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Abstract

Spontaneous-fission half-lives of heaviest nuclei are analyzed in a multidimen-
sional deformation space. They are calculated in a dynamical approach, without
any adjustable parameters. The potential energy is obtained by the macroscopic-
microscopic method and the inertia tensor by the cranking method. The action
integral is minimized by a variational procedure. Even-even nuclei with proton
number Z = 104 — 114 and neutron number N = 142 — 176 are considered.

The results reproduce rather well the existing experimental data for the consid-
ered nuclei and predict relatively long half-lives for many nuclei not yet observed,

sufficient to detect them if synthesized in a laboratory.

1 Introduction

The objective of the present paper is to analyze the spontaneous-fission properties of
deformed superheavy nuclei in a multidimensional deformation space. Such quantities as
potential energy (in particular the potential-energy barrier along the fission trajectory),
the effective inertia along the fission trajectory and the fission half-life of a nucleus are
studied. Even-even nuclei with proton number Z = 104 — 114 and neutron number
N =142 — 176 are considered.

By deformed superheavy nuclei, we understand here nuclei situated, in the nuclear
chart, in the neighbourhood of the nucleus 27°108 (2"°Hs), which is expected to be a
doubly magic deformed nucleus [1,2]. One of specific properties of these nuclei is that
they are expected to be well deformed (e.g. [2]). This puts a requirement to calculate

even the ground-state (equilibrium) energy of a nucleus, connected with relatively small
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deformations, in a sufficiently large deformation space, in distinction to the case of nuclei
which are spherical or nearfy spherical in their ground state. Another property is that the
fission barriers of these very heavy nuclei are relatively simple and thin. The deformation
space required for the analysis of such barriers is importantly smaller than the space
required for lighter nuclei, as those with Z = 92 — 102, which have much thicker and
more complex barriers. In practice, the space used for the analysis of the ground state
of the considered nuclei is sufficient also for the analysis of their fission barriers. The
third property is that shell effects are extremely important for these nuclei. Most, or
may be even all, of them would not exist without these effects [2,3]. This puts a strong
requirement of the theory to account for these effects as accurately as possible, both in
the potential energy and in the inertia of a nucleus with respect to the fission mode.

Being a region of very heavy nuclei, it still contains a number of nuclei with measured
fission half-life, to provide a test for the calculations.

The present analysis belongs to a series of papers [4-6], treating the spontaneous
fission in the dynamical way, i.e. taking into account the inertia tensor of a nucleus,
when seeking the trajectory along which the probability of the barrier penetration is
largest. In the older papers [4,5], another deformation space, more proper for lighter
nuclei with Z = 92 — 102, has been used, than taken in the present paper. In the more
recent analysis [6], the odd-multipolarity deformations 83 and Bs have been taken into
account, which are not important for the nuclei considered here, while the deformations
Bs and Bs, which are needed for these nuclei, have been omitted. All these differences in
the deformation spaces are partly the consequences of the fact that the regions of nuclei
considered in the earlier papers [4-6] differ from this discussed here.

An advantage of the dynamical analysis is that it does not use any adjustable pa-
rameters. In statical considerations [7T-11], a phenomenological inertia function is taken,
which has at least one free parameter fitted to experimental data. Additionally, the phe-
nomenological function disregards the shell structure of a nucleus, which is taken into
account in the microscopic inertia tensor used in the dynamical approach, and which is
so important for the considered nuclei.

The present theoretical paper is closely connected with the intensive experimental
activity in recent years on the synthesis and study of the properties of heaviest nuclei (cf.
e.g. [12-19]). It aims in the interpretation of existing data and in predictions of properties
of nuclei not yet observed.

Some of the results of the present paper have been presented earlier [20-22].

Method of the analysis is described in sect. 2, the results and discussion are given in

sect. 3 and conclusions drawn from the study are presented in sect. 4.



2 Method of the calculations

2.1 Potential energy

The potential energy of a nucleus is calculated by the macroscopic-microscopic method.
The Yukawa-plus-exponential model [23] with the standard values of its parameters (e.g.
[24]) is used for the macroscopic part of the energy. The Strutinski shell correction, based
on the Woods-Saxon single-particle potential [25], is taken for the microscopic part. The
"universal” variant of the parameters of the potential is chosen (the same as in [2] where
they are also specified).

The residual pairing interaction is treated in the usual BCS approximation. The
strength of the interaction is taken the same as in [2], where it has been fitted to recent

data for nuclear masses.

2.2 Inertia tensor

The inertia tensor describes the inertia of a nucleus with respect to changes of its defor-

mation. We calculate it in the cranking approximation. The corresponding formula is

(e.g. [5,26-28])

<v|0H/da;|V >< V'|0H[Dajlv >
(E, + E)?

Bayo, = 20% Y

vv!

(uuvu' + uu’vu)2 + PU B (1)

where «; and «; are the deformation parameters, H is the single-particle hamiltonian,
u, and v, are the BCS variational parameters and E, is the quasi-particle energy cor-
responding to the single-particle state |v >. The term P* describes the effect of the
collective motion on the pairing interaction. Various properties of the tensor By, have
been discussed in [5,26-29].

The inertia tensor provides metric in the deformation space, when calculating the

penetration of a nucleus through the fission barrier.

2.3 Spontaneous-fission half-life

The spontaneous-fission half-life Ty is calculated by the formula
Ty =T, P, (2)

where P is the probability of the barrier penetration by a nucleus and Tp is the half-life
when this probability is equal to unity. The half-life Ty is determined by the number of

assaults of a nucleus on the fission barrier in unit time, wo/27,
To = 27in2/wy , (3)
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and, thus, by the zero-point vibration energy of it in the fission degree of freedom, E,, =
0.5 hbdo.

The probability P is obtained in the semiclassical (WKB) approximation
P=[+exp2S(L)] )

where the action integral S(L) along a one-dimensional trajectory L in a multidimensional

deformation space is

S0 = [ (rBUS)ELs) - Fal) s )

Here, E1(s) is the potential energy, BL(s) is the effective inertia, both along the trajectory
L, and Ey is the energy of a fissioning nucleus. The parameter s specifies the position of a
point on the trajectory L, with s; and s; corresponding to the entrance and exit points of
the barrier, i.e. to the classical turning points determined by: Er(s) = FEo. The effective
inertia Br(s) associated with the fission motion along the trajectory L is

do; da;

ds ds ’ (6)

B = Br(s) = ZBQ,%(S)

where B,,., are components of the inertia tensor, eq. (1), and a;, «; are the deformation
parameters (8,).

The half-life T is calculated in the dynamical way (e.g. [5,30]), i.e. along the dynam-
ical trajectory Layn, for which the action integral S(L) is minimal, with full dependence

of the inertia tensor By,q, on the deformation taken into account.

2.4 Deformation space

Axially symmetric shapes are used in our analysis of spontaneous fission. These shapes
are described by the usual deformation parameters £, appearing in the expression for

nuclear radius (in the intrinsic frame of reference) in terms of spherical harmonics Yio(9),
R(¥) = Ro(8,)[1 + 3 B Yao(9)] , (7)
A

where the dependence of Ry on 3, is determined by the volume-conservation condition.

The reason to disregard the axially asymmetric shapes lies in the dynamical treatment
of fission. Along the static trajectory (i.e. the trajectory along which the potential enegy
is minimal), the potential energy is usually decreased by the non-axial (v) deformation
by up to about 1 MeV [4,31,32]. The effective inertia B, eq. (6), is, however, large along
this trajectory and leads to a larger action integral than that along the trajectory with
~ = 0. This has been directly shown in [32] for the nucleus 260106 (269Sg), from the region
considered here, 2nd in [4] for a lighter nucleus.
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Concerning the axial deformations 3y, we find, similar to [33], that it is sufficient
to consider the deformations of the multipolarities up to A = 8. The contribution of
By and P10 to the potential energy is already negligible. The deformations with odd
multipolarities A = 3,5, 7 contribute to the energy already behind the thin fission barriers
of these very heavy nuclei, considered here. Thus, the potential energy is analyzed finally

in the 4-dimensional deformation space {8,}, A = 2,4,6,8.

2.5 Details of the calculations

The potential energy £ and the inertia tensor Bg,s, , eq. (1), are calculated individually
for each nucleus. No averaging over proton Z and neutron N numbers is used.

The potential energy F is calculated at grid points (3,, 34) with steps: AfB; = Afy =
0.05. The range of both 3, and 34 is taken individually for each nucleus, to obtain the
whole region of the fission barrier.

The dynamical calculations of Ty are performed in the approximation tested in [32].
These are the calculations performed in 2-dimensional deformation space {8,}, A = 2,4,
but with the potential energy E minimized at each point (f3;,34) of this space in the
remaining degrees of freedom: g and fs. Thus, the potential energy, and correspondingly

the inertia tensor, are

E(B32, B4 87 Bs,s,(B2, 84 8 (8)

where 87, v = 6,8, i1s the value of 3,, at which the energy E is minimal at the point
(B2, B4). A detailed study [32] of dynamics in deformation spaces of various dimensions
has shown that this approximation is quite good for nuclei considered in the present paper.

To get sufficiently accurate fission trajectory, the values of the potential energy F
. and of the inertia tensor Bg,s, of eq. (8) are interpolated (by the standard procedure
SPLIN3 of the IMSL library) to the more dense grid: Ag; = 0.01, AZy = 0.0025. Only
on such dense grid, the variational calculation has been performed, using a dynamical-
programming method described in [5].

To calculate the ground-state energy Ej of a nucleus (eq. (5))
Eo = E(BY) + Esp, (9)

the zero-point energy in the fission degree of freedom is taken as: E,, = 0.7 MeV. This
is the value close to that calculated in [2]. Here, E(3%) is the value of the potential
energy at the equilibrium (ground-state) deformation 35. The energy E,, determines

simultaneously the number of assaults of a nucleus on the fission barrier, according to eq.

(3).



3 Results and discussion

3.1 Potential energy and fission trajectory

Fig. 1 illustrates a map of the potential energy by the example of the recently synthesized
[17,18] nucleus ?%°106 (*#°Sg), which is closest, among observed even-even nuclei, to the
predicted [1,2] doubly magic deformed nucleus ?"°108 (*”°Hs). This is also the isotope
of the element 106 (Sg) by which the chemical properties of this element are planned to
be studied [34]. At each point {32, 84), the energy is minimized in 8¢ and B degrees of

freedom.
E (MeV) (scale:2.0, min.in:Bg Bg)
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Figure 1: Contour map of the potential energy E calculated as a function of the defor-
mations B, and B4, for the nucleus 266106 (?¢Sg). At each point (f3;, 34), the energy is
minimized in 8¢ and (g degrees of freedom. Numbers at the contour lines give the values
of the energy. Difference in the values between neighbouring solid lines (scale) is 2 MeV.
Dashed lines divide this difference by two. Dynamical, Layn, and statical, Lgay, fission

trajectories are shown.

The dynamical fission trajectory Layy is also shown in the Fig. 1. It has a tendency to
be close to a straight line and to have a possible small slope with respect to the f,-axis,
as both these features lead to a small effective inertia B, eq. (6), along the trajectory
and, consequently, to a small action integral. The small slope corresponds to a small
contribution to B of the components Bg, s, of the inertia tensor with A, u > 2, according
to eq. (6). A large curvature or a large slope of the dynamical trajectory may appear

only at the beginning or at the end of the barrier, where the potential energy is small and



a large value of B is not so important.

The static trajectory L, is also shown in Fig. 1, for comparison. The effective inertia
B is usually large along this trajectory, as discussed in [32], and, in spite of smaller fission

barrier, leads to a larger action than that along the dynamical trajectory.

3.2 Fission barrier

Shape of the fission barrier calculated along the dynamical trajectory Layn 1s illustrated
in Fig. 2. One can see that the barrier is thin. It ends at a deformation 3, ~ 0.7, thus
at about the deformations of fission isomers, i.e. the deformations at which the second
minimum in energy appears for lighter nuclei, around americium. The barrier is, however,
high. This is mainly due to a large (in absolute value), negative shell correction Eg, to
the ground-state energy. For the considered nucleus *°°106, the correction is: Eqp = —6.3
MeV.

The (static) barrier, calculated along the static trajectory Lqtat, 1s also shown in
Fig. 2, for comparison. This barrier is important for calculations of the competition

between neutron emission and fission (I',/T's) of an excited nucleus.

E (MeV)

Figure 2: Shape of the potential-energy barrier calculated along the dynamical and statical
fission trajectories, for the nucleus **¢106.



One can see in Fig. 2 that the static barrier is by almost 2 MeV lower, and it also
much differs in shape from the dynamical barrier. The height of the statical barrier is
about equal to the ground-state shell correction Eg,, as there is almost no contribution of
the smooth part of the energy to this height, and the shell correction at the saddle point

is rather small, as discussed in [3].
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Figure 3: Contour map of the height of the dynamical fission barrier, B?yn, plotted as a

function of the proton Z and neutron N numbers.
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Figure 4: Same as in Fig. 3, but for the static fission barrier By}

yn

Contour map of the height B? of the dynamical fission barrier is shown in Fig. 3.

As mentioned above, the height is large. It is larger than 7 MeV for about 20 of the



nuclei considered. The largest value, 8.8 MeV, is obtained for the nucleus 262106, i.e.
the nucleus with the neutron number N = 162, corresponding to the predicted closed
deformed neutron shell.

Contour map of the height B} of the static fission barrier is given in Fig. 4. One
can see that Fig. 4 presents a "mountain”, which is flattened to some degree with respect
to the "mountain” of B}iy" (Fig. 3). It is decreased around the top (by up to about 2
MeV), while it remains almost unchanged at the bottom, in comparison with B?y".

As the main contribution t> the barrier heights B}iyn and B} is the ground-state
shell correction Eg, it is interesting to see also the map of the latter quantity. This is
shown in Fig. 5. One can see a really strong correlation between the three maps.

It is worth noting in Fig. 5 that, when moving from lighter to heavier nuclei, after the
maximum (in absolute value) of Eg,, obtained for the predicted doubly magic deformed
nucleus 27°108, one observes a minimum of this quantity for N ~ 170 and then one sees
its increase again, when approaching the predicted doubly magic spherical nucleus ?9®114.
The corresponding behaviour is also observed in the fission-barrier heights in Fig. 3 and
Fig. 4.

E., (MeV)  (scale:1.0, min.in:B, B, Bs Bs)
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Figure 5: Contour map of the ground-state shell correction, Eq, to the potential energy

E. Crosses indicate the heaviest nuclei synthesized up to now.

3.3 Effective inertia

The effective inertia B, eq. (6), calculated along the dynamical fission trajectory Layn
is shown in Fig. 6. One can see that it is a rather strongly fluctuating function of de-
formation. This is because the inertia tensor (mass parameters) is a much less collective

quantity than the potential energy or even the moment of inertia (i.e. the inertia of a
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Figure 6: Effective inertia B calculated along the dynamical fission trajectory, for the
nucleus 266106.

nucleus with respect to its rotation) as was discussed in detail in [28]. Thus, it is very
sensitive to the internal, single-particle structure of a nucleus which changes with its de-
formation. A general tendency is that the inertia tensor is small at deformations at which
the potential energy has deep minima (low single-particle-level density at the Fermi level
at these deformations) and large at deformations at which the potential energy has par-
ticularly large values, e.g. maxima or saddle points (high single-particle-level density at
these points). This means that the regions around the maxima in the potential energy
along the fission trajectory, giving the largest contribution to the half-life Tt due to large

both the potential energy £ and the inertia B, should be especially carefully treated in
the calculations of this half-life.

3.4 Fission half-life

Contour map of logarithm of the fission half-life Ty. given in seconds, is shown in Fig. 7.
The structure of the map is similar to that of the barrier height B?y“ (Fig. 3).
One can see that the half-lives are rather large. The largest value, obtained for 268106,

is of the order of few hours (3.5 h). (Even larger values are obtained only for transitional
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Figure 7: Same as in fig. 3, but for logarithm of the spontaneous-fission half-life T}, given

in seconds.

nuclei, N > 174, on the border with the region of spherical superheavy nuclei situated
around the nucleus *%8114.)

Fig. 8 shows the dependence of logarithm of the fission half-life Ty on the neutron
number N, for all considered values of Z. The a-decay half-life T, is also shown, for
completeness. The latter is calculated in the same way as in [2], with small improvements.
One can see a clear effect of the N = 162 shell in the fission half-life T, for all Z. The
effect is especially strong for Z = 106. For Z = 104, also the effect of the lower shell at
N =152 is visible. The effect of N = 162, and smaller effect of N = 152, are also seen in
the a-decay half-life T,.

The existing experimental values of both Ty and 7, are rather well reproduced by the
calculations. This may be considered as a satisfying result as there are no free parameters
in the calculations, fitted to experiment.

A comparison between the calculated Ty and T, shows that for Z = 104 T 1s smaller
than T, for all N. For Z = 106, Ty is comparable with T, for a large number of isotopes
(N = 154 — 164). For higher Z, it is even larger than T, and for even larger number
of isotopes. This seems to be the effect of shells, mainly of that at N = 162, to which
T 1s more sensitive than T,. Only for lightest isotopes, Ty is shorter than T, for all
investigated elements.

The results are generally similar to the earlier ones [8], obtained in a smaller defor-
mation space. The present values of Ty are significantly lower, however, for Z = 108 and
110 than the previous ones. This is probably mainly due to lower values of the dynamical

effective inertia, presently used, than those of the phenomenological inertia, exploited
previously [8].
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Figure 8: Dependence of logarithm of the calculated spontaneous-fission (sf) half-lives,
given in seconds, on the neutron number N, for elements 104-114. The a-decay half-lives
(a) are also shown, for comparison. Experimental values are given by full points. The
horizontal dashed line indicates about the lowest half-life (1 us) of a nucleus, which can

be detected in a present-day set-up, after its synthesis.

More detailed calculated fission properties of the considered nuclei are given in Table 1.
The first three columns of the Table 1 specify the proton Z, neutron N and mass A

numbers of a nucleus, respectively. The fourth one gives the equilibrium value of the
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Table 1. Equilibrium deformation and spontaneous-fission properties of
nuclei specified in the first three columns.

Z N A B B By B BN logTul(s) Ty TSP Ref.
- - - - - - (MeV) (MeV)

104 142 246 .238 .30 .56 3.9 4.0 -11.81 1.5 ps

104 144 248 239 .29 .57 4.7 4.9 -9.87  0.13 mns

104 146 250 .242 .28 .58 5.5 5.7 -8.07 85 ms

104 148 252 .245 .28 .60 6.2 6.6 -6.19 .65 pus

104 150 254 .248 .28 .63 6.7 7.3 -4.22 60 ps 0.5105 ms  [35]
104 152 256 .249 .28 66 7.0 7.9 2.04  91ms 74%7 ms  [36]
104 154 258 .248 .27 .68 6.9 7.9 -1.56 28 ms  13%3 ms  [37]
104 156 260 .247 .27 .68 6.6 7.8 -1.27 54 ms 217 ms  [37]
104 158 262 .243 .27 69 6.5 7.6 0.67 021 s 12939 s [17,18)
104 160 264 .237 .26 .69 6.4 7.6 039 25 s

104 162 266 .229 .26 .70 6.5 7.8 1.37 23

104 164 268 .221 .25 69 5.7 6.8 0.14 14

104 166 270 .203 .24 .67 4.9 5.4 -1.69 20 ms

104 168 272 .196 .23 .66 4.2 4.2 -3.50  0.32 ms

106 144 250 .239 .29 55 3.9 4.1 -11.40 4.0 ps

106 146 252 242 .28 .56 4.6 4.9 -9.56  0.28 ns

106 148 254 .244 .28 58 53 5.9 -7.45 35 ns

106 150 256 .247 27 .62 5.9 6.7 -5.24 5.8 pus

106 152 258 .248 .27 .66 6.3 7.5 274 1.8 ms

106 154 260 .247 .27 .68 6.4 7.8 -1.79 16 ms 7.2%33 ms  [38]
106 156 262 .244 27 .69 6.3 7.8 -1.07 85 ms

106 158 264 .244 26 .70 6.3 8.1 037 23 s

106 160 266 .239 .26 .71 6.4 8.2 1.76 58 s

106 162 268 .23¢ .25 .73 6.8 8.8 410 35 h

106 164 270 .225 .25 .70 5.9 7.5 1.74 55 s

106 166 272 213 .25 .68 5.0 5.9 0.54 029 s

106 168 274 .198 .24 .67 4.2 4.4 241 3.9 ms

106 170 276 .171 22 .66 3.6 3.6 -3.58  0.26 ms

108 146 254 .240 .28 .54 3.4 3.8 -11.35 4.5 ps

108 148 256 .241 .28 .56 4.1 4.8 -9.20  0.63 ns

108 150 258 .243 .27 59 4.7 5.8 -7.02 95 ns

108 152 260 .244 .27 .63 5.2 6.4 -4.63 23 ps

108 154 262 .243 27 .66 54 6.8 -3.18  0.66 ms

108 156 264 .242 26 .68 55 7.1 -1.67 21 ms

108 158 266 .241 26 .70 5.7 7.7 0.21 1.6 s

108 160 268 .237 .26 .72 6.1 8.0 198 16 m

108 162 270 .233 25 .73 6.5 8.2 38 1.8 h

108 164 272 227 .25 .71 5.9 7.1 2.82 11 m

108 166 274 .217 .24 .69 5.1 6.0 0.76 58 s

108 168 276 .200 .23 .68 4.2 4.2 -1.34 46 ms

108 170 278 .175 .22 67 3.5 3.5 -3.01  0.98 ms

108 172 280 .135 .19 .67 3.3 3.3 -1.49 32 ms
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Table 1 (Continued).

z N A8 P B By BY" dogTu(s) Ty TFP Ref
- - - - - - (MeV) (MeV)

110 148 258 .236 .28 .53 2.6 3.1 -12.11 0.78 ps
110 150 260 .237 .28 .56 3.2 4.1 -9.99  0.10 ns
110 152 262 .241 .27 .59 3.7 4.8 -7.83 15 ns
110 154 264 .238 .27 .62 3.8 5.1 -6.69  0.20 ps
110 156 266 .234 .27 .64 3.9 5.3 -5.32 4.8 us
110 158 268 .229 .26 .66 4.3 5.9 -3.14  0.72 ms
110 160 270 .227 .25 .68 4.9 6.9 -0.27  0.54 s
110 162 272 .226 .24 .70 5.6 7.4 2.75 94 m
110 164 274 217 .24 .69 5.2 6.4 1.68 48 s
110 166 276 .207 .23 .68 4.6 5.2 0.32 2.1 s
110 168 278 .198 .22 .67 4.0 4.0 -1.25 56 ms
110 170 280 .153 .21 .66 3.5 3.5 -1.92 12 ms
110 172 282 125 .18 .66 3.4 3.5 0.19 1.5 s
110 174 284 .116 .15 .67 3.5 3.6 2.32 3.5 m
112 150 262 .232 .29 .53 2.0 2.2 -13.55 28 fs
112 152 264 .234 .28 .56 2.4 2.7 -11.49 3.2 ps
112 154 266 .227 .27 .58 2.3 2.8 -10.32 48 ps
112 156 268 .223 .27 .60 2.3 3.0 -9.16 0.69 ns
112 158 270 .219 .26 .63 2.9 3.8 -6.73  0.19 ps
112 160 272 219 .25 .65 3.7 4.5 -3.50  0.32 ms
112 162 274 .221 .24 .68 4.5 5.9 -0.20  0.63 s
112 164 276 .206 .23 .67 4.4 4.8 0.13 1.3 s
112 166 278 .202 .22 .66 4.1 4.1 -0.67  0.21 s
112 168 280 .191 .21 .65 3.6 3.7 -1.47 34 ms
112 170 282 .144 .19 .65 3.4 3.5 -1.15 71 ms
112 172 284 .123 .17 .66 3.4 3.5 0.60 4.0 s
112 174 286 .095 .15 .66 3.7 4.3 3.29 32 m
114 154 268 .219 .28 .54 1.2 1.3 -14.71 1.9 fs
114 156 270 .209 .26 .56 1.3 1.4 -12.84  0.14 ps
114 158 272 .207 .25 .60 1.7 1.9 -9.98 0.10 ns
114 160 274 208 .24 .62 2.5 2.7 -6.34 0.46 ps
114 162 276 .212 .23 .64 3.4 3.4 -2.46 3.5 ms
114 164 278 .203 .22 .65 3.6 3.7 -1.66 22 ms
114 166 280 .190 .23 .65 3.5 3.6 -3.17  0.68 ms
114 168 282 .182 .21 .64 3.2 3.4 -2.33 4.7 ms
114 170 284 .143 .19 .64 3.1 3.3 -1.93 12 ms
114 172 286 .121 .17 .65 3.3 3.8 0.17 1.5 s
114 174 288 .086 .14 .66 4.1 4.7 3.32 35 m
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quadrupole component of the deformation 35. This main component of the deformation
of a nucleus is chosen to parametrize the position of a point on the fission trajectory.
Columns 5 and 6 give the entrance and exit points to and from the barrier, respectively,
and columns 7 and 8 give the heights of the static and dynamic barriers. Logarithm of the
fission half-life (given in seconds), logioTs(s), is presented in column 9 and the half-life
itself in column 10. Columns 11 and 12 give experimental values of Ty and the respective
references.

One can see in Table 1 that the theoretical values reproduce the experimental results
rather well, within a factor of 3, on the average. The largest discrepancy is obtained for
the nucleus 2*104, for which the theoretical value is smaller than the experimental one
by a factor of 8. Preliminary results of more recent measurements [39] give, however,
value [40] which is closer to the calculated value.

A comparison of our half-lives with other calculated values, those of [9], shows that
those values are smaller than ours by up to about 8 orders of magnitude. Also the results
of [10,41] are very different from ours. For nuclei with neutron number N close to the
magic value N = 162, the half-lives Ty of [10,41] are smaller than ours by up to more than
6 orders of magnitude. The difference seems to come mainly from smaller phenomenologic
inertia taken in [9,10,41] than the microscopic inertia obtained in the present paper.

One can see in Table 1 that almost all considered nuclei are well deformed (large 59).
Only the heaviest isotopes, especially those of the elements with largest Z, are transitional.
The barriers are thin, especially those of the most neutron-deficient isotopes. Some of
these barriers end at quite small deformations 3, &~ 0.55 — 0.60. The static fission barrier

is systematically lower than the dynamical one by up to about 2 MeV.

3.5 A remark on terminology

It seems to be practical to have some name for the very specific region of nuclei consid-
ered in the present paper, due to its specifics and also to a large recent activity, both
experimental and theoretical, in the study of these nuclei. The name "deformed super-
heavy nuclei” is one, a rather natural, of the possibilities. It has been already used for
some time [42]. [t makes use of the suggestion of P. Armbruster [43,44] to extend the
name “superheavy nuclei”, primarily reserved [45] for spherical nuclei around the hypo-
thetical doubly magic nucleus ?*®114, to all nuclei with very large Z and N, which exist
or are expected to exist only due to their shell effects. It looks from recent calculations
that the discussed nuclei fulfil this condition. The adjective "deformed” reflects their
expected shape and distinguishes them from the "traditional” superheavy nuclei around
298114, which should be called "spherical superheavy nuclei”. Such distinction could not
be made by names of elements, as some isotopes of a given element (e.g. 108 (Hs) or 109

(Mt)) belong to one (e.g. deformed) and others to the second (spherical) region of nuclei.
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There has been also used the name "rock”™ [41], at least for a part of the discussed

region of nuclei, proposed in connection with their increased stability.

4 Conclusions

The following conclusions may be drawn from the present study:

(1) Almost all considered nuclei are predicted to be deformed. Only very few of them,
the heaviest ones, are expected .o be transitional.

(2) The ground-state fission barriers of the nuclei are thin. They already end at
deformations 3; ~ 0.55 — 0.70.

(3) The barriers are, however, high. For about 20 of the considered nuclei, the dy-
namical fission barrier is higher than 7 MeV. The largest ValL;e, 8.8 MeV, is obtained
for the nucleus 2®106 (*¢%Sg), i.e. the nucleus with the predicted closed neutron shell at
N = 162. The static barriers are by up to about 2 MeV lower than the dynamical ones.

(4) The large height of the fission barrier is mainly due to a large shell correction to
the ground-state energy of these nuclei. The largest (negative) value of this correction,
-7.2 MeV, is obtained for the nucleus *"°108 (*"°Hs), predicted to be a doubly magic
deformed nucleus.

(5) Due to high barriers, the spontaneous-fission half-lives Tyt of the considered nuclei
are rather large. The largest value, 3.5 h, is obtained for the nucleus 268106.

(6) The existing experimental values of Ty, for nuclei in the considered region, are
rather well reproduced by the calculations.

(7) A comparison between the calculated fission, Ty, and a-decay, T, half-lives shows
that for Z = 104 Ty is smaller than T, Ty < T,, for all N. For Z = 106, Ty ~ T, for
a large number of isotopes (N = 154 — 164). For higher Z, Ty is even larger than T,
and for even larger number of isotopes. Only for the most neutron-deficient isotopes of
considered elements, Ty i1s smaller than T,.

(8) Thus, the results show that many of not yet observed nuclei in the considered
region are expected to have sufficiently long half-lives to be observed in a present-day

experimental set-up, if synthesized.
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