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Abstract 

The self-assembly of amphiphilic molecules in aqueous solution into lyotropic liquid 

crystals (LCs), characterised by soft yet long-range ordered nanoscale structures, 

constitutes a fascinating phenomenon at the heart of soft matter science which can be 

employed in a manifold creative ways. Particularly interesting structures may arise as a 

result of functionalization of the LC with appropriate guest molecules, adopting the 

order of their host. Here we combine cat- and anionic surfactants to form a liquid 

crystalline colloidal suspension of carbon nanotubes (CNTs), which by virtue of the 

spontaneously formed hexagonal columnar LC structure are uniaxially aligned over 

macroscopic areas. The nanotube concentration can be so high, with sufficiently 

uniform alignment, that the mixture becomes a fluid linear polariser, the anisotropic 

optical properties of CNTs having been transferred to macroscopic scale by the LC. 

Moreover, thin and highly aligned filaments can be drawn and deposited in selected 

directions on arbitrary surfaces, after which the LC template can be rinsed away. 

Combined with recently developed methods for CNT fractionation according to 

chirality, the technique would yield an unprecedented degree of control in the practical 

realization of carbon nanotube-based devices and materials. 
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Introduction 

When dissolved at sufficient concentration in water, amphiphilic molecules such as 

surfactants self-assemble into lyotropic liquid crystals (LCs), anisotropic fluid phases 

characterised by the counterintuitive combination of high molecular mobility and long-

range order, orientational and often also translational. Various types of LC are currently 

attracting much interest in diverse fields of research and technology, their presence in 

modern materials science being particularly strong. The soft but ordered LC structures 

offer unique opportunities for designing new functional nano- or microstructured 

inorganic1, organic2 or composite3-5 materials. Here we focus on the latter category, 

employing a lyotropic LC phase as a self-organized fluid nanotemplate, providing a 

straightforward and non-discriminative means of aligning unsupported carbon 

nanotubes (CNTs) over macroscopic areas.  

The outstanding chemical and physical properties of CNTs are today well 

established6, with numerous innovative applications proposed in fields ranging from 

nanoelectronics to functional composites to pharmacology, but large-scale production of 

CNT-based technology is in most cases hampered by a few practical issues. One of 

these is the difficulty in controlling the nanotube orientation, a crucial requirement for 

many materials and devices. Important achievements in terms of growing CNTs on a 

substrate with control of orientation have been reported, perpendicular to the substrate 

in so-called forest growth7 as well as parallel to the substrate8. While truly impressive, 

these approaches are not applicable to substrate-free synthesis methods such as the 

HiPco process9 for growing single-wall tubes (SWCNTs) or any of the methods used for 

growing multi-wall tubes (MWCNTs) on commercial scale. Moreover, single-wall CNT 

forest growth is a highly non-trivial venture. Finally, since no growth method to date 

allows control of CNT chirality (the roll-up direction of the graphene sheet in the 

nanotube), these alignment methods are of little use when nanotubes with specific 

electronic properties—determined by the chirality—are required. Thus, an efficient 
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method for aligning unsupported CNTs, versatile enough to work with any nanotube 

type and to allow orientation in any desired direction, is of great interest in the practical 

processing of carbon nanotubes.  

A most promising approach to achieve this goal is to prepare a colloidal 

suspension of the nanotubes in a liquid crystalline host, relying on its spontaneous long-

range orientational order to align the CNTs4, 5, 10-14. While initial attempts using 

thermotropic nematic (display-type) LCs were limited to low CNT concentration and 

offered no simple means of removing the LC once it has played its aligning role5, 10-12, 

we recently demonstrated that a surfactant-based lyotropic nematic LC phase aligns the 

CNTs equally well while generally providing better dispersion, thus allowing for higher 

nanotube loading, and we pointed out that lyotropic LCs can easily be rinsed away once 

they are no longer desired4, 13. In the present work we use a different, more complex 

lyotropic host, combining cat- and anionic surfactants in a hexagonal columnar LC 

phase, thereby changing the properties of the colloidal CNT suspension in a most 

favourable way. We achieve a 20-fold increase in nanotube concentration while 

maintaining good dispersion and macroscopic-scale control of the tube orientation, 

resulting in striking new optical properties. Moreover, while our previous study was 

limited to samples confined in glass capillaries, the new mixture allows easy drawing of 

highly aligned thin filaments, giving this system excellent possibilities for handling and 

processing. This opens a new way towards easy and cheap fabrication of devices 

requiring carbon nanotubes deposited on substrates, aligned along selected directions. 

Results and discussion 

The standard method of dispersing CNTs is to add them to an aqueous surfactant 

solution which is then subjected to ultrasonication. The best results are generally 

achieved using ionic surfactants with aromatic components, such as the anionic sodium 

dodecyl benzene sulphonate (SDBS, cf. Table 1), with which as much as 20 mg/mL 
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carbon nanotubes have been reported to be individually dispersed15. We therefore chose 

to work with SDBS when dispersing our CNTs, which were of HiPco single-wall type. 

For our purposes, a drawback with SDBS is that little is known about its ability to form 

LC phases, the few reports where this has been described dealing with mixtures of 

SDBS and other surfactants and generally with focus on vesicle formation in the dilute 

limit16. We therefore chose to use a different surfactant for building up the LC phase.  

Table 1. Surfactants discussed in the work. 
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Sodium Dodecyl Sulfate (SDS) 

 

Initial tests with the SDBS-similar surfactant sodium dodecyl sulphate (SDS) 

were unsuccessful as the addition of SDS induced strong aggregation of the CNTs 

(Fig. 1a). This can be understood as a result of depletion attraction; since the added SDS 

micelles have the same effective surface charge as the SDBS-coated CNTs they are 

electrostatically repelled from the nanotubes, hence they act as a depletion agent17. We 

thus switched to an LC host formed by cationic surfactants, the micelles of which will 

be electrostatically attracted to the CNTs, thereby not enhancing the depletion attraction 
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between nanotubes. Indeed, we obtained much better results with both dodecyl ammo-

nium chloride (DdACl) and cetyl trimethyl ammonium bromide (CTAB), cf. the 

example in Fig. 1b. In the following, only the results with CTAB as LC-forming 

surfactant are described. 

 

 

Fig. 1. a: Aggregating SDBS-coated CNTs at a concentration of 0.05 wt.-% in an SDS-based nematic LC 

phase, observed in unpolarised light. b: The texture of the hexagonal columnar CTAB+CNT+SDBS+ 

water mixture 1 (0.2 wt.-% CNTs, i.e. 4 times the concentration in the left photo) used in the present 

work. 

Although SDBS is a monovalent salt, its strong adsorption onto the nanotube 

surface15 makes the SDBS+CNT system in some respects comparable to a 

polyelectrolyte, giving our cat-anionic CNT suspension certain similarities with that of 

DNA (an anionic polyelectrolyte) complexated by cationic lipids, a combination studied 

by Rädler et al.18. The driving force for complexation was in their case the entropic gain 

from the release of counterions into solution, made possible by the condensation of 

cationic lipid and DNA. We believe a similar situation prevails in our system. A 

negatively charged dodecyl benzene sulphonate-ensheathed nanotube can be closely 

surrounded by positively charged rod-shaped micelles of cetyl trimethyl ammonium, the 

counter ions of the surfactant molecules involved in the condensate being released in 

solution. A detailed discussion of these issues will be published separately 

Most studies were carried out on an aqueous mixture (in the following referred to 

as Mixture 1) composed of 28 wt.-% CTAB, 0.2 wt.-% single-wall carbon nanotubes 

(SWCNTs), and 1 wt.-% SDBS. Fig. 1b shows the microscopy texture of this mixture, 
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from which it is clear that the CNT bundle size was small (the features seen in the 

texture are of a type and size that is typical of defects in a lyotropic LC texture, hence 

they may or may not be CNT aggregates). While a small degree of CNT aggregation 

probably was induced when adding the dry CTAB to the isotropic CNT suspension to 

produce mixture 1 (see Experimental), no large-scale aggregates or CNT network 

formation could be identified. Optimization of composition and sample preparation 

procedure should further diminish aggregation. Nevertheless, already at this stage the 

result must be considered as highly satisfactory, keeping in mind that we have increased 

the CNT concentration by 20 times with respect to our previous study4, 13. This success 

can most likely be attributed mainly to the reduced importance of depletion attraction 

and the benefits from cat-anionic complexation resulting from the use of oppositely 

charged surfactants for CNT dispersion and LC formation, respectively. 

By means of small-angle x-ray scattering experiments we could conclude that 

mixture 1 forms a liquid crystal phase of hexagonal columnar nature, cf. Fig. 2. Two 

peaks are clearly visible, their scattering angles corresponding to lattice spacings 

d10 = 62.0 Å and d11 = 35.9 Å. The lattice spacings are related by a factor 1/ 3  as ex-

pected for the (10) and (11) reflections of a hexagonal columnar phase19. These data 

yield a lattice constant of the columnar structure of a  72 Å (see inset of Fig. 2 for a 

graphical representation of lattice spacings and lattice constant), a value which 

compares well with data for binary CTAB + water hexagonal phases at similar 

surfactant concentration20. A columnar structure with such large lattice constant should 

be able to accommodate the HiPco single-wall CNTs, having a typical diameter of about 

1 nm, without much problem. The exact morphology of the surfactant sheath 

surrounding the CNTs is still an open issue, and it seems to depend on the details of 

sample preparation, but we can assume that the maximum diameter of a CNT-

containing micelle will be twice the length of the surfactant molecule plus the nanotube 

diameter (we do not consider any diffuse shells of counterions since they, as motivated 
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above, are expected to be absent in the case of cat-anionic complexation). Considering 

an SDBS molecule length of about 2.5 nm and individually dispersed SWCNTs this 

would yield a micelle diameter of about 6 nm, still well below the lattice constant.  

 

Fig. 2. Small-angle x-ray scattering intensity I as a function of scattering angle 2  for the hexagonal LC 

phases formed by the CNT-containing mixture 1 (filled symbols) and the corresponding CNT-free 

mixture 2 after equilibration (empty symbols). Inset drawing defines the layer spacings d10 and d11 and the 

lattice constant a. 

Multiwall carbon nanotubes (MWCNTs), containing a large number of graphene 

layers in each tube and therefore having a diameter of tens of nanometers, would 

apparently be too thick to easily fit in the lattice of this particular hexagonal lyotropic 

LC host phase. The same holds for bundles of SWCNTs. One cannot rule out that the 

nanotubes in these cases would constitute an important disturbance to the LC, but this 

could be resolved by choosing a different LC-forming molecule (e.g. a block co-

polymer) that produces a hexagonal columnar phase with adequate lattice parameter. On 

the other hand, provided that the number of CNT-containing micelles is much less than 

that of the CNT-free micelles forming the LC phase, even the CTAB host phase can 

probably accommodate also these bulkier guests, their presence creating only local 

distortions of the hexagonal structure. The likely presence of small SWCNT bundles in 

the present study supports this view. Experiments with MWCNTs will be carried out in 

our labs in the near future. 



 

 8 

We also prepared a CNT-free reference mixture (mixture 2) with the same 

composition of SDBS, CTAB and water as mixture 1. This initially developed an 

isotropic liquid phase, slightly viscous but with no signs of optical birefringence, even 

under moderate shear. After some days of equilibration at 40°C, however, a birefringent 

LC phase developed, also this of hexagonal columnar type albeit with a very small 

correlation length, as evidenced by extremely broad x-ray diffraction peaks, cf. Fig. 2. 

The system should probably be regarded as clusters with hexagonal columnar order 

rather than as a regular bulk LC phase. Despite the diffuseness of the peaks, a lattice 

constant of a  88 Å could be estimated, considerably larger than for the system with 

nanotubes. Obviously, the presence of CNTs in mixture 1 has an important impact on 

the LC phase formation. Within our model that a CNT-containing SDBS micelle in 

effect acts as a polyelectrolyte, the SDBS and CTAB molecules do not mix easily, 

leading to the immediate formation of a CTAB-based LC phase in mixture 1 which 

basically maintains the structure of a similar mixture without SDBS and CNTs. In the 

nanotube-free mixture 2, on the other hand, SDBS mixes with CTAB on a molecular 

scale, thereby severely obstructing the LC formation. 

Fig. 3a-e shows optical microscopy textures of mixture 1, taken shortly after 

preparation and gentle vacuum filling into an optically flat glass capillary. As is obvious 

from the photos taken with the sample between crossed polarisers (Fig. 3a-c) the fluid 

was optically birefringent, confirming its liquid crystalline state. Moreover, the filling 

procedure had ensured a quite uniform alignment with the director (the average 

direction of the principal symmetry axis of the rod-like surfactant micelles, defining the 

optic axis of the anisotropic LC medium) mainly along the capillary axis.  
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Fig. 3. a-e: Optical microscopy textures of a 200 m thick capillary filled with the LC-aligned SWCNTs 

(mixture 1), illuminated with light polarised horizontally; a-c: between crossed polarisers, the director 

(double-headed arrow) parallel (a), at 45° (b) and perpendicular (c) to the incoming light polarisation; d-e: 

textures without analyser corresponding to (a) and (c). Scale bar: 100 m. f: Light transmittance T 

through the capillary as a function of angle  between the capillary axis and the polarisation direction of 

the incoming light, as measured with 633 nm (rings), 546 nm (squares) and 450 nm (triangles) 

wavelength. g-h: Macroscopic appearance of the capillary observed through a linear polariser held with 

its transmission direction parallel (left) and perpendicular (right) to the capillary axis, and thus to the LC 

director. The scaling to the right of the photos is in millimetres. 

When studying the optical textures without any analyser we noticed, on rotating 

the capillary with respect to the polarisation direction of the incident light, a distinct 

variation in intensity of the transmitted light (Fig. 3d-e and Supplementary Video 1), the 

maximum occurring when the capillary was perpendicular to the light polarisation. The 
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effect reflects the anisotropic optical properties of the nanotubes, absorbing light 

polarised parallel to the nanotube axis but letting through light polarised perpendicular 

to the tube21. Because the nanotubes were now aligned along the director of the liquid 

crystal, which was aligned preferentially along the capillary axis, light was absorbed 

more efficiently when the capillary was oriented along the polarisation direction of the 

incident light. The effect is quantified in Fig. 3f, showing the transmittance of blue, 

green and red light as a function of the angle between the capillary axis and the 

polarisation direction of the incident light. As expected for a suspension of a natural 

SWCNT sample, containing a random mixture of chiralities and a certain spread of 

diameters, consequently absorbing light of any colour, the transmittance is basically 

independent of wavelength. 

The phenomenon could also be seen with the naked eye by illuminating the 

sample with unpolarised light and observing the capillary through a linear polariser 

which was rotated around an axis perpendicular to the sample, cf. Fig. 3g-h. When tak-

ing these photos (presented in their entirety in Supplementary Fig. 1), the capillary with 

LC-dispersed CNTs was placed next to an identical capillary with HiPco SWCNTs 

dispersed at the same concentration in an isotropic SDBS+water solution, and one filled 

with a CNT-free CTAB+water hexagonal columnar LC phase. These two capillaries 

were unaffected by the rotation of the polariser, reflecting the random alignment and 

absence, respectively, of CNTs. In contrast, the LC-SWCNT sample was distinctly 

darker when the transmission direction of the polariser was along the capillary axis, 

since the LC-aligned SWCNTs have preferentially absorbed light with this polarisation 

direction. In effect, the LC-SWCNT sample thus acts as a self-assembled fluid 

achromatic linear polariser. The linear dichroism of carbon nanotubes has been 

observed in the same way on macroscopic scale once before by growing SWCNTs 

inside the columnar pores of a zeolite crystal22, but this is the first time that a system 

displaying the phenomenon has been achieved via self-assembly and in a fluid state. 
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The observation demonstrates that the combination of LC and CNTs is potentially 

of interest for a new type of guest-host liquid crystal display (LCD)23. CNTs are both 

achromatic (assuming a natural mixture of chiralities) and long-term stable, in contrast 

to the monochrome organic dyes that today are used in guest-host LCDs. If a sufficient 

concentration of CNTs can be well dispersed in a thermotropic LC, this could thus be a 

route towards a polariser-free (and thus more energy-efficient) full-colour LCD. 

However, considerable materials development, either in functionalizing CNTs or in 

optimizing thermotropic LCs for the role of hosting CNTs, is called upon before the 

required CNT loading can be achieved in a liquid crystal suitable for display use. 

From Fig. 3f we can extract the transmittance T|| for light polarised parallel to the 

director and T  for perpendicular polarisation, and then we can use the standard method 

for determining the nematic order parameter S of a liquid crystal doped with a dichroic 

dye23 (in our case, the dye is the CNT): 

S =
D 1

D+ 2         (1) 

where D =
logT||

logT
 is called the dichroic ratio. This yields a fairly low value of 

S  0.3 (perfect orientational order would give S = 1 while S = 0 corresponds to totally 

random orientation). Because the transmittance data have been obtained over a rather 

large area (circle with about 150 m diameter) and because the director orientation 

exhibits non-negligible spatial fluctuations on a much smaller scale, as is obvious in the 

polarising microscopy textures in Fig. 3a and c, this low value is to be expected, mainly 

reflecting the imperfect alignment of the templating LC host. In addition, the 

ultrasonication procedure generally introduces defects and kinks in the SWCNTs, hence 

there may be a certain degree of ‘intrinsic’ orientational disorder simply because the 

CNTs are not perfectly straight. 
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The alignment of the nanotubes was confirmed also using polarised resonant 

Raman spectroscopy, cf. Fig. 4. In the upper row are the radial breathing mode (RBM), 

G-band and G’-band21 regimes of the SWCNT response curves for polarisation parallel 

and perpendicular to the LC director, respectively, as obtained with a relatively large 

laser spot size (10 m diameter). In the inset the G-band regime is displayed as obtained 

with an objective of higher magnification power, thus with a smaller spot size (2 m 

diameter). While it is clear from the large difference in response for the two 

polarisations that the nanotubes are aligned preferentially along the LC director, it is 

also clear that the effective degree of order is somewhat higher when measuring with a 

smaller spot size, again reflecting the large-scale spatial variations of the LC director 

orientation. 
 

 

Fig. 4. Polarised Raman scattering intensity I of mixture 1 for excitation polarisation parallel (black, fully 

drawn lines) and perpendicular (grey, dotted lines) to the liquid crystal director, respectively, from the 

capillary sample (upper row; inset shows high-magnification response) and from a dried and rinsed 

filament (lower row).  

Also from the Raman data we can get a quantitative value of the nematic order pa-

rameter for the CNTs— somewhat underestimated for the same reasons as for the value 

obtained from optical absorption data, discussed above—by using equation (1) under 
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the assumption that the SWCNT Raman mode strengths are proportional to the 

absorbance A = logT  of the tubes, as described in our previous study4. For the data sets 

in Fig. 4 this yields the result S  0.3 for the 10 m beam spot (regardless of which peak 

is fitted), in agreement with the optical absorption data, but with the G-mode data 

obtained with 2 m beam spot size, a value of S  0.6 results. The difference clearly 

demonstrates the impact of imperfections in the large-scale sample alignment. As the 

LC alignment was not perfectly uniform even over the area of the smaller spot size, we 

can safely assume that the local CNT order parameter is higher yet. Indeed, with the 

quite large persistence length of SWCNTs (values of up to 1 m have been suggested24) 

and with the relatively large degree of local orientational order inherent to the 

hexagonal columnar LC phase being the host, a higher degree of order should be 

expected. Later in this paper we describe how a sample with sufficiently good control of 

the macroscopic alignment can be achieved for this to be experimentally verified. 

One might argue that the alignment of the CNTs is actually due just to the unidi-

rectional flow of the viscous liquid hosting them while filling the capillary. That this is 

not the case can be seen in Fig. 5, showing optical microscopy pictures of a sample with 

small air bubbles. Around an air bubble the liquid crystal director field exhibits a quite 

complex pattern, as detected e.g. by viewing the sample between crossed polarisers (the 

optic axis is everywhere along the director) as in the top row. Clearly, there are several 

areas around the air bubble where the director is not along the filling direction. When 

removing the analyser (lower row), one sees that the absorption of light is maximally 

strong for polarisation along the director, not necessarily along the filling direction. As 

the absorption without analyser is due to the CNTs, this shows that the nanotubes are 

aligned along the liquid crystal director, whether it is along the flow direction or not. In 

fact, the orientation-dependent absorption in the lower row of Fig. 5 actually helps to 

determine the LC director field uniquely (indicated with thin bars in b and d), 



 

 14 

complementing the polarisation microscopy photos in the upper row in an informative 

way. 

 

Fig. 5. The complex director pattern around an air bubble visualized between crossed polarisers (a and c). 

Removing the analyser (b and d), it is apparent that the light absorption pattern due to the SWCNTs 

follows the director pattern, demonstrating that the SWCNTs are aligned through LC templating, not by 

the flow during capillary filling. The thin bars in b and d indicate the director orientation in representative 

locations, as determined from the analysis of the textures. Scale bar (thick bar in d): 200 m. 

A very beneficial property of mixture 1 is that thin and highly aligned filaments 

easily can be drawn from it, as illustrated in Fig. 6. The filaments can be deposited on a 

substrate in any chosen direction (even with curvature) and multiple filaments can be 

crossed if desired, as illustrated in Fig. 6b with three filaments of different thicknesses. 

After deposition and fixation of the ends of the filaments, the substrate can be gently 

immersed in water to wash away the surfactant. Although some CNTs are also removed 

in the process, a considerable amount of nanotubes are left on the substrate, as 

evidenced by Raman spectroscopy, cf. the lower row in Fig. 3. The measurements were 
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performed with polarisation parallel and perpendicular, respectively, to the direction 

along which the filament had been deposited. As is obvious from the spectra, the degree 

of SWCNT alignment along the filament was very good. The same method as used 

above for extracting the orientational order parameter now yielded a value of S  0.7.  

 

 

Fig. 6. Thin filaments can easily be pulled from the CNT-LC mixture (a) and deposited in any desired 

pattern on various substrates (b, scale bar 200 m). 

 

Conclusions and outlook 

By combining ionic surfactants with opposite charge for dispersing unsupported carbon 

nanotubes and forming a lyotropic liquid crystal phase, respectively, we have achieved 

heavily loaded colloidal suspensions of CNTs which are spontaneously aligned along 

the director of the LC host. The anisotropic optical properties of the nanotubes are 
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transferred to macroscopic scale by the LC, as evidenced by the liquid acting as a linear 

polarizer. The ability to pull thin filaments from the suspension gives us a very simple 

method to deposit the nanotubes onto arbitrary surfaces with control of the nanotube 

orientation. The water solubility of the surfactants allows us to subsequently rinse away 

the LC matrix. As the approach is very generic it can be employed to a variety of similar 

systems, varying both the guests and the host, with highly interesting results to be 

expected. 

A most interesting extension to our work, which we are now pursuing, is to first 

fractionate the SWCNTs according to chirality, following methods that recently have 

been described in literature, using DNA25 or sodium cholate26 as surfactant. We will 

then be able to deposit e.g. only metallic SWCNTs, or semiconducting SWCNTs with 

well-defined band gap, along controlled directions on any substrate. Since no SWCNT 

growth method to date is selective regarding tube chirality, including those that allow 

control of tube direction, this would fill an important gap in current CNT processing 

methodology. It is also interesting to replace CTAB with a block-copolymer capable of 

forming a hexagonal LC phase, especially if the polymer is crosslinkable. This should 

be a promising route towards achieving composite materials with novel functionality or 

enhanced electrical, mechanical and / or thermal properties due to the presence of 

aligned CNTs at sufficient concentrations27.  

Experimental 

(i) Samples and sample preparation 

HiPco SWCNTs were purchased as “highly purified” (>95% SWCNTs according to 

manufacturer) from CNI Technologies and SDBS and CTAB from Sigma-Aldrich (80% 

and 99% purity, respectively). All were used as received. The SWCNTs were originally 

dispersed at a concentration of 5 mg/mL in an isotropic aqueous SDBS solution (SDBS 

to CNT mass ratio 5:1) using a Dr. Hielscher UP-200S ultrasound processor operating 
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for 30 minutes on the sample, which was kept in an ice bath to avoid excessive heating. 

After this procedure, no CNT aggregation could be detected with optical microscopes. 

This suspension was diluted with water to obtain a CNT concentration of 2.5 mg/mL, 

whereafter the amount of CTAB required to form the LC phase was added as a dry 

powder, resulting in mixture 1. A first homogenization of the mixture was achieved by 

rapid vortex mixing for about 2 minutes, whereafter it was placed in an ultrasound bath 

(Bransonic 32) for about 15 hours. Finally, just before filling a capillary or pulling 

filaments, the sample was again briefly tip-sonicated, this time with a lower-power 

ultrasound processor (Dr. Hielscher UP-50H), for 7 minutes. The optically flat glass 

capillary (Camlab, 200 m thickness) was filled by means of the gentle vacuum suction 

generated by a syringe attached to the capillary via a small piece of rubber tubing, 

whereas the filaments were obtained simply by dipping a sharp tip, e.g. a syringe 

needle, into the mixture and moving it away. 

(ii) Characterization 

X-ray scattering experiments were performed with a Bruker AXS NanoSTAR (CuK  

radiation aligned by Goebel mirrors) equipped with a 2D-electronic detector and a 

temperature controller (MRI, Germany). Optical microscopy was carried out with Leica 

DMLP and Olympus BH-2 polarising microscopes. For optical transmittance 

measurements interference filters were used to monochromatise the incident light and a 

photo diode (FLC Electronics, Sweden) measured the transmitted intensity. As the 

reference sample required to get absolute transmittance values we used an identical 

capillary filled with the CNT-free reference mixture 2, having the same composition of 

SDBS, CTAB and water as mixture 1.  

Raman spectroscopy experiments were carried out using a Jobin Yvon Labram 

Raman microscope in backscattering mode, with 633 nm wavelength excitation laser. 

The capillary was placed at 45° to the polarisation direction of the laser and the 

polarisation of the light hitting the sample was switched between parallel and 



 

 18 

perpendicular to the capillary axis by means of a /2-plate, the optic axis of which was 

oriented at ±22.5° angle from the incident laser polarisation. 
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Legends for electronic supplementary information 

Supplementary Fig. 1. Three capillaries filled with an isotropic SWCNT suspension, 

LC-aligned SWCNTs, and CNT-free LC, respectively (left to right), next to each other, 

underneath a linear polariser held with its transmission direction parallel (left photo) and 

perpendicular (right photo) to the capillary axes, respectively. Only the sample with LC-

aligned SWCNTs changes its appearance, reflecting the alignment of the SWCNTs 

along the capillary axis. 

Supplementary Video 1. Liquid crystal carbon nanotube polariser (movie file 

Video1.mov). Part 1: the LC-aligned SWCNTs in a 200 m thick capillary observed in 

a microscope as it is illuminated by horizontally polarised light and slowly rotated. Part 

2: the same capillary illuminated by unpolarised light and observed through a linear 

polariser which is rotated from transmission direction parallel to the capillary to 

perpendicular, and back. 

 


