly
confined spatially and not limited by diffraction. This allows
coupling between single-photon emitters and MNPs,6 which
can enhance the LDOS in a system as small as 10–20 nm3.
When the LDOS becomes large enough, it may also be possible
to enter the strong-coupling regime where instead of the
irreversible process of the emitter decaying and emitting a
photon into the environment (i.e., weak coupling), the emitter
can reversibly exchange the photon with the environment—
resulting in vacuum Rabi oscillations. In order for this to
happen, the coupling between the emitter and the environment
must exceed all possible decay channels. Classical predictions
of strong-coupling behavior have been made in the context of

metallic dimers,7 though it is not known if the splitting survives
in the observable spontaneous (i.e., vacuum-induced) emission
spectrum. This reversible exchange of energy is fundamentally
interesting and can possibly be useful for applications in
coherent control,8 quantum information processing,9 and
lasing/spasing.10–12 With regard to a quantum theory of the
light-matter processes in the strong-coupling regime, several
complications arise in the theoretical description of coupling
quantized light to a MNP, including the need to quantize the
fields in a dissipative/lossy medium. Waks and Sridharan13

introduced a useful quantized cavity-QED (quantum elec-
trodynamics) treatment of a coupled MNP and a dipole
emitter (e.g., a QD), with the MNP treated within the dipole
approximation;14 however, it is known that the dipole approx-
imation can yield poor agreement with exact (i.e., nondipole)
calculations obtained from finite-size MNPs—unless placed
at least a few radii from the MNP surface.15–17 Trügler and
Hohenester18 have examined the strong-coupling dynamics
between a molecule and a cigar-shaped MNP employing a
mode expansion technique, which incorporates the higher
order plasmon modes; their quantum approach assumes a
Lorentzian form for the broadening of the modes, via Lindblad
superoperators in a master-equation formalism;19,20 this useful
nondipole study predicts that the strong-coupling regime is
possible between a MNP and a molecule, though there is
no direct connection to the emission spectrum. For dielectric
cavity systems, the effects of propagation to a detector is
generally assumed to not change the spectral shape of the
emitted photons. However, for a metallic system, because
of the losses associated with the MNP and quenching, it is
essential to compute the generalized light spectrum (i.e., away
from the QD position) to first realize if the strong-coupling
effects are observable, and second, to see how the spectral
signatures may change and how they would be measured.

In this work, we develop a theoretical formalism that allows
one to obtain the emission spectra at any spatial position of the
detector. In Sec. II, we describe an exact medium-independent
quantum optics approach—formulated in terms of photonic
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FIG. 1. (Color online) (a) Schematic of the MNP embedded in a
background material with permittivity of εb. The MNP, with radius a

and permittivity εm, is located at the origin. The single photon emitter
(QD) at rd is located at height h above the surface of the MNP. We
also consider a pointlike detector at rD located along the same axis
at height hD above the metal surface. (b) LDOS peak as a function of
height above a 20-nm (blue-dark) and 7-nm (orange-light) spherical
silver MNP for an x-oriented dipole. The nondipole result (for the
MNP) is given by the solid line and the dipole-approximation result
is given by the dashed line. For comparison, using the 20-nm MNP,
selected FDTD results are shown as squares (1-nm grid) and crosses
(2-nm grid), showing very good agreement for different effective
emitter sizes.

Green functions—to describe the cavity-QED interactions and
photon transport between a dipole emitter (QD), a finite-size
MNP, and a detector. A schematic of the nanoscale interaction
geometry is shown in Fig. 1(a). In Sec. III, we present various
numerical results and calculations for the coupled QD-MNP
system. We first calculate the classical Green function above
a MNP using a well established scattering approach,21,22 and
subsequently calculate the LDOS and photonic Lamb shift
from a nearby dipole emitter, using two different sized MNPs
(7 and 20 nm radius). We find significant enhancements in the
LDOS near the MNP surface16 and simultaneously observe
enormous Lamb shifts. We then examine the spectral proper-
ties of a QD dipole emitter in the strong-coupling regime. We
compute the far-field spontaneous emission spectrum, fully
accounting for non-Markovian relaxation and propagation
effects to the detector. The spontaneous emission spectrum
is shown to yield clear signatures of the strong-coupling
regime, but is found to be much richer than the usual vacuum
Rabi splitting known from simpler cavity-QED systems (e.g.,
using dielectric cavities) due to the interplay between higher-
order mode coupling and dipolar-mode coupling; the non-
Markovian spectra yield a spectral triplet or even a quartet of
resonances, where two of the peaks anticross, thus signaling
the strong-coupling regime. We present the strong-coupling
spectra for two different QD-dipole polarizations and discuss
the effects of optical quenching. In Sec. IV, we give a
brief discussion about possible experimental configurations
for observing our predictions, and in Sec. V we conclude.

II. THEORY

A. Green function of a spherical metal nanoparticle

The classical photon Green function in a medium with
ε(r,ω) (complex dielectric constant) and μ = 1 is described
through the following equation:

∇ × ∇ × G(r,r′; ω) − ε(r,ω)k2
0G(r,r′; ω) = k2

0δ(r − r′),
(1)

where k0 = ω/c, ω is the angular frequency and c is the
speed of light. The dipole-response function (Green function)
G can connect to both classical and quantum light-matter
interactions. For the MNP problem of interest, we will
discuss the Green function within and outside the dipole
approximation. Typically for small MNPs (ω

√
εba/c � 1) of

permittivity εm embedded in a material with permittivity εb,
the Green function is obtained through the Dyson equation
where we assume that the spherical MNP response can be
modelled through the metal polarizability function:

αm(ω) = α0
m(ω)[

1 − iα0
mω3√εb

6πc3a3

] , (2)

with the bare polarizability (i.e., without photon coupling to
the environment)

α0
m(ω) = 4πεba

3 (εm(ω) − εb)

[εm(ω) + 2εb]
, (3)

and Eq. (2) also accounts for radiation reaction.23 Considering
the MNP to be located at position rm, then the MNP-dipole
Green function is obtained through24,25

G(r,r′) = G0(r,r′) + G0(r,rm) · α mG0(rm,r′). (4)

To account for the finite-size nature of the MNP, we also
compute the Green function outside the dipole approxima-
tion. For these calculations we use an established analytical
approach where the Green function is expanded in spherical
vector functions and the boundary conditions are satisfied at
the edge of the sphere;21,22 we relegate the details of this
approach to the Appendix.

B. Classical light-matter interactions

An integral solution for the classical electric field can be
written as

E(r,ω) = E0(r,ω) +
∫

dr′ G(r,r′; ω) · P(r′,ω), (5)

where P is a polarization source. As we will show below,
in quantum optics, the E and P fields become operators, but
G remains the same.26,27 For a dipole emitter at position rd ,
E(r) = E0(r) + G(r,rd ) · αdE(rd ), where the dipole polariz-
ability of the QD exciton is given by

αd (ω) = 2ωdd
2/h̄ε0(

w2
d − ω2 − iγdω

)
h̄ε0

, (6)
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with ωd the transition frequency, γd the nonradiative broad-
ening of the QD exciton, d the optical dipole moment, h̄ the
reduced Planck constant, and ε0 the permittivity of free space.
Assuming a QD dipole of the form d = dni , the (projected )
LDOS becomes

ρi(rd ; ω) = Im[ni · G(rd ,rd ; ω) · ni]

Ghom
, (7)

where Ghom = Im[ni · Ghom(r,r; ω) · ni] = k3
0
√

εb/6π , and
Ghom is the homogeneous-medium Green function. The units
of Eq. (7) are conveniently chosen so that the LDOS is equal
to the Purcell factor,2 which describes—in a weak-coupling
regime—the spontaneous (vacuum-induced) emission rate,

γEM(rd ; ω) = 2d2ρ(rd ; ω)Ghom

h̄ε0
. (8)

This total electromagnetic (EM) decay rate includes both ra-
diative and nonradiative coupling with the lossy environment,
and it depends on the G of the medium. In order to describe
photon propagation from the QD to a detector (e.g., to the
far field), we also consider the nonlocal propagator, which is
defined through the two space-point Green function,

ρnl
ij (r,r′; ω) = [ni · G(r,r′; ω) · nj ]

Ghom
. (9)

The photonic (or anomalous) Lamb shift is also connected to
the Green function, and is obtained from26,28


ωi (rd ; ω) = −d2Re[ni · G (rd ,rd ; ω) · ni]

h̄ε0
. (10)

For the Green function used in Eq. (10), i.e., with the same two
spatial arguments Re[G(r,r)], we will neglect the (divergent)
homogeneous-medium contribution since its effect can be
absorbed into the definition of ωd .25,29

The quantities introduced above (e.g., the photon decay rate
and the Lamb shift) are well known, and are perturbative in
nature (in their definition). However, this is not a model re-
striction. Indeed, the theory above can fully include nonpertur-
bative light-matter interactions. To reach the strong-coupling
regime of cavity QED, where light-matter interactions must
be included to all orders, one requires the dipole-medium
coupling rate g to be larger than any dissipation channels.7,18

For a single quasimode of the MNP, e.g., fm(r), then g ≡
gm = √

ωm/2h̄ε0 d · fm(rd ) so that the vacuum Rabi splitting,
2g ≈ √

γEM(ρ) γLSP/2 � γd,γLSP. Here γEM(ρ) accounts for
all EM decay processes and γLSP is the effective linewidth of
the LSP dipole mode; for the purpose of the scaling argument
above, we are also tacitly assuming a Lorentzian line shape
for ρ(ω).

Since we are investigating nondipolar effects for the MNP,
it is worth discussing nondipolar effects for the QD as well.
The generalization of Eq. (7) to include nondipole effects is
given by the following formula:30,31

ρ(rd ,ω) =
∫
VQD

drFe(r)Fh(r)
∫
VQD

dr′F ∗
e (r′)F ∗

h (r′)Im[ni · G(r,r′; ω) · ni]∫
VQD

drFe(r)Fh(r)
∫
VQD

dr′F ∗
e (r′)F ∗

h (r′)Im[ni · Ghom(r,r′; ω) · ni]
, (11)

where Fe(r)/Fh(r) are the ground-state electron/hole wave
functions (centred at rd ), and VQD is the volume
of the QD. For strongly confined QDs, the effects of treating
the QD in the dipole approximation is to reduce/enhance the
effective dipole moment of the QD.30 To investigate the effects
of averaging over a (2 nm)3 volume, we compared finite-
difference time-domain (FDTD) results for different griddings
near the MNP and observe excellent agreement between grids
of 1 nm and 2 nm and the analytic Green function described in
the Appendix [see Fig. 1(b)]. Such an agreement means that the
field averaging across an FDTD unit cell is sufficient at these
heights implying that the average field across a QD of the same
approximate size is valid. This has been further verified by
independent calculations examining local-field effects inside
lossy structures and comparing with the exact integration of
the Green function32 (i.e., the regularized Green function)
over a unit cell of the same size (which we will discuss in
more detail in future work). Additionally, for strongly confined
dots, then the higher-lying energy levels become increasingly
separated further justifying the dipole approximation for a
single QD transition.33 It is possible that the QD response
may be influenced by higher-order QD mode contributions,
but due to the size of the dots compared to the MNPs we
expect such contributions to be small and, to simplify the
calculations, we will ignore them. Any further references to

the dipole approximation will refer to the MNP and the QD
will always be assumed to be in the dipole approximation.
For now, we highlight that our general approach can include
nondipole effects for the QD using the same Green functions
introduced above.

C. Quantum light-matter interactions and
the emission spectrum

To describe the quantum light-matter interaction, we adopt
a medium-dependent quantization procedure for calculating
the emission spectrum from a two-level system (exciton) in a
lossy, nonhomogeneous environment.26,27 We begin with the
complete Hamiltonian of the coupled system,

H = h̄ωd σ̂
+σ̂− + h̄

∫
dr

∫ ∞

0
dωl ωl f̂†(r,ωl) · f̂(r,ωl)

− [σ̂+d + σ̂−d] · Ê(rd ), (12)

where σ̂+,σ̂− are the Pauli operators of the QD exciton
(located at position rd ), f̂†/f̂ are the bosonic continuum
field creation/annihilation operators of the total electric-field
operator (including interactions with the QD), which are
indexed in the Hamiltonian with continuous eigenfrequencies
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ωl , and the dipole d is assumed to be real. The electric-field
operator is related to the bosonic field operators through28

Ê(r,t) = Ê0(r,t) + i

√
h̄

πε0

∫ ∞

0
dωl

∫
dr′G(r,r′; ωl)

·
√

εI (r′,ωl) f̂(r′,ωl ; t) + H.c., (13)

where εI is the imaginary part of the permittivity and Ê0(r,t)
is the free field, i.e., the field that exists without the presence
of the QD. To proceed we will adopt the weak excitation
approximation, so that we assume at most one excitation
in the system (this approximation is exact when the initial
field is the vacuum field). Using the Heisenberg equations of
motion, and Laplace transforming to the spectral domain, we
can subsequently obtain explicit expressions for σ̂+,σ̂− and
f̂,f̂†. The total electric-field operator is then26

Ê(r,ω) = Ê0(r,ω) +
∫

ImG(r,rd ; ωl) · d
πε0

σ̂−(ω) + σ̂+(ω)

ω − ωl

,

= Ê0(r,ω) + 1

ε0
G(r,rd ; ω) · d[σ̂−(ω) + σ̂+(ω)],

(14)

in which we have used the relation i
ωl−ω+iε+

= πδ(ωl − ω) +
iP( 1

ωl−ω
), with P the principle value. The sum of the dipole

operators are given by

σ̂−(ω) + σ̂+(ω)

= −i[σ̂−(t = 0)(ω + ωd ) + σ̂+(t = 0)(ω − ωd )]

ω2
d − ω2 − 2ωd d · G(rd ,rd ; ω) · d/h̄ε0

. (15)

The light spectrum is defined through S(r,ω) =∫ ∞
0 dt1

∫ ∞
0 dt2e

iω(t2−t1)〈[Ê(r,t1)]†Ê(r,t2)〉, which gives
S(r,ω) = 〈[Ê(r,ω)]†Ê(r,ω)〉. For r = rD , and assuming an
initially excited QD exciton in vacuum, one obtains26 the
emitted light-spectrum, analytically,

S(rD,ω) =
∣∣∣∣ d · G(rD,rd ; ω)(ω+ωd )/ε0

ω2
d −ω2 − iωγd − 2ωdd · G(rd ,rd ; ω) · d/h̄ε0

∣∣∣∣
2

,

(16)

where the point detector is assumed to be at position rD above
the center of the MNP. We highlight that this final spectrum
is exact in both weak- and strong-coupling limits. In order to
more clearly extract the physics associated with propagation
and quenching, we will also examine the dipole or polarization
spectrum:

P (ω) ≡ 〈σ̂+(ω)σ̂−(ω)〉

=
∣∣∣∣ 1

ω2
d − ω2 − iωγd − 2ωdd · G(rd ,rd ; ω) · d/h̄ε0

∣∣∣∣
2

,

(17)

which contains important information about the local dot
dynamics. Worth noting is that Eqs. (16) and (17) are
applicable in any lossy, nonmagnetic inhomogeneous system,
provided it is possible to calculate the Green function, which
illustrates the strength of our technique. We also remark that
it is relatively straightforward to include multiple QDs within
this formalism.34

Before closing this theory section, we make a few gen-
eral comments on the form of the QD nonradiative decay
rate γd . This broadening mechanism is likely caused by
electron-phonon scattering and pure dephasing, which is
especially important at elevated temperatures. Although we
have not distinguished the mechanism of pure dephasing from
an effective decay rate in the polarizability, the computed
spectrum maintains precisely the same spectral shape for our
chosen initial conditions;35 so the distinction of pure dephasing
(versus radiative broadening) is not necessary for computing
the vacuum spectrum. However, if one knows the precise
spectral form of the QD polarizability, including the influence
of electron-phonon scattering, then only a small modification is
needed in the above formulas.35 For the calculations that follow
below, we will adopt broadening values similar to colloidal
dots at room temperature,36 with γd = 10–20 meV. Note also
that since the dominant decay is from nonradiative coupling
to the lossy MNP, the details of the bare exciton decay are less
important here (e.g., in comparison to coupling to a dielectric
cavity system). An alternative quantum optics approach can
include phonon interactions at the level of a polaron master
equation.37,38

III. RESULTS

A. Weak-coupling regime: Purcell factors and Lamb shifts

For our numerical calculations, we assume a MNP
with a permittivity given by the Drude model, εm = ε∞ −
ω2

m/(ω2 − iγmω), and take the parameters typical for silver:7

ε∞ = 6, ωm = 7.90 eV, and γm = 51 meV; this gives an
estimated γLSP = 60 meV and γLSP = 75 meV for 7- and
20-nm particles, respectively, in the regime where the dipole
approximation is valid.

We consider a dipole emitter located h = 2 nm above a
7-nm and a 20-nm MNP. For the single-photon emitter (QD
exciton), we consider both x-oriented and z-oriented dipoles
with a dipole moment of d = 24 D (≈0.5e nm), which is
comparable to (or less than) the dipole moment used in other
works that model QDs coupled to metals.7,18

In Fig. 1(b) we show the LDOS versus height using both the
nondipole and dipole calculations. We observe convergence
between the solutions with the analytic and the dipole-
approximation only for h > 2a, in agreement with Ref. 15.
Additionally for the 20-nm radius MNP, we plot the same
calculations performed using FDTD calculations39 (squares
and crosses) using a 1-nm grid and a 2-nm grid (finite-size
emitters); we observe excellent agreement between these two
different methods for both grid sizes.

In Figs. 2(a) and 2(d) we plot the LDOS as a function of
frequency for h = 2 nm above the 7- and 20-nm MNPs for
x-oriented and z-oriented dipoles, respectively. We immedi-
ately notice that the LDOS peaks are far separated in energy
when compared to the dipole result, which is caused by the
essential contribution from higher-order modes.40 We also see
that the LDOS peak for both nm-size particles is comparable,
but the LDOS peak is slightly shifted between the two different
sized particles. When comparing between x-oriented and
z-oriented dipoles we see that the LDOS is larger for the latter
case by about a factor of 2. Also note that the difference in
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FIG. 2. (Color online) (a) LDOS versus frequency 2 nm above a 20-nm (blue-dark) and 7-nm (orange-light) silver MNP. The nondipole
(exact) result is given by the solid line and the dipole-approximation result is given by the dashed line. (b) ρnl

xx(rD,rd ) versus frequency for
hd = 2 nm and hD = 1 μm, (c) Lamb shift versus frequency. In (a)–(c) we use an x-oriented emitter. (d)–(f) As (a)–(c) but for a z-oriented
emitter. For clarity, dipole-approximation results are multiplied by a factor of 50 (20-nm particle) and 4 (7-nm particle) in graphs (a),(c) and
(d),(f).

the dipole approximation for the 7-nm particle compared to
the 20-nm particle is mainly due to the fact that they have
different center-to-center distances; the shorter distance gives
a larger result because of the scaling of the free space Green
function in the near field, i.e., Gfree(rd ,rm) ∝ |rd − rm|−3.

We next consider the nonlocal propagator in Figs. 2(b) and
2(e) for x-oriented and z-oriented emitters, respectively; this
propagator is needed to account for light propagation from the
dipole emitter to the detector. The detector is assumed to be
at a height of 1 μm above the MNP surface. For the 20-nm
particle, the nondipole calculations for ρnl is spectrally peaked
near ω ≈ 2.76 eV, which does not coincide with the peak of
the LDOS (≈2.97 eV); however, the peak in the ρnl using a
dipole approximation is shifted to 2.79 eV. We also observe
an additional peak located near 2.9 eV, and we show below
how this complex line shape affects the spontaneous emission
spectrum. We can contrast these 20-nm MNP findings with
the 7-nm results, where the ρnl in the dipole approximation
agrees quite well with the exact result—although we begin
to observe a small shoulder in the nondipole result, which
indicates a second peak. Both nonlocal propagator peaks in
this region are located at 2.8 eV, which is the same location
as the dipole peaks seen in the LDOS and again the difference
between x-oriented and z-oriented dipoles is about a factor of
2; but now the xx component of the nonlocal propagator is the
larger (suggesting less quenching).

Figures 2(c) and 2(f) show the photonic Lamb shift for
x-oriented and z-oriented dipoles, respectively, for both MNP
sizes. Again the (invalid) dipole solutions are plotted for
reference. The Lamb shifts at this height are quite large, giving
a maximum frequency shift of |
ω|max/ω = 7.9 × 10−3 for
the 7-nm particle and |
ω|max/ω = 1.28 × 10−2 for the
20-nm particle in the x direction, and a maximum frequency
shift of |
ω|max/ω = 2.02 × 10−2 for the 7-nm particle and

|
ω|max/ω = 2.75 × 10−2 for the 20-nm particle in the z

direction. For comparison, at ω ∼ 3 eV, an exciton linewidth
of γd ∼ 15 meV corresponds to γd/ω ≈ 5 × 10−3, so the
largest frequency shift in Fig. 2(f) is more than five times
the exciton linewidth (even at room temperature), which, to
our knowledge, is much larger than any previously reported
result. For photonic crystal systems,41 |
ω|max/ω ≈ 4 × 10−5

has been reported, and for negative index metamaterial slabs,26

|
ω|max/ω ≈ 5 × 10−4 has been predicted.

B. Strong-coupling regime and emitted spectrum

Motivated by the significant enhancements seen in Fig. 2,
we next study the nonperturbative strong-coupling regime,
and calculate both the particle (or polarization) spectrum and
the spontaneous emission spectrum of the field (Figs. 3 and 4).
For all calculations we use γd = 15 meV, which corresponds
to the decay of a typical QD exciton at room temperature.36

Such a large decay would completely dominate semiconductor
cavity systems, where the best (maximum) vacuum Rabi
splittings are around 0.1–0.15 meV.4 For the 7-nm particle,
with an x-oriented QD, the nondipole result (i.e., not treating
the MNP as a dipole) for P (ω) [Fig. 3(a)] shows that there is a
clear anticrossing, and the spectral location of strong coupling
is evidently not located at the dipole LSP of 2.7915 eV; rather,
it is much higher in energy at 2.9415 eV corresponding to the
peak of the LDOS (∼2.9489 eV). In contrast, the dipole result
shows no indication of strong coupling. When looking at the
far-field spectrum [see Fig. 3(c)], it is more difficult to observe
an anticrossing as the weighting provided by ρnl causes the
peaks to broaden and become more asymmetric. Additionally,
there is a clear peak at 2.7885 eV, which corresponds to the
peak in ρnl; this spectral peak is not observable in the particle
spectra; this additional peak also shows up when using
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FIG. 3. (Color online) (a),(c) 7-nm particle [(b),(d) 20-nm parti-
cle] with an emitter 2 nm from the surface. Graphs (a),(b) and (c),(d)
show the normalized effective particle and far-field spontaneous
emission spectra, respectively, using the nondipole result (blue-
dark line) and the dipole approximation (orange-light line) for an
x-oriented dipole. Transition frequencies are indicated by black dots
on the curves. The thin gray line in all graphs indicates the LSP
resonance (at the maximum of αm).

the dipole approximation but we emphasize that it is only
due to photon propagation from the MNP/emitter system to
the detector and is extremely small. We highlight that these
additional spectral features in the emission spectrum are quite
different to a dielectric cavity system.

0

2

4

6

P
(ω

)
(a

rb
.

un
it
s)

(a)

2.7 2.8 2.9 3 3.1
0

2

4

6

S
(ω

)
(a

rb
.

un
it
s)

ω (eV)

(c)

0

2

4

6

(b)

2.7 2.8 2.9 3 3.1
0

2

4

6

ω (eV)

(d)

FIG. 4. (Color online) As in Fig. 3, but with a z-oriented QD
dipole.

From the calculations above, it is also clear that the
predicted Lamb shifts are observable in the spectra as the
exciton spectral peaks in both the particle and the far-field
spectra are substantially shifted in energy. Figures 3(b) and
3(d) show the particle and light spectra for the 20-nm MNP, and
we observe many similar features to the 7-nm spectra; however,
the splitting between the peaks in the particle spectrum is
notably larger for the 20-nm particle compared to the 7-nm
particle. In the far-field spectra, we also see that there are
significant qualitative differences as the QD frequency is
tuned, though the anticrossing region is observed at similar
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FIG. 5. (Color online) (a) 7-nm particle [(d) 20-nm particle] with an emitter 2 nm from the surface tracking the particle spectral peaks
(orange circles) and light emission spectral peaks (blue crosses) as a function of QD frequency for an x-oriented QD. The dashed lines
correspond to the location of the QD transition frequencies used in the graphs in Fig. 3. (b) Integrated particle spectra for an x-oriented QD
normalized by the integrated particle spectrum without the MNP (i.e., free space) as a function of QD transition frequency for 20-nm MNP
(blue-dark line) and 7-nm MNP (orange-light line) for dipole (dashed line) and nondipole (solid line) calculations. (c) Integrated particle
spectrum 2 nm above a metallic half space normalized by integrated particle spectrum in free space as a function of QD transition frequency
for z-oriented QD (blue-dark line) and x-oriented QD (orange-light line). (e) As (b) but with the integrated far-field spectrum normalized by
the integrated far-field spectrum without the MNP. (f) As (c) but with the integrated far-field spectrum normalized by the integrated far-field
spectrum in free space. The thin gray lines in (a), (b), (d), and (e) indicate the LSP resonance.
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QD detunings. This shows that the strong coupling is clearly
an observable effect, even with significant metal losses.

Figure 4 shows similar results to those shown in Fig. 3,
but with a z-oriented exciton. The larger LDOS for this
polarization manifests in an increased Rabi splitting in both
particle and far-field spectra, however, the peaks at higher
energies are more difficult to observe on this scale due to
the smaller value of the nonlocal propagator in the higher
frequency range [see Fig. 2(e)].

To further examine the anticrossing behavior of strong
coupling, we have located the maxima in the particle spectra
(red circles) and far-field spectra (blue crosses) for various QD
transition frequencies, and show these in Fig. 5(a) for 7-nm
particles, and Fig. 5(d) for 20-nm particles using an x-oriented
QD (similar results are found for a z-oriented dipole). In both
the particle and light emission spectra, a clear anticrossing
is observable, indicating a vacuum Rabi splitting of around
2g ≈ 79 meV for 7-nm particles and 2g ≈ 95 meV for 20-nm
particles; note that 2g > 120 meV for both sizes of MNP
for the z-oriented QD (not shown). Clearly this observation
does not correspond to the location of the lowest-order dipole
mode (indicated by the thin gray lines in Fig. 3) but is due to
the coupling to higher-order plasmon modes. For the emitted
light spectrum, the effects of propagation add additional peaks;
however, the vacuum Rabi splitting is well maintained even
with nonradiative quenching. This finding is not at all clear
unless one properly accounts for propagation to the detector.

In Figs. 5(a) and 5(d) we discern an additional peak in
the far field at the location of the dipole mode, which is
due to light propagation (via ρnl), and in Fig. 5(d) there is
a fourth peak, which is due to the dip located in ρnl that only
occurs for the 20-nm particle, but becomes too small to resolve
after ωd ≈ 2.85 eV. These spontaneous emission spectra
contain highly non-Lorentzian line shapes as well as essential
nondipolar interaction effects. Furthermore, any predictions of
strong coupling with MNPs must include higher-order mode
coupling as they will dominate the dynamics before it is ever
possible to achieve strong coupling using the dipole mode (at
least for our chosen parameters).

Finally, we study the optical quenching effects in more
detail. In Figs. 5(b) and 5(e) we calculate the integration
of the particle/far-field spectrum as a function of ωd , and
we normalize this to the integrated free-space value. We define
the integrated spectral quantities IP (ωd ) (integrated particle
spectrum) or IS(ωd ) (integrated far-field spectrum), which
are computed as follows:

IP (ωd ) =
∫ ∞

0 P (ω,ωd ) dω∫ ∞
0 Phom(ω,ωd ) dω

, (18)

IS(ωd ) =
∫ ∞

0 S(ω,ωd ) dω∫ ∞
0 Shom(ω,ωd ) dω

. (19)

These integrals give the likelihood of detecting a photon
emitted by a QD, and the values in the vicinity of the MNP
are normalized to the values that would be obtained from a
QD in vacuum (for this particular particle/detector geometry).
We show MNP dipole-approximation (dashed) and nondipole
(solid) results for a 7-nm MNP (orange-light line) and a 20-nm
MNP (blue-dark line). For the integrated particle spectra IP

we see that, in terms of emitted flux, quenching is much more
problematic for the nondipolar result compared to the dipolar
result. The region of greatest quenching is where the LDOS
is peaked giving a maximum reduction to IP ≈ 0.3 in the
region of the anticrossing. Such an observation would lead
one to believe that MNPs appear to absorb the majority of
the emitted photons. However, in the far-field spectrum IS ,
we see a dramatic increase in the relative number of photons
detected for QDs located near the LSP of 30 (80) for 7 nm
(20 nm). Even in the anticrossing region, the enhancement is
≈2–3 compared to a QD in free space. This enhancement in the
integrated far-field spectrum shows that even in the frequency
region where photons appear to be dominated by nonradiative
effects, the MNP compensates by acting as an antenna making
the detection of far-field radiation more efficient.

To help further clarify the physics of metallic quenching,
we also compare the MNP case with a metallic half space,
where we calculate the Green function using a well-known
multilayer scattering technique.26,42 We initially verify in
Fig. 5(c) that a simple metallic half space suffers similar
quenching to the MNP in the particle spectrum; however, it
feels much more quenching in the far-field spectrum [Fig. 5(f)]
with IS lower by about two orders of magnitude for both
z-oriented (blue-dark line) and x-oriented (orange-light line)
QDs. It is worth noting that the reduction of γd to values
typical for QDs at cryogenic temperatures (≈μeV) results in
significantly more quenching in both the particle spectrum
and the far-field spectrum for QDs coupled to MNPs; for
example, using γd < 50-μeV results in IS < 1 over the entire
frequency range showing that the antenna effect of the MNP
is unable to overcome the quenching in the case of sharp QD
linewidths.

For these quantum optical studies above, we have delib-
erately chosen a rather large dipole moment (d = 24 D) to
enable the strong-coupling regime. For smaller dipole sizes,
e.g., with d = 12 D for the x-oriented dipole, or d = 8 D
for a z-oriented dipole, we obtain qualitatively similar strong-
coupling results but with smaller vacuum Rabi splittings. There
is also the potential to see strong coupling with even lower QD
dipole moments, if one uses MNPs with nonspherical shapes,
e.g., cigar shapes.18 For much lower dipole moments then the
strong-coupling effect of course vanishes, although dimer7,43

configurations may help to increase the LDOS to a sufficiently
larger value.

IV. DISCUSSION

We now briefly discuss some potential experimental config-
urations for observing the effects presented above. There are
several possible experimental scenarios that are likely within
reach of current nanofabrication techniques.44 One example
could involve spin coating colloidal QDs onto a substrate,
locating the dots by correlating photoluminescence data with
atomic force microscopy (AFM) images and positioning the
MNPs in the vicinity of the QD using the AFM tip as was
done by Ratchford et al.;6 in their study, the relatively small
QDs had an estimated dipole moment of around 5.3 D and
a strong modification of the spontaneous emission rate was
shown, along with a drastic reduction in blinking. A second
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possible method for probing the emission spectra of coupled
QD-MNP systems could use an array of MNPs placed on a
substrate and immersed in a solution of colloidal QDs. By
illuminating with focused (off-resonant) laser beams it is also
possible to create efficient optical traps45–47 at which point the
QD can be loaded into an excited state. Both of these proposals
involve the use of substrates; of note, our formalism enables
the calculation of the far-field spectrum in any inhomogeneous
geometry as long as the Green function can be calculated; our
initial results using the FDTD technique [see Fig. 1(b)] for this
simplified geometry can easily include a substrate; or even
more complicated geometries could be investigated such as
MNPs coupled directly to photonic crystal cavities containing
QDs.44,48 In fact, recent experiments with QDs coupled with
disordered metallic films on glass substrates are at a loss for
the expected far-field emission spectra,49 further emphasizing
the usefulness of our technique.

V. CONCLUSIONS

We have presented a Green-function quantum optics ap-
proach to study quantum optical interactions between a QD
photon emitter and a single (finite-size) MNP. We began
by examining the properties of the classical Green function
above a MNP within and beyond the dipole approximation
and showed the dramatic effects of the higher-order plasmon
modes on the LDOS and photonic Lamb shifts. Going beyond
the weak-coupling approximation, we then examined the
particle spectrum and contrasted this with the far-field (ob-
servable) light-emission spectrum of a QD strongly-coupled
to the MNP. Using experimentally accessible parameters, our
nonperturbative light spectra show clear signatures of the

strong-coupling regime; the emitted spectrum was found to
contain a triplet or quartet of resonances, highlighting the
important role of light propagation to the detector. Finally,
we also examined the role of optical quenching on the far-field
spectra, and compared the quenching to the case of a metal half
space. It should be emphasized that our presented techniques
are quite general and can be extended to include an initial
pump field, multiple MNPs, and multiple QDs.
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APPENDIX: SPHERICAL GREEN FUNCTION

Given a sphere with permittivity εm and radius a, embedded
in a homogeneous medium of permittivity εb, the scattered part
of the Green function is given by

Gscatt(r,r′) = −ikb

4π

∑
e,o

∞∑
n=1

n∑
m=0

(
2 − δ0

m

) 2n + 1

n(n + 1)

(n − m)!

(n + m)!

× [
RH Meo

mn(kbr)Meo
mn(kbr′)

+RV Neo
mn(kbr)Neo

mn(kbr′)
]
, (A1)

where RH/RV are the centrifugal reflection coefficients
corresponding to transverse electric/magnetic waves (TE/TM),
and Meo

mn/Neo
mn are the vector functions corresponding to

TE/TM waves and they have been separated into even and
odd contributions. The values of RH , RV , are given by

RH = km∂τmτb − kb∂τbτm

km∂τmκb − kb∂κbτm

, RV = kmτm∂τb − kbτb∂τm

kmτm∂κb − kbκb∂τm

, (A2)

where

τi = jn(kia), κi = h(1)
n (kia), (A3)

∂τi = 1

kia

∂[kiajn(kia)]

∂kia
, κi = 1

kia

∂
[
kiah(1)

n (kia)
]

∂kia
. (A4)

Here jn, h(1)
n are the spherical Bessel functions and spherical Hankel functions of the first kind, respectively and ki = ω

√
εi/x

where i corresponds to either the metal or background. The vector functions are defined as follows:

Me
mn(kr) = − m

sin θ
h(1)(kr)P m

n (cos θ ) sin mφθ̂ − h(1)(kr)
dP m

n (cos θ )

dθ
cos mφφ̂, (A5)

Mo
mn(kr) = m

sin θ
h(1)(kr)P m

n (cos θ ) cos mφθ̂ − h(1)(kr)
dP m

n (cos θ )

dθ
sin mφφ̂, (A6)

Ne
mn(kr) = n(n + 1)

kr
h(1)(kr)P m

n (cos θ ) cos mφr̂ + 1

kr

d[rh(1)(kr)]

dr

[
dP m

n (cos θ )

dθ
cos mφθ̂ − m

sin θ
P m

n (cos θ ) sin mφφ̂

]
, (A7)

No
mn(kr) = n(n + 1)

kr
h(1)(kr)P m

n (cos θ ) sin mφr̂ + 1

kr

d[rh(1)(kr)]

dr

[
dP m

n (cos θ )

dθ
sin mφθ̂ + m

sin θ
P m

n (cos θ ) cos mφφ̂

]
. (A8)

where P m
n are Legendre polynomials. Note that for our numerical calculation in this paper, a few simplifying assumptions can

be made; we only consider the calculation to be along the z direction, x = x ′ = y = y ′ = 0, and we additionally assume that we
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are only calculating the LDOS (z = z′). This means that calculating in the θ̂ θ̂ direction is equivalent to the φ̂φ̂ direction. This
allows us to simplify Eqs. (A5)–(A8) to

Me
mn(kr) = h(1)(kr)

dP m
n (0)

dθ
φ̂, (A9)

Mo
mn(kr) = 0, (A10)

Ne
mn(kr) = n(n + 1)

kr
h(1)(kr)P m

n (0)r̂ , (A11)

No
mn(kr) = m

kr

d[rh(1)(kr)]

dr
P m

n (0)φ̂. (A12)
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J. Kästel, Phys. Rev. A 68, 043816 (2003).

29W. Vogel and G. Welsch, Quantum Optics (Wiley-VCH, Weinheim,
2006).

30S. Stobbe, P. T. Kristensen, J. E. Mortensen, J. M. Hvam, J. Mørk,
and P. Lodahl, e-print arXiv:1112.1835v1.

31K. J. Ahn and A. Knorr, Phys. Rev. B 68, 161307 (2003).
32P. C. Chaumet, A. Sentenac, and A. Rahmani, Phys. Rev. E 70,

036606 (2004).
33J. R. Zurita-Sánchez and L. Novotny, J. Opt. Soc. Am. B 19, 1355

(2002).
34P. T. Kristensen, J. Mørk, P. Lodahl, and S. Hughes, Phys. Rev. B

83, 075305 (2011).
35S. Hughes, P. Yao, F. Milde, A. Knorr, D. Dalacu, K. Mnaymneh,

V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, R. Cheriton, and
R. L. Williams, Phys. Rev. B 83, 165313 (2011).

36H. Qiao, K. A. Abel, F. C. J. M. van Veggel, and J. F. Young, Phys.
Rev. B 82, 165435 (2010).

37C. Roy and S. Hughes, Phys. Rev. Lett. 106, 247403 (2011).
38I. Wilson-Rae and A. Imamoğlu, Phys. Rev. B 65, 235311
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