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Abstract

A nonlinear theory is presented for the spontaneous formation of a hole-

clump pair in the phase space of a system whose equilibrium is just above the

linear threshold for instability. The first case studied takes the damping to

be a purely linear response with the nonlinear instability drive due to a sin-

gle wave-particle resonance with particles that have an inverted distribution

function. Analytic results shows that the hole and clump can each support a

Bernstein-Greene-Kruskal nonlinear wave, with the trapping frequency of par-

ticles comparable to the linear growth rate without dissipation. The power

that is dissipated to the background plasma is balanced by the energy ex-

tracted from the inverted equilibrium distribution by the moving phase space

structures. This motion produces frequency sweeping of the fields. The sec-

ond case studied has no extrinsic dissipation. Instead, a second resonance is

taken, which affects a different species of particles whose distribution function

decreases with energy. For an electrostatic interaction, we consider cases for

which the mass ratio of the destabilizing to stabilizing species is: (i) much

less than unity; (ii) equal to unity; (iii) much greater than unity. Case (i)

gives results that are similar to the linear dissipation model, while cases (ii)
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and (iii) saturate without any frequency sweeping. However, in case (ii), the

saturated level is proportional to the total linear growth rate, while the sat-

uration level in (iii) is nearly the same as the saturation level in a system

where the stabilizing species is not present. In the third case we show that

frequency sweeping can reappear in the problem of a collisionless destabilizing

heavy species, with collisions affecting the stabilizing light species. When the

collision frequency is relatively large, so that the light species in effect have a

linear response, the problem reverts to the first case. More subtle and specu-

lative explanations are given to explain why, at lower collisionality, holes and

clumps also emerge.
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I. INTRODUCTION

Recently it was observed that an unstable mode, driven by resonant particles, can grow

explosively to a level that remains finite even at the instability threshold, where the mode

linear growth rate, γ, becomes vanishingly small.1 The quantity γ is the difference between

the fast particle drive, γL, and the damping due to background dissipation, γd. In this

problem the wave taps the free energy of an inverted distribution function to overcome the

dissipation. Specific examples of this effect include the bump-on-tail instability2 and the

excitation of Alfvén waves in plasmas of interest in fusion research.3

An important intrinsic feature of the explosive growth is that the mode frequency shifts

in time from its value at the instability threshold. By the time the amplitude grows to

a level where the trapped particle nonlinear bounce frequency, ωb, reaches the value γL,

the frequency shifts also become comparable to γL. At this moment, the explosive growth

described in Ref. 1 stops, and the mode saturates. We have developed a code that confirms

the expected saturation level, but also reveals a surprising effect: the saturated mode lasts

much longer than the damping time associated with the background dissipation. In addition,

the mode frequency keeps shifting after the mode saturation is reached.4,5 These numerical

results and the underlying physics were reported in a short communication.4 The initial

explosive phase leads to the formation of a hole6−8-clump9,10 pair in phase space. In the

bump-on-tail instability, the hole produces an upward shift of the frequency and the clump

a downward shift of the frequency.

The purpose of this paper is to elaborate on results already reported in Ref. 4, as well as

to extend the scope of the problem to two kinetic species. The paper has the following struc-

ture: in Sec. II, we summarize a previously developed formalism11,12 for treating the kinetic

instability problem. Further, in Sec. III, we reproduce the principal results for the single-

species problem with externally-imposed dissipation4 and present them with appropriate

figures (in Ref. 4, incorrect illustrations were inadvertently published).

In Sec. IV we replace the external linear dissipation with a kinetic dissipation arising

3



from a stabilizing population of particles with a distribution that decreases with energy.

This population will be treated self-consistently together with the inverted population that

destabilizes the wave. We choose parameters so that the linear drive slightly exceeds the

wave damping. Specifically, we examine the evolution of charged particles interacting with

a one-dimensional electrostatic wave. We assume that the absolute values of the charges are

equal for the two species, and examine the effect of varying mass ratio.

When the instability drive is associated with the light component, and the stabilizing

component is much heavier, one initially finds essentially the same results as in the one-

species case with external, linear damping. The reason is that the stabilizing species responds

linearly for some time after the drive of the destabilizing species becomes nonlinear. However,

later in time even the stabilizing species may exhibit a nonlinear response which affects the

rate at which frequency changes.

In the opposite limit, where the instability drive is associated with the more massive

species, the mode frequency does not change, but the wave rapidly evolves into a nonlinear

explosive regime and saturates at a level that is independent of the presence of the stabilizing

component. When the two species have equal or nearly-equal masses, there is again no

frequency shift, but the mode amplitude remains at a low level that is proportional to the

increment by which the system exceeds the linear instability threshold.

In Sec. V we show that with a heavy collisionless drive, frequency sweeping can be

restored when collisions are taken into account for the light stabilizing species.

In Sec. VI we summarize our work.

II. FUNDAMENTAL EQUATIONS

We first outline the derivation of the fundamental equations used in the particle simula-

tion code of Ref. 4. These equations are given below [see Eqs. (13) and (17)]. We will use

the same notation as in Ref. 12 and follow the standard perturbation procedure for weakly

interacting (slowly evolving) modes, assuming that the polarization and spatial structure of
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the mode are determined by the linear properties of the background plasma.

The electric field of the mode can then be represented in the form

E(r, t) = 2 Re
[
C(t)e−iω0te(r, ω0)

]
. (1)

In Eq. (1), ω0 is the unperturbed mode frequency, C(t) is a slowly-varying complex ampli-

tude, and e(r, ω0) is the mode eigenvector normalized to unity by volume averaging,

1

V

∫
dr e · e∗ = 1. (2)

The frequency ω0 is a solution of the linear dispersion relation, excluding the energetic

particle contribution and the dissipative part of the plasma response. By using Maxwell’s

equations with a given plasma dielectric tensor, and taking the dot product of the energetic

particle current J with e(r, ω0), we find that the amplitude C(t) satisfies the equation

iGω

(
d

dt
+ γd

)
C(t) = eiω0t

∫
dr e∗(r, ω0) · J(r, t), (3)

where γd is the mode damping rate in the absence of energetic particles and Gω is a purely

imaginary quantity related to the mode energy, w, by

w = Im Gw|C|2. (4)

The right-hand side of Eq. (3) can be rewritten in terms of the energetic-particle distri-

bution function f , giving

iGω

(
d

dt
+ γd

)
C(t) = qeiω0t

∫
dΓ e∗(r, ω0) · v(Γ)f(Γ, t), (5)

where Γ = (r,p) is the phase space position, q is the charge, and v is the velocity.

We now need to find f(Γ, t) from the kinetic equation

∂f

∂t
+

∂H

∂p
· ∂f

∂r
− ∂H

∂r
· ∂f

∂p
= St f + Q, (6)

in which the Hamiltonian H splits into H = H0+H1, such that H0 determines the equilibrium

orbits and H1 represents the perturbation from the mode. The right-hand side of Eq. (6)
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takes into account the particle source Q and the collision operator St. For phase space

coordinates, we choose action-angle variables of the unperturbed motion, (Ii, ξi), with i =

1, 2, 3. This choice can always be made if the unperturbed orbits are integrable. The

Hamiltonian H can then be written as H = H0(I1, I2, I3) + H1 with

H1 = 2 Re C(t)e−iω0t
∑
`

V`(I1, I2, I3)e
i`1ξ1+i`2ξ2+i`3ξ3 . (7)

Here, ` represents a triad of integers (`1, `2, `3), and V`(I1, I2, I3) are matrix elements that

can be calculated in a standard way (see Ref. 13).

Each term in the perturbed Hamiltonian represents a resonance that can be treated

separately, so long as the mode amplitude remains sufficiently low so that resonances do not

overlap. For nearly resonant particles, we can also express H1 in terms of the perturbed

electric field, given by Eq. (1). The result is

H1 = 2q Re
(
i C(t)

v · e
ω0

e−iω0t
)

. (8)

The location of a resonance is determined by the condition

Ω ≡ `1
∂H0

∂I1
+ `2

∂H0

∂I2
+ `3

∂H0

∂I3
= ω0. (9)

It is then natural to make a canonical transformation to a new set of action-angle vari-

ables, such that one of the new angles is ξ = `1ξ1 + `2ξ2 + `3ξ3, with I the corresponding

action. For particles nearly resonant with this action-angle pair, the Hamiltonian reduces

to the one-dimensional form

H = H0(I) + 2 Re C(t)V (I)ei(ξ−ω0t), (10)

where the dependence on the other two new actions is suppressed, since they appear as

parameters in the new Hamiltonian. In absence of collisions, the motion of resonant particles

satisfies the pendulum equation

d2ξ

dt2
+ ω2

b sin(ξ − ω0t− ξ0) = 0, (11)
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where ξ0 is a phase determined by C(t), and

ω2
b ≡

∣∣∣∣∣2CV (I)
∂Ω

∂I

∣∣∣∣∣
I=Ir

(12)

can be interpreted as the square of the bounce frequency of a trapped particle. In Eq. (12),

Ir is the value of the action at resonance: Ω(Ir) = ω0.

Near resonance, the kinetic equation is

∂f

∂t
+ Ω

∂f

∂ξ
− 2 Re

[
iC(t)V

(
∂Ω

∂I

)
ei(ξ−ω0t)

]
I=Ir

∂f

∂Ω
= St f + Q. (13)

where we have chosen Ω(I) as a new independent variable to replace the action, I.

Two forms of the collision operator in Eq. (13) are of interest. The first is a diffusive

one that follows from an orbit averaging of the Fokker-Planck collision operator for nearly

resonant particles11,12

St f + Q = ν3
eff

∂2

∂Ω2
(f − F ), (14)

where F (I) is the equilibrium distribution. The explicit expression for ν3
eff in Eq. (14) is

given in Ref. 12. The second form we use in this work is the Krook collision operator, which

is a model particularly convenient for δf simulations. This is

St f + Q = −νr(f − F ), (15)

where νr is the reconstitution rate of the particle distribution. It has been previously noted

in Ref. 14 that the two operators produce similar physical results if νr ∼ ν3
eff/(ω2

b + ν2
r ).

The function C(t) that enters Eq. (13) satisfies Eq. (5). In terms of the coordinate pair

(Ω, ξ), the phase space volume element becomes

dΓ = dΓ⊥ dξ dΩ
dI

dΩ
, (16)

where dΓ⊥ represents the volume element corresponding to the remaining actions and angles.

The evolution equation can then be written as(
d

dt
+ γd

)
C(t) =

ω0

Gω

∑
`

∫
dΓ⊥

dξ dΩ

|dΩ/dI| V
∗
` e−i(ξ−ω0t) f. (17)
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Equation (13) for f , together with Eq. (17) for C(t) form a closed set of fundamental

equations for the system. From this point onwards, the `-summation over resonances, as

well as the integration over dΓ⊥, will usually be suppressed for brevity. Note that Eq. (13)

is a kinetic equation in just one spatial dimension. The sum over particles in the wave

equation, Eq. (17), involves summation over Γ⊥ and `. Of course, for a true one-dimensional

problem, this summation is not present.

III. EVIDENCE FOR HOLE-CLUMP FORMATION

This section summarizes work that was originally published in Ref. 4, where Eqs. (13)

and (17) were solved numerically for the case of the electrostatic bump-on-tail instability.

The key features of this problem are common to many other kinetic instabilities, if one

describes the evolution in terms of the bounce frequency of resonant particles. Thus it is

natural to define the amplitude

A(t) = 2 C(t)

(
V

∂Ω

∂I

)
I=Ir

, (18)

with |A(t)| = ω2
b [see Eq. (12)]. The input parameters for a simulation are the growth rate

induced by energetic particles, γL, the externally imposed damping rate, γd, and the effective

collision frequency νeff (with the diffusive collision operator). The growth rate, γL, is related

to the slope of the equilibrium distribution function according to

γL =
2π2ω0

Im Gw

|V |2 ∂F

∂Ω

∣∣∣∣∣
Ω=ω0

. (19)

For the bump-on-tail problem, this expression reduces to

γL =
2π2q2ωpe

k2

∂F

∂v

∣∣∣∣∣
v=ωpe/k

, (20)

where k is the wavenumber, v is the particle velocity, and ωpe is the electron plasma fre-

quency.

The quantity ν3
eff is roughly given by ν3

eff = ν90◦ω
2
pe, where ν90◦ is the particle 90◦ pitch

angle scattering rate.
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It will be seen from the numerical results that a saturated level ωb ∼ γL is obtained, with

δω ≡ ω − ω0 much larger than γL. Eqs. (13) and (17) permit a solution where A(t) is real,

and this special case was examined in our first numerical study.4 Figure 1 shows a numerical

solution for A(t)/γ2
L as a function of γL t. Initially, the amplitude increases exponentially in

time, and then goes into the explosive phase described analytically in Ref. 1 [see Eq. (21)

below for more details]. The explosive solution leads to saturation at a level A(t)/γ2
L ∼ 1.

When this level is reached, the instability drive does not deplete as might be expected.

Instead the envelope of the mode amplitude remains roughly constant in the time interval

1 ¿ γLt ¿ (γL/νeff)3, and A(t) oscillates with increasing frequency. Figure 2 shows the

upshifted frequency spectrum, δω, as a function of time; an equal-strength downshifted

spectrum, −δω, also forms. (These two figures are also presented in the errata5 for Ref. 4).

The most intensive component is the one with the largest frequency shift, but appreciable

satellite bands are also generated.

In Figs. 3a and 3b we show respectively the spatially-averaged distribution function

and wave spectrum as a function of time. The depression/enhancement of the average

distribution function coincides with the upshifted/downshifted frequency, which suggests

that phase space structures in the form of holes (the upshifted component) and clumps (the

downshifted component) have been spontaneously created. This inference was verified in the

phase space contour plot of Ref. 4, which directly demonstrated that early in time the value

of the distribution function in the trapping regions of the hole and clump does not change

as they move in phase space. Only later in time, when ν3
eff t/γ2

L ∼ 1 does the value of the

distribution at the hole and clump change, causing the phase space structures to dissipate.

A. Creation of holes and clumps

The numerical results can be understood as follows: in Ref. 1 it was found that the

evolution of a sufficiently small real amplitude A(t) is described by the nonlinear threshold

equation
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dA

dt
− γA = −γL

2

∫ t/2

0
dz z2A(t− z)

∫ t−2z

0
dx K(x, z) A(t− z − x)A∗(t− 2z − x), (21)

with

K(x, z) ≡


exp [−ν3

effz2(2z/3 + x)] , for Eq. (14)

exp [−νr(2z + x)] , for Eq. (15).

(22)

In the limit of weak collisions (K → 1) we find that for any positive γ, the amplitude

A exhibits an explosive self-similar oscillatory behavior with a divergence in a finite time:

A ∝ (t0−t)−5/2. This solution produces upshifted and downshifted sideband frequencies that

diverge as (t0− t)−1. Although the solution of the reduced cubic equation, Eq. (21), remains

valid only so long as |A| ¿ γ2
L, the divergent oscillations indicate that the mode splits

into several spectral components. In the full-scale simulations, described in the previous

section, these components evolve into two Bernstein-Greene-Kruskal (BGK) modes,15 which

maintain a hole and a clump in the particle distribution function. Apparently, the explosive

behavior sets up the precursor needed to achieve these BGK modes.

Note that the full-scale simulations with a code described in Ref. 16 accurately repro-

duce the transition from linear instability to the oscillatory growth of the mode amplitude

predicted by Eq. (21). As seen from Fig. 4, the two solutions agree until the mode amplitude

reaches the applicability limit of the threshold equation.

Another interesting observation from both the solution of Eq. (21) and the full-scale

simulations is that, if the initial perturbation is sufficiently strong, the explosive onset of the

hole and clump is possible even in linearly stable systems. This is illustrated in Fig. 5, which

shows the evolution of a seed perturbation in the barely-stable regime (γ = −0.1γL). We see

that the mode amplitude first decreases due to linear damping but then the nonlinear effects

take over and produce oscillatory growth that eventually leads to hole-clump formation

accompanied by frequency sweeping. By a straightforward dimensional analysis, one can

show that the required amplitude of the seed perturbation has to satisfy the condition

ω2
b

>∼ (νeff + γ)5/2/γ
1/2
L .
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The mode will then take off and grow explosively to a level ωb ∼ γL.

B. Adiabatic regime

Our simulations show that the frequency separation between the two BGK modes in-

creases in time. This separation is typically greater than ωb and γL, which allows us to treat

the two modes independently. In addition, particles trapped in the potential well of each

mode can be described in the adiabatic approximation provided that the mode evolution is

sufficiently slow (which is the case for the simulations discussed herein).

This observation allows us to develop an analytic picture for the evolution of the phase

space structures. The analytic method is a generalization of a procedure described in Ref. 17,

where the particle-to-wave energy transfer was calculated for energetic particles that were

affected by drag (mathematically, the effect of drag is equivalent to frequency sweeping).

In order to describe a single BGK mode, we make the replacement

Re
[
A(t)ei(ξ−ω0t)

]
−→ −ω2

b cos
(
ξ − ω0t−

∫ t

0
dt′ δω(t′)

)
. (23)

This is not an equality; rather, is shows that we can neglect the upshifted component when

treating the downshifted component, and vice versa. We use this ansatz to compute the

distribution function, f , in the trapping regions. In the passing regions, we take simply

f = F (Ω). Now we introduce a Hamiltonian for the particle motion in the potential well of

a single BGK mode; this is

H =
p2

2
− ω2

b(cos q − αq), (24)

with α ≡ δ̇ω/ω2
b. The coordinate and momentum have the definitions

q ≡ ξ − ω0t−
∫ t

0
dt′ δω(t′), (25)

p ≡ Ω− ω0 − δω(t). (26)

It is then appropriate to construct the adiabatic invariant for particle motion in the slowly-

changing field of the mode,
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J(H, t) ≡ 1

2π

∮
dq p(H, q, t), (27)

where care must be taken in Eq. (27) and below to choose the proper root for the function

p(H, q, t) in accordance with Eq. (26). It follows from the equations of motion that q̇ =

p(H, q, t) and J̇ = τ(Ḣ − 〈Ḣ〉), where

Ḣ = q δ̈ω − d(ω2
b)

dt
cos q. (28)

The angle brackets indicate a bounce average at fixed (J, t) according to

〈f〉 ≡ 1

2πτ

∮ dq

p
f, with τ ≡ ∂J

∂H =
1

2π

∮ dq

p
. (29)

We can now write the kinetic equation as

∂f

∂t
+ τ(Ḣ − 〈Ḣ〉)∂f

∂J
+ p

∂f

∂q
= St f + Q, (30)

such that f = f(J, q, t, σ), where σ ≡ p/|p| is binary variable which denotes the sign of the

momentum. Further f(σ = 1) = f(σ = −1) at p = 0.

Now, we transform from f to a new function g which measures the deviation from the

unperturbed distribution function F at the center of the well:

g(J, q, t, σ) ≡ f(J, q, t, σ)− F (ω0 + δω). (31)

The equation for g is then

Dg + p
∂g

∂q
= −∂F

∂t
, (32)

where

D ≡ ∂

∂t
+ τ(Ḣ − 〈Ḣ〉) ∂

∂J
− St. (33)

To solve Eq. (32) we note that for slow time variation of the fields, the dependence of g on

q must be weak. This motivates the introduction of a small parameter ε, such that
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ε ≡ max
(
δ̈ω/ω3

b, ω̇b/ω
2
b, ωb/δω

)
¿ 1. (34)

Then, we expand g in powers of ε according to g = g0 +g1 + · · ·, where g1 is O(ε), and we

take as O(ε) both the source term ∂F/∂t and the differential operator D. To lowest order,

Eq. (32) is just

p
∂g0

∂q
= 0 so that g0 = g0(J, t). (35)

Note here that g0 has no σ dependence, as required by the continuity condition at the particle

turning points. Next, to O(ε), we have

Dg0 + p
∂g1

∂q
= −∂F

∂t
. (36)

Two important results follow from this equation. First, subtracting the p < 0 branch from

the p > 0 branch, we find

|p| ∂

∂q
[g1(J, q, t, +1) + g1(J, q, t,−1)] = 0. (37)

Next, when bounce-averaged, Eq. (36) becomes

∂g0

∂t
− 〈St g0〉 = −∂F

∂t
. (38)

We will return to these results shortly. Now, we analyze the amplitude equation, Eq. (17).

For a system with one degree-of-freedom, this can be written in terms of the coordinates

(q, p) as (
d

dt
+ γd

)
A(t) =

−2iω0|V |2
Im Gw

∫
dq dp e−iq−i

∫ t
0
dt′δω(t′) f(q, p, t). (39)

We can replace f in Eq. (39) with g, since the equilibrium piece, F , does not contribute to

the integral. In addition, the integration over p and q can be transformed to an integration

over the action, J , and the conjugate angle, ψ, according to

dp dq = dJdψ. (40)

Then, taking the real and imaginary parts of the resulting equation, we are left with the

compact result
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
−δω

γd

 =
2γL

πω2
bF
′(ω0)

∫ Jmax

0
dJ


〈g cos q〉

〈g sin q〉

 , (41)

where F ′ ≡ ∂F/∂Ω. Eq. (41) has been expressed in terms of γL as defined in Eq. (19).

Furthermore, we have omitted a term proportional to ω̇b, since by assumption ω̇b/ωb ¿ γd.

To simplify Eq. (41) further, we need to evaluate the indicated averages. For the upper line,

the averaging is straightforward:

〈g cos q〉 = g0 〈cos q〉+O(ε). (42)

For the lower line, the derivation is more subtle. We can proceed by first showing that

〈g (sin q + α)〉 = O(ε2). To see this, we use Eq. (24) and integrate by parts in q to find

〈g (sin q + α)〉 = − 1

2πτω2
b

∮
dq g

∂

∂q
p[H(J), q] (43)

=
1

πτ

1

ω2
b

∫ q+

q−
dq |p| ∂

∂q
[g(J, q, t, +1) + g(J, q, t,−1)]

= O(ε2),

where q± are the turning points (i.e. solutions of p(q, J, t) = 0). That the integral is O(ε2)

follows directly from Eq. (37). Thus, we have the asymptotic result

〈g sin q〉 = −α 〈g〉+O(ε2) = −αg0 +O(εα) +O(ε2), (44)

making it possible to write Eq. (41) in the simplified form δω

γd

 = − 2γL

πω2
bF
′(ω0)

∫ Jmax

0
dJ

 〈cos q〉g0

αg0

 . (45)

We note that the lower line in Eq. (45) can also be derived from physically intuitive

arguments like that used in Ref. 4, where the power released by an adiabatic structure

was calculated. The intuitive derivation seemed to require ω̇b ¿ δω̇, whereas the present

derivation does not have this restriction.

We now consider the collisionless limit, where the solution for g0 is

g0(t) = F (ω0)− F (ω0 + δω). (46)
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This expression is an immediate consequence of the bounce-averaged result

in Eq. (38). g0 can now be removed from the integrand in Eq. (45), and the action in-

tegrals evaluated to yield

∫ Jmax

0
dJ 〈cos qg0〉 =

8g0ωb

π

(
1− α2

)7/4
c1(α), (47)∫ Jmax

0
dJ αg0 =

8g0ωb

π

(
1− α2

)5/4
α c2(α). (48)

Above, we have introduced the O(1) functions c1 and c2. These have the asymptotic forms

(c1, c2) '


(1/3, 1) for α¿ 1;

(−3/5, 3/5) for 1− α2 ¿ 1.

(49)

By combining both components of Eq. (45), we find the solutions for ωb(δω) and δω(t),

ωb =
16

3π2
γLĝ(δω), (50)

t =
27π4

162

1

γdγ2
L

∫ δω

0
dx

x

ĝ(x)2
, (51)

where ĝ(x) ≡ [F (ω0 +x)−F (ω0)]/F
′(ω0)x. When |δω| ¿ |F ′/F ′′|, we can set ĝ ' 1 to show

that the frequency shift increases as the square root of time:

γL

ωb

' 3π2

16
and

δω

γL

' 16

3π2

√
2

3
(γd t)1/2. (52)

Finally, note that Eq. (45) can be generalized to account for multiple resonances and species.

In this case we introduce the quantity γ̃`(Γ⊥), given by

γ̃`(Γ⊥) =
2π2ω0

Im Gw

|V`(Γ⊥)|2 ∂F (Ω, Γ⊥)

∂Ω

∣∣∣∣∣
Ω=ω0

. (53)

The generalization of Eq. (52) is found to be

S1 =
3π2

16
and δω2 =

π2

8S3

(γd t) , (54)

where

Sp ≡
∑
`

∫
dΓ⊥

γ̃`
ωpb

. (55)
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Evidently, S0 is the total linear growth rate, γL, and dΓ⊥ is the phase space volume element

defined earlier. The applicability of these equations requires α¿ 1 in the phase space regions

where there are significant contributions to each Sp. However, sometimes this condition

cannot be fulfilled, and we will see an example of such a case in the next section.

IV. SELF-CONSISTENT DAMPING

Up to now the background damping has been prescribed and it is assumed that it remains

linear during the evolution of the wave. We now treat the damping mechanism in a self-

consistent manner. We assume it is caused by particle resonances in phase space regions

where ω0 F ′(ω0) < 0. In addition, the energetic particle population can be comprised of

several species, which can be incorporated by interpreting the `-summation in Eq. (17) as a

sum over species. We study cases where there is no additional damping, and set γd = 0.

We note that the corresponding generalization of the threshold equation, Eq. (21), leads

to

dA

dt
− γA =

−
∑
`

γ`r`
2

∫ t/2

0
dz z2A(t− z)

∫ t−2z

0
dx K`(x, z) A(t− z − x)A∗(t− 2z − x), (56)

where the index ` now runs over all resonant species. Here, A is the mode amplitude defined

in such a way that |A| equals the square of the trapping frequency of the destabilizing

species, and r` ≡ ω4
b`/|A|2. K` is given by Eq. (22), for each resonance.

Notice that the value of ω2
b given by Eq. (12) can be quite different for different reso-

nances. In what follows, we will illustrate the effect of this disparity for the case of two

coupled resonant species – a light one and a heavy one. We will assume that there is no

equilibrium field, so that the unperturbed particle moves freely, and we will discuss the elec-

trostatic bump-on-tail-like instability resulting from the two species. For this problem we

have ωbl/ωbh = (M/m)1/2 À 1, where m/M is a light-to-heavy species mass ratio, such that

the charges of the two species are assumed to be equal in magnitude (the subscripts “l” and
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“h” refer to the light and heavy species respectively). The inequality ωbl À ωbh implies that

the light species must exhibit nonlinear behavior at a much lower field amplitude than the

heavy species when m/M ¿ 1. It is therefore natural to first study the regime in which the

light species’ dynamics is nonlinear, while the response of the heavy species remains linear.

A. light species-driven instability

We expect that explosive growth of the mode amplitude should initiate frequency sweep-

ing when γl is somewhat larger than the linear heavy-species stabilization rate, |γh|. For

each species j, we have νeff,j ¿ γl + γh ≡ γ. It is readily shown that the heavy-species

nonlinearity in Eq. (56) is smaller than the light-species nonlinearity by a factor (m/M)2.

This leads to exactly the same situation as in the first part of this paper (as long as the

heavy-species dynamics remains linear). The mode first grows exponentially and appears

to saturate at the level ωbl ∼ γ5/4/γ
1/4
l , which follows straightforwardly from dimensional

analysis of Eq. (21) (this scaling has also been noted by Crawford.18) However, after this

stage the mode amplitude exhibits an oscillatory explosive growth to a much higher level,

ωbl ∼ γl. Then, the mode forms a hole and a clump in the light-species distribution and

persists for a long time because the energy extraction from the light species due to frequency

sweeping balances the linear energy absorption by the heavy species. The sweeping follows

the scaling law δω ∝ t1/2 as long as the heavy-species response remains linear – a condition

that can be written as δ̇ω > ω2
bh = (m/M) ω2

bl. As δω ∼ γ
3/2
l t1/2 and ωbl ∼ γl, the linear

approximation for the heavy species breaks down at t0 ∼ (M/m)2γ−1
l . At this moment, the

mode frequency shift reaches the value δω ∼ γ
3/2
l t

1/2
0 ∼ γlM/m.

It has been observed4 that collisions restrict the lifetime of a phase space structure to

t1 ≡ γ2
l /ν

3
eff,l. Thus if t1 ¿ t0 [or equivalently ν3

eff,l À γ3
l (m/M)2], the linear approximation

for the heavy-species response is sufficient to describe the mode frequency sweeping.

Only for extremely low collision frequency can the nonlinear dynamics of the heavy mass

species enter the problem, in which case we can expect other type of responses after a time
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t0. One possibility is a stationary BGK mode where the amplitude |A| ∼ γ2
l . Such a mode

is supported by a hole (or clump) in the distribution of the light species, but with the

distribution of the heavy species flattened near the resonance, so that wave damping does

not occur.

Another possible response involves frequency sweeping that results from the interplay of

two nonlinear phase space structures – one consisting of light particles that release energy

and the other consisting of heavy particles that absorb energy. Then, in the limit F (ω0)−

F (ω0 + δω)→ −δωF ′(ω0), the power-transfer equation [i.e. the lower line of Eq. (45) when

generalized to two species] takes the form

0 =
16 δω

π2

[
c2h

γl
ωbl

(
1− α2

l

)5/4
+ c2h

γh
ωbl

(
M

m

)3/2 (
1− α2

h

)5/4
]
αl. (57)

The reader should also note that we assume γl > 0 and γh < 0. For the two terms in Eq. (57)

to balance, we require

1− α2
h '

(
5

3

γl
|γh|

)4/5 (
m

M

)6/5

, (58)

which means that α2
h ' 1, with the physical implication that the potential well for

the trapped heavy particles is shallow. According to this scaling, the correction from

the heavy species to the BGK mode [i.e. the upper line in Eq. (45)] is negligible, as

it is easy to verify that the light-species term dominates by O(M/m)8/5. Thus, with-

out collisions, we find that a nonlinear frequency sweeping rate of δ̇ω = (m/M) ω2
bl

∼ (m/M) γ2
l can arise late in time. An interpolation formula for the sweeping rate which

encapsulates both the linear and nonlinear ion responses is

δ̇ω ' ω2
bl

(
π2

16

|γh|
γl

ωbl

δω
+

m

M
sgn δω

)
, (59)

Collisionality of both species has to be low enough for Eq. (59) to be valid. It has already

been noted that ν3
eff,l ¿ (m/M)2 γ3

l is required to achieve a nonlinear heavy-species response.

For the heavy-species phase space structure to form, the collisional frequency, νeff,h, needs

to be less than the trapping frequency in the shallow well. This leads to
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ν3
eff,h < γ3

l (m/M)12/5. (60)

Then with negligible collisionality of light species, the nonlinear sweeping continues for a

time Tsweep ∼ γ2
l (m/M)8/5/ν3

eff,h. Afterwards, the hole in the heavy-species distribution is

filled in and the distribution is flattened around the resonance region.

It can be shown that the described scenario satisfies the adiabatic condition; i.e. the

frequency sweeping rate is indeed smaller than the square of the heavy-species trapping

frequency.

Sweeping with a small m/M has been examined with the numerical simulation code

described in Ref. 16. Figure 6 shows results for m/M = 0.05. In this simulation, the light

species supplies the instability drive with γl/ω0 = 0.05, the heavy species supplies dissipation

with γh/ω0 = −0.035, and

F (ω) =
ω2

2ω0

(61)

where ω0 is the frequency of the linear mode. In Figs. 6a and 6b, respectively, we show the

time evolution of the light-species distribution function and a plot of the mode power spec-

trum. Clearly there is sweeping of the upshifted spectral component, while the downshifted

component does not sweep. The solid curve in Fig. 6b is the frequency shift obtained from a

generalization of Eq. (59) to the case of non-constant slope of the unperturbed distribution,

as used in Eq. (61). This generalization gives

t =

(
3π2

16

)2 ∫ δω

0

x d x

(1 + x/2ω0)
2 γ2

l

(
|x|m/M + 1

3
|γh|

) . (62)

We also show in the dashed curve the predicted frequency shift for m/M = 0, in which case

the heavy species’ response is purely linear. The simulation result agrees better with the

solid curve, which is an indication of nonlinear energy absorption by a heavy-species clump.

Further evidence of the clump is seen in Fig. 6c, which presents the spatial average of the

perturbed heavy-species distribution 〈δfh〉; the clump develops at ω0t/2π ∼ 400. Figure 6d

shows that the mode amplitude at saturation agrees with the characteristic estimate for the

sweeping solution, |A|/γ2
l ∼ 1. Unlike the upshifted branch, the lower frequency branch

19



does not exhibit sweeping after the heavy-species response becomes nonlinear. A likely

reason for this is that, as mentioned previously, the heavy species can form a plateau at the

resonance point causing dissipation and therefore frequency sweeping to stop. We also see

in Fig. 6b that the lower frequency branch eventually decays, although the perturbation of

the distribution function at the lowest phase velocity persists, as seen in Fig. 6c and 6d.

The reason for this decay still needs to be understood. The fairly broad unshifted spectrum

seen in Fig. 6b corresponds to fluctuations that persist near the original resonance after

the distribution functions of both species flatten at this location. We note that frequency

sweeping due to the formation of a hole and clump was also observed for m/M = 0.25, but

sweeping did not arise for m/M = 0.5.

B. heavy species-driven instability

An entirely different response near marginal stability arises if there is an inverted popu-

lation of heavy particles with a linear destabilization rate, γh > 0, and a normal population

of light particles with a damping rate, γl < 0 (a physical example of this case is an acoustic

instability where the ions have a bump-on-tail distribution and damping arises from elec-

tron Landau damping). Then the light-species nonlinearity is appreciably larger than the

heavy-species nonlinearity, as is clear from Eq. (56). The effect of the light-species nonlin-

earity is to weaken the damping mechanism so that the instability grows faster. This leads

to an explosive response A(t) ∝ 1/(t0 − t)5/2 without any oscillations – a hard instability.

This explosive behavior continues until |A(t)| ∼ (m/M)γ2
l , whereupon the light-species dis-

tribution forms a plateau near the resonance, and the further evolution of the wave is an

exponential growth at a rate γ ' γh, until the amplitude reaches |A| ∼ γ2
h. At this stage the

mode saturates as if there was no damping. The corresponding saturation level is given by

|A|1/2 ' 3.3γh (see Ref. 19). This level has been bracketed theoretically to within 15% by

using energy conservation arguments between the wave and the destabilizing species.20,21

In Fig. 7 we plot the evolution of the instability for m/M = 1/16, with γh = 0.025,
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γl = −0.024. Note that there is no frequency sweeping and the initial e-folding rate is

(γh + γl), as expected, but it transforms to a higher rate γ ' .6γh as the damping from

the light species decreases. In other simulations we find that this late time growth rate

approaches γh as the mass ratio gets smaller. The saturated level, |A|/γ2
h ' 10 agrees with

the result of Ref. 19.

A comparison at early times of this simulation and the threshold equation, Eq. (56) is

shown in Fig. 8. Note that now the nonlinear term in Eq. (56) is dominated by the light

species, by a factor (M/m)2, and this nonlinear term has a destabilizing effect, which leads

to a “hard” explosive solution. This solution can be inferred from the theory presented in

Ref. 12 [we note that there is misprint in Ref. 12, and in Eqs. (31)-(33) of that paper one

should replace e−iφ by −e−iφ to obtain the correct equation; this correction gives the hard

solution now discussed, but does not alter the other explosive solutions reported in that

reference]. The explicit form of the explosive solution is

A

γ2
l

= 42.3
1

[γl(t0 − t)]5/2
m

M
(63)

where t0 is the moment of explosion. This solution is also shown in Fig. 8.

It is also of interest to take the mass ratio of unity (a “positron-electron” plasma). In

Fig. 9 we plot the response for this case (we choose “γh” to denote the destabilizing species)

and we see that frequency sweeping does not arise. Equation (56) cannot be applied to

the equal masses case because the nonlinear terms nearly cancel in the same way as the

linear terms. Therefore there is no parameter that allows the nonlinear terms to be both

dominant and accurate (it can be shown that [1 − (m/M)2] > γ/γl is required for validity

of the threshold equation). The saturation level for the equal masses case can be estimated

using the same energy-momentum conservation principles, which yields ωb ' 3||γl| − |γh||.

This estimate correlates well with the mode amplitude observed in Fig. 9.

21



V. FREQUENCY SWEEPING WITH HEAVY SPECIES UNSTABLE

In this section we demonstrate that frequency sweeping can occur even when the insta-

bility drive comes from the heavy species if the collision frequency of the light species is

sufficiently large. This frequency sweeping is easiest to demonstrate if the heavy species is

collisionless (νh = 0). In the δf particle simulation, the collisional effects are modeled by

using a finite annihilation rate νl for the light, stabilizing species. We also use constant-slope

unperturbed distribution functions for both species. We choose γh/ω = .025, γl/ω = −.02,

m/M = 1/16, and scan the annihilation rate νl/ω (0.15, 0.0325, 0.0075). As will be discussed

below, all three cases show that frequency sweeping develops. Sweeping is to be expected

with the highest value of νl/ω, but sweeping with the lower values of νl/ω is surprising.

First let us consider the case (νl/ω = 0.15) presented in Fig. 10. We note that if ωbl/νl ¿

1, or equivalently ωbh(M/m)1/2 ¿ νl, the nonlinear response from the light species will be a

small correction to its linear response during the entire evolution of the simulation. As the

saturation level for ωbh is of the order of γh, we can rewrite the condition ωbh(M/m)1/2 ¿ νl

in the form (νl/γh)
2m/M ≡ δ À 1. Note that this condition is satisfied for νl/ω = 0.15.

Therefore, we are left with nearly the same problem as when the light species respond purely

linearly, and the result is very similar to what we report in Sec. III.

In the limit δ ¿ 1, collisions are too weak to maintain the response of the light species

close to the linear one. In general, the modified light species damping rate, γl,nonlinear can be

described by an interpolation formula that connects their quasistationary (dA/dt ¿ νlA)

response for A¿ ν2
l to the result for AÀ ν2

l :

γl,nonlinear = γl

{
1 +

[|A|/δγ2
h]

2

8 [1 + .24(|A|/δγ2
h)

3/2]

}−1

. (64)

Expression (64) for the limit A¿ ν2
l was obtained by evaluating the light species nonlinearity

in (56) to find γl[1− (|A|γ2
hδ)

2/8], while the result for the limit AÀ ν2
l , found in Ref. 22 is

1.9γd(A/δγ2
h)

1/2.

Development of frequency sweeping in the case δ ¿ 1 is shown in Fig. 11 that presents

results for νl/ω = 0.0325. Once a phase space structure forms and evolves adiabatically, it is
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straightforward to predict the sweeping rate. Equating the damping rate given by Eq. (64)

to the power released by sweeping of the heavy structure [obtained from the lower equation

in Eq. (45)], together with ωbh = 16γh/3π
2, gives for the frequency shift,

δω = .83
[
γh|γl|(m/M)1/2νlt

]1/2
, (65)

which agrees quite closely to the simulation results shown in Fig. 11.

It is not quite clear why phase space structures forms in the first place. Their formation is

likely to be associated with a remnant damping from the light species because the nonlinear

suppression of the light species’ damping mechanism is incomplete. With sufficient remnant

damping, the initialization of holes and clumps seems to be qualitatively similar to that in

the constant damping case where one observes an oscillatory transient behavior. However,

this scenario needs to be revised when the light species collisionality is so low that the mode

grows explosively without intermediate oscillations.

The case νl/ω = 0.0075 also shows frequency sweeping late in time as seen in Fig. 12.

However, the initial precursor for this case is considerably different from the previous case. It

is clear from Fig. 12 that in the initial stage the hard instability sets in which grows without

oscillations at a rate comparable to γh. This phase saturates at a significantly higher level

than the previously discussed case (at about 5 times the previous amplitude). Immediately

after saturation the distribution of the heavy species is flattened in the trapping region,

but the distribution will have a large phase space gradient at the interface between passing

and trapped particles. On the other hand, for the light species a slight slope remains in its

distribution function as collisions are trying to restore the distribution’s equilibrium slope.

Therefore, the mode amplitude will damp. As the mode amplitude damps, the light species’

nonlinear dissipation rate increases, and indeed we can see that at first the rate of fall of the

amplitude increases in time. However, when |A| ∼ .2γ2
h, the decay stops and two well defined

frequency sidebands develop at a distance on the order of 2γh from the linear frequency.

The reason for sudden emergence of the frequency shifting pulses is somewhat speculative,

but may be due to the following cause. We note that the heavy distribution has a sharp
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gradient at the interface between the trapped and passing particles when the mode amplitude

was at its largest, and this gradient persists as the mode amplitude decreases. If there is

no background dissipation, then the sharp gradient is sufficiently displaced from the linear

resonance to allow the system to be stable (this argument has been presented in more detail

in Ref. 14). However, if there is background dissipation, then a negative energy perturbation

associated with the sharp positive phase space gradients may arise to become a seed for

frequency sweeping.

VI. SUMMARY OF RESULTS

We have presented a description of how coherent hole-clump structures with frequency

sweeping phenomena emerge in systems with weak instability. Several conditions are im-

portant for the frequency sweeping to develop. They are the following:

1. The system must be near the linear instability threshold. We find that if the system

is initiated far above threshold, then there is no frequency change. Indeed, in other

numerical studies we have observed that a hole and clump do not emerge when γL
>∼

2.5γd where γL is the growth rate in absence of dissipation and γd is the damping rate

due to background dissipation. Instead, a plateau is formed in the distribution about

the resonant velocity. The wave then damps due to the remaining dissipation, with

the wave frequency essentially unchanged.

2. Collisional effects need to be sufficiently weak to allow the explosive initialization of

holes and clumps. For sufficiently small fluctuation levels, the condition νeff
<∼ γL−γd is

needed for explosive dynamics described in Ref. [1]. This dynamics satisfies a reduced

cubic nonlinear equation, which is valid as long as particle trapping in the wave does not

have a chance to develop. We find that the two sidebands formed during the explosive

phase are precursors to the formation of a hole and clump in phase space. The hole

and clump support a pair of BGK modes whose phase velocities slowly change, which
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allows the passing particles to release the energy needed to balance the background

dissipation.

3. Explosive behavior that leads to frequency chirping and coherent structure formation

can also arise when the system is below the linear instability threshold if the initial

perturbation is sufficiently large.

4. In addition to the case where linear dissipation is imposed, we have studied physical

cases where dissipation arises self-consistently from a second resonant species. When

both species are collisionless, we find the frequency sweeping effects similar to the case

of a fixed linear dissipation. Such a response requires the trapping frequency of the

stabilizing species be much less than the trapping frequency of the destabilizing species.

In the opposite limit, the stabilizing effect quickly disappears, and the instability

proceeds as if there is no background damping. When the trapping frequencies of

the stabilizing and destabilizing species are equal, frequency sweeping effects are not

observed, and the level of saturation is proportional to the increment above linear

stability.

5. Frequency sweeping can be restored in the case of a collisionless heavy destabilizing

component competing with linear dissipation supplied by the light species when the

collision frequency for the light species is high enough. Then the response of the

light species will remain purely linear, allowing phase space structure formation in the

heavy species in accordance with the theory presented in Sec. III. However, frequency

sweeping is observed even if the light species is moderately affected by collisions.

In this case, the rate of sweeping is determined by the collisions that attempt to

offset the plateau formation. The surprise is that conditions can be established in

the first place for phase space structure formation. At very low collision frequencies

the sweeping mechanism is perhaps caused by collisionally induced dissipation that

destabilizes negative energy perturbations from the steep gradients of the destabilizing

25



distribution function.

6. Though our study here concentrates on idealized systems for which there are just one

or two resonances, our approach is applicable to more complicated physical systems.

For example, Eq. (54) allows the calculation of the frequency sweeping rate for a TAE

mode in the presence of many simultaneous but nonoverlapping resonances.21 Work is

in progress to attempt to apply this theory to frequency sweeping phenomena observed

in experimental situations.
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FIGURE CAPTIONS

FIG. 1. Time evolution of normalized mode amplitude for γd/γL = 0.7 and νeff/γL = 0.1

(these parameters also apply to Figs. 2 and 3).

FIG. 2. Contour plots of the evolving spectral intensity |Aω|2 vs. time using a Gaussian time

window exp(−(t− t0)
2/∆2)), with ∆ = 30γ−1

L . Dotted line is the theory prediction

for the collisionless case.

FIG. 3. Coherent hole-clump structures with time-dependent frequencies. (a) The spatially

averaged particle distribution as a function of time and the distance from the linear

resonance Ω−ω0 with Ω ≡ kv for the bump-on-tail instability. (b) Spectral intensity

|Aω|2 as a function of time and ω − ω0.

FIG. 4. Oscillatory mode growth in weak nonlinear regime. Solid curve shows the result

of full-scale numerical simulation, dashed curve shows the solution of the reduced

equation, Eq. (21), with γ = 0.1γL.

FIG. 5. Formation of frequency sweeping solution in a linearly stable system. (a) Evolution

of the mode amplitude. (b) Plot of the evolving Fourier spectrum.

FIG. 6. Evolution of bump-on-tail instability resulting from two resonant species with

m/M = 0.05, γl/ω0 = 0.05, γh/ω0 = −0.035, and collision frequency zero for

both species. (a) Spatial average of the light species distribution function; (b) plot

of the mode spectral intensity. Solid curve shows the analytical prediction for the

frequency shift (Eq. (62) with m/M = 0.05); dashed curve shows the predicted

shift for m/M = 0; (c) Perturbed heavy species distribution function; (d) Time

dependence of the mode amplitude.

FIG. 7. Evolution of bump-on-tail instability for two resonant species with M/m = 16,

γh/ω0 = 0.025, γl/ω0 = −0.024, and with zero collision frequency. (a) Time de-
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pendence of the mode amplitude; (b) The heavy species distribution function; note

plateau formation near the resonant velocity (kv/ω0 = 1).

FIG. 8. Comparison of numerical simulations (solid curve) with the solution of the reduced

nonlinear equation, Eq. (56), (dashed curve) for a heavy-species driven instability

in a two-species system. Dots plot the self-similar explosive solution, Eq. (63). The

straight line is the exponential growth given by linear theory.

FIG. 9. Response of two species system for m/M = 1 with γh/ω0 = 0.05, γl/ω0 = −0.035

and with zero collision frequency for both species. The mode amplitude vs. time is

presented in (a), the spatially-averaged distribution for the destabilizing species is

shown in (b).

FIG. 10. Response of two species system for m/M = 1/16, γh/ω0 = 0.025, γl/ω0 = −0.02,

ν/ω0 = 0.15 for the light species, and with zero collision frequency for the heavy

species. The amplitude vs. time is shown in (a), the wave spectrum vs. time is

shown in (b).

FIG. 11. Same as Fig. 10 except that νl/ω0 = 0.0325 for the light species. Solid curve in

Fig. 10b shows the theoretical prediction given by Eq. (65).

FIG. 12. Same as Fig. 10 except that νl/ω0 = 0.0075 for the light species.
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