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Possible Sources of directionality:

• One spatial dimension smaller than horizon (Tegmark,

de Oliveira-Costa and Hamilton (2003)).

• One spatial dimension expanding at a different rate

to the others (Jaffe, Banday, Eriksen, Gorski and

Hansen (2005)).





Say quintessence had a gradient across the horizon in

the z direction:

Q = Az +B

This gets mapped on to a sub-horizon modulation by

the potential:

V = V0(1 + f cos[Q/M0])

= V0(1 + f cos[k0z + δ])

Assume the field is light
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Thus,

M0

Mpl
≫ f1/2 .

Then the field will be frozen. This gives rise to a sub-

horizon density perturbation that has Fourier compo-

nents

δρQ

ρQ
(k) =

f

2
eiδ(2π)3δ(k − k0x̂3) +

f

2
e−iδ(2π)3δ(k + k0x̂3) .

The curvature perturbation on co-moving hyper-surfaces

is given by:
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The matter density red-shifts as

ρm =
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a3
Ωm

ΩQ
.

So that
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The Newtonian gravitational potential can be expressed

in terms of ζ as

Ψ(k, a) = ζ −
H
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Then,

Ψ(k, a) ≈ ψ(2π)3δ(k − k0x̂3) + ψ∗(2π)3δ(k + k0x̂3)

where

ψ = −
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The integrated Sachs Wolfe effect due to the dark en-

ergy perturbations is given by

∆T (n̂)

T
= fw(n̂) =

∫

2Ψ′(x = Dn̂, η)d ln a ,

The multipole moments are given by

fwℓ ≡
∫

dn̂Y ∗
ℓm(n̂)

∆T

T
(n̂) .



With the Rayleigh expansion of a plane wave

exp(ik · x) =
∑

ℓm

4πiℓjℓ(kD)Y ∗
ℓm(k̂)Yℓm(n̂)

they can be written as

fwℓ =
∫

d ln a
∫

d3k

(2π)3
4πiℓjℓ(kD)Y ∗

ℓm(k̂)2Ψ′(k, ln a)

Using the solution for the Newtonian gravitation poten-

tial gives
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sℓ ≡ cos δ(−1)ℓ/2δeℓ + sin δ(−1)(ℓ+1)/2δoℓ ,

where δeℓ = 1 if ℓ is even and 0 if ℓ is odd, and vice

versa for δoℓ . Here we have defined
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The spatial modulation projects onto an angular modu-

lation with a weight given by the spherical Bessel func-

tion jℓ. For a superhorizon fluctuation

k0D =
k0
H0

H0D ∼
k0
H0

≪ 1

and so jℓ ∝ (k0/H0)
ℓ.





What exactly needs to be fixed?

To test the quadrupole-octopole alignment, we take

the normalized angular momentum (the t statistic of de

Oliveira-Costa, Tegmark, Zaldarriaga, and A. Hamilton

as generalized by Copi, Huterer, Schwarz, and Stark-

man.

(∆L̂)2ℓ ≡

∑ℓ
m=−ℓm

2|aℓm|2

ℓ2
∑

m |aℓm|2
.

The statistic

(∆L̂)2 ≡ (∆L̂)22 + (∆L̂)23 .

maximized over direction of the preferred axis captures

both the alignment of the quadrupole and octopole and

the planar nature of the octopole.



Then

Pr
[

(∆L̂)2 > (∆L̂)2WMAP

∣

∣

∣ΛCDM] ≈ 0.2%



ℓ m Cfid
ℓ (µK2) Nℓ/Cℓ dipole ∆L2

max
2 0 1233 0.005 0.005 0.005

1 0.005 0.013 0.003
2 0.005 0.396 0.406

3 0 577 0.007 0.179 0.315
1 0.007 0.079 0.003
2 0.007 0.426 0.029
3 0.007 2.155 2.560

4 0 322 0.009 3.929 1.641
1 0.009 0.156 0.939
2 0.009 0.052 0.508
3 0.009 0.271 0.401
4 0.009 0.406 0.180

5 0 202 0.011 0.035 0.014
1 0.011 0.376 0.811
2 0.011 0.035 1.254
3 0.011 6.827 2.777
4 0.011 0.077 2.769
5 0.011 0.364 0.078



Multiplicative Modulation

T (n̂) ≡ A(n̂) + f [1 + w(n̂)]B(n̂) .

Multipole decomposition:

T (n̂) =
∑

ℓm

tℓmYℓm(n̂) ,

A(n̂) =
∑

ℓm

aℓmYℓm(n̂) ,

B(n̂) =
∑

ℓm

bℓmYℓm(n̂) ,

w(n̂) ≡
∑

ℓ

wℓYℓ0(n̂) .



The assumption of statistical isotropy for the underlying

fields A and B requires that their covariance matrices

satisfy

〈a∗ℓmaℓ′m′〉 = δℓℓ′δmm′Caaℓ ,

〈a∗ℓmbℓ′m′〉 = δℓℓ′δmm′Cabℓ ,

〈b∗ℓmbℓ′m′〉 = δℓℓ′δmm′Cbbℓ .

However statistical isotropy is not preserved in the ob-

served temperature field T (n̂). We then get the con-

volution

tℓm = aℓm + fbℓm + f
∑

ℓ1ℓ2

R
ℓ1ℓ2
ℓm bℓ2m

with a coupling matrix written in terms of Wigner 3j

symbols
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The covariance matrix between the multipole moments

then becomes

〈t∗ℓmtℓ′m〉 = δℓℓ′[C
aa
ℓ + 2fCabℓ + f2Cbbℓ ]

+f
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]
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Assume,

wℓ = w2δℓ2 .

and

Caaℓ =

{

Cfid
ℓ , if ℓ > 3

0, if ℓ = 2 or ℓ = 3

Cabℓ = 0

Cbbℓ =

{

0, if ℓ > 3

Cfid
ℓ , if ℓ = 2 or ℓ = 3







p
(

(∆L̃)2 > (∆L̃)2|aℓm
)

=
∫

w2,f
p
(

(∆L̃)2 > (∆L̃)2, w2, f |aℓm
)

dw2 df

=
∫

w2,f
p
(

(∆L̃)2 > (∆L̃)2|w2

)

p (w2, f |aℓm) dw2 df

Substituting in the previously evaluated quantities we

get p
(

(∆L̃)2 > (∆L̃)2|aℓm
)

= 0.07, which is 28 times

larger than the value for the fiducial model.



Conclusions

• WMAP data show anomalous alignments between

ℓ = 2 and ℓ = 3.

• Superhorizon perturbations can lead to a subhorizon

modulation.

• Possible in dark energy model but gives wrong mod-

ulation.

• Multiplicative modulation is needed.


