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Spontaneous mutations in the single TTN gene represent high

tumor mutation burden
Ji-Hye Oh 1,2, Se Jin Jang2,3, Jihun Kim2,3, Insuk Sohn4, Ji-Young Lee1,2, Eun Jeong Cho1,2, Sung-Min Chun2,3* and

Chang Ohk Sung1,2,3*

Tumor mutation burden (TMB) is an emerging biomarker, whose calculation requires targeted sequencing of many genes. We

investigated if the measurement of mutation counts within a single gene is representative of TMB. Whole-exome sequencing (WES)

data from the pan-cancer cohort (n= 10,224) of TCGA, and targeted sequencing (tNGS) and TTN gene sequencing from 24

colorectal cancer samples (AMC cohort) were analyzed. TTN was identified as the most frequently mutated gene within the pan-

cancer cohort, and its mutation number best correlated with TMB assessed by WES (rho= 0.917, p < 2.2e-16). Colorectal cancer was

one of good candidates for the application of this diagnostic model of TTN-TMB, and the correlation coefficients were 0.936 and

0.92 for TMB by WES and TMB by tNGS, respectively. Higher than expected TTN mutation frequencies observed in other FLAGS

(FrequentLy mutAted GeneS) are associated with late replication time. Diagnostic accuracy for high TMB group did not differ

between TTN-TMB and TMB assessed by tNGS. Classification modeling by machine learning using TTN-TMB for MSI-H diagnosis was

constructed, and the diagnostic accuracy was 0.873 by area under the curve in external validation. TTN mutation was enriched in

samples possessing high immunostimulatory signatures. We suggest that the mutation load within TTN represents high TMB status.

npj Genomic Medicine (2020)5:202033; https://doi.org/10.1038/s41525-019-0107-6

INTRODUCTION

Genomic instability is an important characteristic of cancers that
results in an increased number of genetic alterations. In colorectal
cancer (CRC), it has become apparent that genomic instability is
related to tumorigenesis.1,2 CRCs can be divided into two
distinctive subgroups, the hypermutated group and the non-
hypermutated group, at the genomic level.3 Hypermutated
tumors are characterized by an increased frequency of base
substitutions, insertions, and deletions of one or several nucleo-
tides. These nucleotide alterations are often related to defective
base excision repair system components, including defects in DNA
polymerase δ and ε (POLD and POLE).4,5 Additionally, defects in
the DNA mismatch repair (MMR) system components, including
MSH2, MLH1, MSH6, PMS1, and PMS2, are another major
contributor to hypermutated tumors.3 A defect in the MMR
system is characterized by an increase in random insertions or a
reduction of the number of oligo-nucleotide repeats within
microsatellite sequences, ultimately resulting in the microsatellite
instability-high (MSI-H) phenotype.1,6,7 Therefore, tumors exhibit-
ing a loss of these DNA repair systems are expected to possess an
increased spontaneous mutation rate across the entire genome.
Recent studies have provided concrete evidence that hypermu-

tated tumors respond better to immunotherapies.8 Based on this,
identifying patients harboring hypermutated tumors is suggested
for optimal treatment. Whole-exome sequencing (WES) or
targeted next-generation sequencing (tNGS) using a cancer gene
panel are utilized to assess the tumor mutation burden (TMB).9,10

WES to determine TMB is not, however, typically performed during
routine clinical diagnosis, as it is not time-effective and the storage
of WES data is resource-intensive. TMB estimation using tNGS also
possesses limitations. First, the accurate prediction of TMB by WES

requires a panel size of greater than 300 genes or 1 Mb,9 and
second, the cut-off for high TMB varies depending on the targeted
genes, the panel size, and the bioinformatics pipeline. Given this,
standardized TMB measurement methods are needed.11

In this context, if single gene testing could predict TMB
determined by WES or tNGS, then those limitations could be
avoided. Thus, we examined if mutation status within a single
gene could be representative of TMB as assessed by larger-scale
sequencing such as WES or tNGS. For this approach, we analyzed if
the mutation count in a single gene could reflect the TMB by WES
(TMB-WES) using a more reliable pan-cancer cohort (n= 10,224)
obtained from The Cancer Genome Atlas (TCGA) MC3 project.12

We then subsequently validated our findings using an indepen-
dent dataset.

RESULTS

Mutations within TTN represent TMB as assessed by WES in pan-
cancer data

Initially, 10,224 samples across 33 cancer types were used to
assess if the mutation count within a single gene correlated with
TMB as determined by WES. All candidate genes (n= 20,969) were
evaluated to identify the gene that was most strongly correlated
with TMB as assessed by WES. For each of the 20,969 genes, the
correlation coefficient and the associated p-value between the
number of somatic mutations in each gene and the total number
of all somatic mutations were calculated. In this analysis, the
mutation frequency within TTN was most strongly correlated with
TMB-WES in the pan-cancer cohort (Fig. 1a). The correlation
coefficient was 0.917 (p < 2.2e-16, Fig. 1b). When two samples
exhibiting extremely high mutation rates were excluded, the
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correlation coefficient remained as high as 0.909 (p < 2.2e-16,
Fig. 1b, inset box). Therefore, we selected TTN as the single gene
for further detailed analysis.
Next, the correlation between the TTN-TMB and the TMB-WES

was determined for each cancer type. TTN-TMB was significantly
correlated with TMB-WES across all 33 tumor types, with the
exception of PCPG, TGCT, THYM, MESO, DLBC, and CHOL (FWER,
raw p-value*33, <0.05) (Fig. 1c). Tumors with high TMB tend to
show high correlation coefficients (Fig. 1d). Among these tumor
types, COAD, CESC, SKCM, READ, UCEC, PRAD, and GBM exhibited
the highest TTNmutation count, and this gene possessed the high
correlation coefficient (>0.9) of all tested genes (Supplementary
Fig. 1 and Supplementary Data 1). In STAD, BLCA, LUSC, LUAD,
LIHC, HNSC, ACC, and LAML, TTN also showed the highest
mutation count, although the correlation coefficient was relatively
low (rho < 0.9, p < 0.05) among all tested genes. The most highly
correlated genes for each tumor type are summarized in
Supplementary Data 1. Additionally, the most highly mutated
genes for each tumor type are summarized in Supplementary Data
2. These results suggest that TTN-TMB could represent TMB in the
context of multiple tumor types.

TTN-TMB and TMB-WES in TCGA CRCs

TTN-TMB was subjected to further detailed analysis within the
COAD (n= 406) and READ (n= 150) cohorts from TCGA. Of the
556 TCGA CRC cases, 75 (13.5%) were MSI-H, 477 (85.8%) were
non-MSI, and MSI status was not available for the four remaining

cases. Correlation coefficients and p-values for all 19,360 genes
were calculated, and mutations within TTN exhibited the highest
correlation (Fig. 2a and Supplementary Data 3) and the longest
CDS length (Fig. 2b) among all tested genes. The gene possessing
the second highest correlation coefficient was NEB (rho= 0.907,
p= 5.65e-210, Fig. 2b). Additionally, the relationship between
mutation count and CDS length in 19,360 genes was also
evaluated, and the high total mutation number within the TTN
gene was strongly related to its CDS length (Fig. 2c). We
determined that the CDS length correlated with mutation count
for each gene (rho= 0.844, p < 2.2e-16). As expected, however,
mutation rates within cancer-associated genes, such as APC, TP53,
and KRAS, were not associated with their CDS lengths (Fig. 2c).
Correlation plots between TTN-TMB and TMB-WES for all CRC
samples are shown in Fig. 2d (rho= 0.936, p < 2.2e-16), and the
correlation coefficient was the same even when cases exhibiting
extremely high mutation rates were excluded (Fig. 2d, inset).

An additional factor other than gene length can explain frequent
mutation in TTN

We found that the TTN mutation rate is higher than the expected
mutation rate of other FLAGS (FrequentLy mutAted GeneS),13

which are known primarily as non-driver passenger genes that can
be used to show frequent mutation in cancer. Additionally,
frequent mutations in these genes are usually associated with a
long gene length. The mutation count was normalized according
to CDS length (Mutation count/CDS length) for each gene (Fig. 3a).

Fig. 1 Pan-cancer data analysis. a Histogram (black line) of the correlation coefficients between the mutation number in each gene and the
total mutation count in all genes across the pan-cancer cohort (Pearson correlation test). The scatter plot (blue dots) indicates mutation counts
in 20,969 genes from all samples. b Correlation between mutation counts within the TTN gene (TTN-TMB) and TMB by WES (TMB-WES) for the
pan-cancer cohort (n= 10,224) (Pearson correlation test). c Correlation coefficients between TTN-TMB and TMB-WES for 33 tumor types
(Pearson correlation test). d Correlation coefficients of TTN-TMB and TMB-WES (Y-axis) and total mutation count (mean) (X-axis) for each tumor
type. TMB tumor mutation burden, WES whole-exome sequencing.
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Fig. 2 Correlation analysis of two independent colorectal cancer cohorts. a Histogram of the correlation coefficients between the mutation
count of each gene and the total mutation count in a TCGA colorectal cancer (CRC) cohort (n= 556) (Pearson correlation test). b p-values
(black dots) for the correlation coefficient and CDS lengths (gray dots) for each gene (Pearson correlation test). c Comparison of CDS lengths
and mutation counts in all observed genes within the TCGA CRC cohort. Red dots indicate top genes possessing both high CDS lengths and
frequent mutation, blue dots indicate genes with relatively large CDS lengths and infrequent mutation, and green dots indicate genes with
relatively short CDS lengths and frequent mutation. Correlation of TTN-TMB, TMB-WES, and TMB-tNGS in the TCGA CRC cohort (d) and the
AMC cohort (e) (Pearson correlation test). f Lollipop plot of all reported variants of the TTN gene in the AMC cohort. TMB tumor mutation
burden, WES whole-exome sequencing, tNGS targeted next-generation sequencing.
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The mutation rate normalized according to CDS length was
significantly higher in TTN than in other FLAGS or remaining genes
(Fig. 3b). A similar pattern was observed even when the mutation
rate was normalized by GC content (%) in addition to CDS length
(Fig. 3c), and gene expression levels varied for these FLAGS that
possessed long CDS length (Fig. 3c). We suggest that one possible
explanation for these observations may be the later replication
time of TTN compared to that of other FLAGS possessing long CDS
length (Fig. 3d), as mutation frequency is correlated with DNA
replication timing.14 This finding has been also previously
described by Tan et al.15

Mutation characteristics according to TTN gene sequencing and
targeted sequencing within the AMC cohort

Next, we performed TTN gene sequencing of 24 CRCs in which
targeted NGS data were available to validate the findings from the
pan-cancer cohort. For the AMC cohort (n= 24 CRCs), 14 patients
were MSI-H, and the remaining 10 were MSS, including one
patient with a POLE mutation. The median ages at diagnosis
within the MSI-H and MSS groups were 51.5 years (range, 21–80)
and 58 years (range, 45–69), respectively. Of the 14 MSI-H CRCs,
three (21.43%) were mucinous adenocarcinomas, and the
remaining 11 (78.57%) were conventional adenocarcinomas. All
10 CRC cases exhibiting MSS (100%) were histologically classified
as conventional adenocarcinoma. Patient characteristics and
associated mutational features for MMR-related genes and the
POLE gene are summarized in Supplementary Table 1. In the TTN

panel assay, there were 239 somatic alterations within non-
intronic regions, including 156 missense mutations (65.27%),
57 silent mutations (23.85%), 14 nonsense mutations (5.86%), one
splice site mutation (0.42%), seven frame shift insertions (2.93%),
and four frame shift deletions (1.67%) (Fig. 4a). The landscape of
TTN mutations in the 24 samples, along with their MSI and POLE
mutation status, is shown in Fig. 4a. InDel mutations were not
found in the non-MSI/POLE-wild-type group. One POLE-mutated
case exhibited ultra-mutation within the TTN gene. For targeted
NGS using the OP_AMCv3 assay, there were 1381 somatic
alterations in the protein coding region, including 705 missense
mutations (51.05%), 257 frame shift deletions (18.61%), 251 silent
mutations (18.18%), 90 nonsense mutations (6.52%), 49 frame shift
insertions (3.55%), 19 splice sites (1.38%), four in-frame insertions
(0.29%), four RNA non-coding transcript exon variants (0.29%), one
in-frame deletion (0.07%), and one non-stop mutation (0.072%).
The mutational landscape of the 30 most frequently mutated
genes is provided in Fig. 4b.

Correlation between TTN-TMB and TMB-tNGS

We evaluated if TTN-TMB correlated with targeted sequencing
using the 24 CRCs of the AMC cohort. TTN somatic mutation
counts were also significantly correlated with the TMB based on
targeted sequencing (TMB-tNGS) (Fig. 2e, rho= 0.920, p= 2.142e-
10). When one sample exhibiting extremely high mutation rates
were excluded, the correlation coefficient was 0.809 (p= 2.93e-06,
Fig. 2e, inset). The mutation pattern of TTN was characterized by

Fig. 3 TTN mutation frequency and replication time. a Mutation frequency adjusted by coding sequence (CDS) length. b Mutation
frequency adjusted by CDS among TTN, other FLAGS, and remaining 18581 genes (p-value by paired Wilcoxon rank-sum test). c Mutation
frequency adjusted by CDS length and by both CDS length and GC content, and mRNA expression level of the top 11 FLAGS, including TTN in
CDS length in the MSI-H group. d Association between mutation frequency and replication time in FLAGS, including TTN.
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spontaneous mutations throughout all exons of TTN, and no
hotspots were found (Fig. 2f). These findings suggest that the
somatic mutation frequency of TTN could be representative of

TMB determined by targeted sequencing and by WES.

Comparison of TTN-TMB within genomic instability groups

We evaluated if TTN-TMB could be used to discriminate between
HGI and LGI in COAD (n= 402), READ (n= 150), STAD (n= 439),
UCEC (n= 520), and UCS (n= 56), as these tumor types possess
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MSI-H status information. Of the 1567 patients from the TCGA
pan-cancer cohort, the significant differences in TMB measured by
TTN-TMB (p < 2.2e-16, Fig. 5a) were found between HGI and LGI,
likely as measured by TMB-WES (p < 2.2e-16, Fig. 5b). In each
tumor type, we tested the diagnostic performance using mutation
counts within TTN. The diagnostic performance of TTN was high,

and the COAD exhibited the highest AUC value (95.2) (Fig. 5c),
which was much better than that obtained using NEB, which
yielded the second highest correlation coefficient (Fig. 5d). When
COAD and READ were combined into CRC, TTN-TMB (p < 2.2e-16)
and TMB-WES (p < 2.2e-16) yielded also both significantly differ-
ences between HGI and LGI tumors (Fig. 5e), and these

Fig. 5 Comparison of TTN-TMB according to MSI and POLE mutation status. Mutation counts within the TTN gene (a) and total mutation
counts of all genes (b) according to HGI and LGI samples in the TCGA cohort (n= 1567, Wilcoxon rank-sum test) for each tumor type.
Diagnostic performance of TTN (c) and NEB (d) for HGI in each tumor type. The differences in TTNmutation count between the HGI and the LGI
groups in the TCGA CRC cohort (e) and the AMC cohort (f) (Wilcoxon rank-sum test). g No differences in diagnostic accuracy for HGI and LGI
were observed between TTN-TMB and TMB by targeted NGS (tNGS) in the AMC cohort. The differences in TTN mutation count among the
POLE-mutated group, the MSI-H group, and the remaining group in the TCGA CRC cohort (h) and the AMC cohort (i) (Wilcoxon rank-sum test
or Kruskal-Wallis test). HGI high genomic instability, LGI low genomic instability, TMB tumor mutation burden, WES whole-exome sequencing,
NGS next-generation sequencing, AUC area under the curve.
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relationships were also observed within the AMC cohort (p=
0.00025, Fig. 5f left for TTN-TMB; p= 9.3e-05, Fig. 5f right for TMB-

tNGS). The mean mutation numbers within TTN-based on TTN
sequencing in HGI and LGI tumors were 14.53 ± 17.99 and 2.33 ±
2.35, respectively. TTN-TMB yielded no significant differences
compared to TMB-tNGS in regard to diagnostic performance in

the classification of HGI and LGI (AUC, 0.956 vs. 0.989, p= 0.3479,
Fig. 5g). When the cases within the TCGA were classified into three
groups (non-MSI/POLE-mutant, MSI-H, and non-MSI/POLE-wild-

type), TTN-TMB and TMB-WES were also both significantly
different among the three groups (TTN-TMB: p < 2.2e-16, Fig. 5h,
left; TMB-WES: p < 2.2e-16, Fig. 5h, right). These findings were also
repeated in the AMC cohort (TTN-TMB: p= 0.00061, Fig. 5i left;

TMB-tNGS: p= 0.00025, Fig. 5i right).

Classification model construction using TTN-TMB for MSI-H and
external validation

Next, we built a prediction model using a Random Forest machine
learning (Fig. 6a) to classify MSI-H and MSS based on TTN-TMB for

CRC, STAD, and UCEC. We used a Random Forest Model, as this is
one of the most robust prediction models and MSI-H frequencies

are different between the training (TCGA) set and the validation
(AMC) set. Patient information, including age and sex, was not
selected during the model construction. In prediction perfor-
mance, AUC was 0.892 (p < 0.001), 0.833 (p < 0.001), and 0.926 (p <

0.001) for STAD, UCEC, and CRC, respectively. Among these, CRC
exhibited the highest predictive model performance, and the
model was applied to 23 AMC CRCs for external validation. The

AUC was 0.873 (Fig. 6b), despite the use of different mutation
calling methods between the TCGA and AMC sets. These findings
suggest that TTN-TMB can be used as a diagnostic marker for MSI-
H specifically in CRC.

Immunostimulatory signature enriched in tumors with TTN
mutation

We evaluated the existence of any relationship between TTN
mutation and immunostimulatory signature using 8145 pan-
cancer data sets that contained both mutation and gene
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expression data for enrichment analysis. In this analysis, we
identified TP53 mutation has the highest max ES (score= 569.5)
for immunostimulatory signature (Fig. 6c), indicating that TP53
mutation was more frequently found in tumors with high
immunostimulatory signature. TTN mutation was also ranked
within the top 5 in max ES (score= 455.8, permutated p < 0.0001,
Fig. 6c), and the IS score was significantly high in the TTN mutated
group (p < 2.2e-16) compared to that of the TTN non-mutated
group (p < 2.2e-16, Fig. 6d), suggesting that TTN mutation is
directly or indirectly associated with immunogenic tumors.

DISCUSSION

Through computational analyses of 33 cancer types from pan-
cancer databases and the AMC cohort, we demonstrated that the
mutation count within the TTN gene can represent the TMB status
within various tumor types and can be used to predict the MSI-H
status specifically in CRC. A high correlation was typically observed
in the tumors known as hypermutated tumor types, such as SKCM,
CRC, UCEC, LUAD, BLCA, that frequently possess more than 10
mutations per Mb.21,30 However, TTN-TMB revealed low correla-
tion coefficients in tumor types that possessed low mutation rates,
including breast, kidney, and thyroid tumors. Therefore, TTN-TMB
may possess limitations in regard to those tumor types.
We acknowledge that current gene panel testing utilizing NGS

can provide actionable gene mutations and can identify TMB, and
therefore, a TTN-based sequencing assay would provide no useful
information beyond TMB. However, in regard to the current gene
panel testing using NGS, it is known that the panel size is
recommended to be greater than 1 MB to detect the TMB with a
narrow range of confidence interval.16,17 Additionally, actionable
mutations linked to approved target agents are limited for several
genes according to tumor type. Therefore, gene panel analysis
may be more efficient when using TTN in combination with a
small number of targetable genes according to tumor type. Based
on this, panel sizes could be reduced to a smaller number of
genes. When the number of tested genes is reduced, there are
several advantages that include reduced review time for variant
interpretation, faster computational analysis, efficient DNA library
construction (clinical NGS testing uses formalin-fixed paraffin-
embedded tissue, and DNA within these tissues undergoes severe
degradation that results in capture difficulties that make it difficult
to obtain high read depth evenly from the multiple genes located
at different chromosomal location, ultimately leading to false
negatives in variant calling at low read depth location), and faster
sequencing time due to reduced library size (Supplementary Table
2). Additionally, a larger number of assays can be processed
simultaneously on a given NGS platform due to reduced
library size.
We used computer-based modeling to randomly generate

100,000 sets composed of 2–25 genes to determine whether sets
of a similar size to TTN can provide similar power for detecting
TMB or MSI-H (Supplementary Fig. 2). This analysis suggests that
optimal gene sets that possess a similar size to TTN may provide
similar power for detecting TMB or MSI-H, and increased panel
size results in smaller confidence intervals.16,17 However, this
analysis also indicate that multiple gene combinations are
required to obtain similar performance to that of the individual
TTN. Determining the optimal gene set to satisfy all conditions,
including the highest mutation rate and the highest correlation
coefficient or accuracy, may not, however, be easy and may be
dependent upon tumor types. In this study, we would like to
emphasize that a single gene, although large, can effectively
represent the TMB in a manner similar to that of multiple gene
combinations. This method may also be useful under specific
conditions such as those encountered in a clinical setting using
the Amplicon-based hotspot panel, as it is difficult to define the
TMB using NGS of circulating tumor DNA (ctDNA). Evaluation of

TMB by analyzing ctDNA is becoming a promising diagnostic
method for the selection of immunotherapy candidates, and NGS
cancer panels specific for ctDNA inevitably currently possess
considerable panel size limitations.
Initially, most studies employed WES for estimating TMB, and

they demonstrated that a high TMB was associated with a higher
likelihood of response to immunotherapy. This approach has not,
however, been successfully applied to clinical testing due to the
high cost and turn-around time. For this reason, TMB using
targeted NGS has been assessed, and Rizvi et al. demonstrated
that TMB estimated using targeted gene panels was highly
correlated with TMB assessed by WES.18 Campesato et al.,
however, demonstrated that gene panels that included fewer
than 150 genes are less accurate in their estimation of TMB by
WES than are larger panels.19 Additionally, Buchhalter et al.16

demonstrated that the optimal panel size (between 1.5 and 3Mb)
is an essential factor for the precise estimation of TMB. However
Lyu et al.20 revealed that a small gene set could be used for
estimating TMB.
Although we sequentially validated the diagnostic utility of the

TTN gene mutation count in CRC, our discovery analyses indicated
that TTN gene mutation count may also be useful for prediction of
TMB in other tumor types. The strong diagnostic value of the TTN
gene mutation count could be attributable to the low biological
selection pressure of TTN functional loss. As the protein coding
regions of biologically important genes are subject to selection
pressure, mutations affecting those regions are positively or
negatively selected, and they may be observed commonly across
tumors having a different TMB. In contrast, genes that are
relatively less important for cell proliferation or survival are less
susceptible to selective pressure, and thus, mutations affecting
those genes are able to accumulate, ultimately contributing
significantly to TMB. In this sense, the TTN mutation count may
provide a good candidate for a surrogate for TMB status.
In this study, we demonstrated that mutation count in a single

gene, TTN, can be used to estimate TMB. To our knowledge, this is
the first approach to demonstrate the relationship between
somatic mutations in a single gene and the TMB determined by
targeted NGS or WES. Additionally, our results also indicate that
the TTN mutation profile could be used as a predictor of MSI-H, at
least in regard to CRC. Incorporating TTN into a given gene panel
design may increase the efficiency for the detection of TMB.

METHODS

Study design

This retrospective study was designed to identify a single gene that could
represent TMB as assessed by WES or targeted NGS. The overall study
design is summarized in Supplementary Fig. 3. A correlation analysis was
performed using 10,224 samples across 33 cancer types from TCGA.
Additionally, among this pan-cancer cohort, COAD (n= 402 of 406; four
cases have no MSI information), READ (n= 150), STAD (n= 439), UCEC
(n= 520 of 530; 10 cases have no MSI information), and UCS (n= 56 of 57;
one case has no MSI information) with MSI status information were further
analyzed for diagnostic accuracy of TTN-TMB to POLE mutation or MSI-H
status. Additionally, external validation was performed for a CRC cohort, as
this tumor type is a representative tumor type that is MSI-H. For external
validation, tNGS and TTN gene sequencing analyses were performed on 24
CRCs from the Asan Bio-Resource Center at Asan Medical Center, Seoul,
Korea (AMC cohort).
Finally, we assessed if TTN-TMB could classify tumors into subgroups

according to MSI status and POLE mutation status (non-MSI/POLE-mutant,
non-MSI/POLE-wild, and MSI-H). Of these three subgroups, the two that are
categorized by a high mutation rate (MSI-H or non-MSI/POLE-mutant) were
grouped together as the high genomic instability (HGI) group for analysis,
and the remaining subgroup (non-MSI/POLE-wild-type) was considered the
low genomic instability (LGI) group. This study was approved by the
Institutional Review Board of Asan Medical Center. The institutional review
board waived the requirement to obtain informed consent because all
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tested samples in this study were obtained from the Bio-Resource Center
at Asan Medical Center.

Pan-cancer cohort data used in this study

We used TCGA MC3 MAF v3 when examining somatic mutations (mc3.
v0.2.8.PUBLIC.maf).12 The corresponding clinical data were obtained from
the TCGA GDC portal. The dataset included the following cancer types:
adrenocortical carcinoma (ACC, n= 92), bladder urothelial carcinoma
(BLCA, n= 411), breast invasive carcinoma (BRCA, n= 1020), cervical and
endocervical carcinoma (CESC, n= 289), cholangiocarcinoma (CHOL, n=
36), colon adenocarcinoma (COAD, n= 406), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC, n= 37), esophageal carcinoma (ESCA, n=
184), glioblastoma (GBM, n= 393), head and neck squamous cell
carcinoma (HNSC, n= 507), kidney chromophobe carcinoma (KICH, n=
66), kidney renal clear cell carcinoma (KIRC, n= 369), kidney renal papillary
cell carcinoma (KIRP, n= 281), acute myeloid leukemia (LAML, n= 141),
brain lower grade glioma (LGG, n= 512), liver hepatocellular carcinoma
(LIHC, n= 363), lung adenocarcinoma (LUAD, n= 567), lung squamous cell
carcinoma (LUSC, n= 485), mesothelioma (MESO, n= 82), ovarian serous
cystadenocarcinoma (OV, n= 412), pancreatic adenocarcinoma (PAAD,
n= 177), pheochromocytoma and paraganglioma (PCPG, n= 179), pros-
tate adenocarcinoma (PRAD, n= 497), rectum adenocarcinoma (READ, n=
150), sarcoma (SARC, n= 236), skin cutaneous melanoma (SKCM, n= 466),
stomach adenocarcinoma (STAD, n= 439), testicular germ cell tumors
(TGCT, n= 145), thyroid carcinoma (THCA, n= 492), thymoma (THYM, n=
123), uterine corpus endometrial carcinoma (UCEC, n= 530), uterine
carcinosarcoma (UCS, n= 57), and uveal melanoma (UVM, n= 80). Of these
33 tumor types, COAD and READ were merged into CRC. For the 33 cancer
types, the number of samples is depicted in Supplementary Table 3.

Patients and tumor specimens of the AMC cohort

For the validation cohort, 24 patients with CRC were selected from our
previous study21 according to the following criteria: (1) tumors were
evaluated using PCR-based analysis of microsatellite loci and (2) tNGS data
were available. Of the 24 CRCs, 14 (58.3%) were the MSI-H phenotype, as
confirmed by MSI PCR analysis, and the remaining 10 (41.7%) were
microsatellite stable (MSS), with a POLE pathogenic mutation in one case.
In this study, we attempted to balance the frequency of MSI (MSI-H vs.
MSS= 1:1), as the aim of this study was to determine if TTN correlates
with TMB.

Microsatellite loci testing by PCR

MSI status in the AMC cohort (n= 24) was evaluated by PCR. Fluorescently
labeled primers were used to amplify five different microsatellite loci,
including two mononucleotide repeats (BAT-25 and BAT-26) and three
dinucleotide repeats (D5S346, D2S123, and D17S250) in tumors and
matched normal samples. MSI status was determined based on a different
length of the PCR product within the tumor sample compared to that of
the paired normal sample. Samples with instability in two or more of the
five loci were defined as MSI-H. Samples with instability in one of the five
loci were defined as microsatellite instability-low (MSI-L). Samples with no
instability were defined as MSS. In this study, MSI-L and MSS were classified
as non-MSI.

Targeted NGS in the AMC cohort

BAM files from the tNGS for the AMC cohort (n= 24 CRCs) were obtained
from our previous study.21 Detailed information on the targeted
sequencing method has been described previously.21 Briefly, the targeted
NGS panel, OncoPanel AMC version 3 (OP_AMCv3), was designed at AMC
using SureDesign (Agilent Technologies, USA) and Genome Reference
Consortium Human Build 37 (GRCh37) as the reference genome. This panel
is ~1Mb in size and contains 33,524 probes targeting a total of 382 genes,
including the entire exons of 199 genes, 184 hotspots, and partial introns
of eight genes often rearranged in cancer. The TTN gene was not included
in this panel.

TTN gene sequencing and data processing

For the AMC cohort (24 CRCs) with tNGS data, a TTN gene panel (Celemics,
Korea) was designed to cover only the exonic regions of the TTN gene.
Genomic DNA was extracted from formalin-fixed, paraffin-embedded
(FFPE) tumor tissue, and a DNA library was prepared using the SureSelect

XT custom kit (Agilent Technology) after DNA quality assurance. Pooled
libraries were sequenced using an Illumina MiSeq (Illumina, USA).
Sequencing was performed in tumor tissue without matched normal
tissue. Sequenced reads were mapped to the GRCh37 using the Burrows-
Wheeler Aligner (BWA) version 0.7.1522 under the default settings. PCR
duplicate reads were identified and removed using MarkDuplicate of the
Genome Analysis Tool Kit (GATK) version 4.0.2.1.23 Recalibration of the base
quality was performed using ApplyBQSR of GATK version 4.0.2.1.23

Variant calling and filtering to identify somatic variant candidates

Somatic variant candidate calling for single-nucleotide variant (SNV) and
insertion/deletion mutation (InDel) was performed using the BAM file
using Mutect2 in the tumor-only mode of GATK 4.0.2.1.23 The raw variants
called by Mutect2 were additionally filtered out as follows. First, the raw
variants generated using Mutect223 were filtered out with the exception of
“PASS” and “germline risk.” Second, the remaining variants were further
filtered out using the following databases: (1) the Korean Reference
Genome Database (KRGDB, http://coda.nih.go.kr/coda/KRGDB) and (2) an
in-house panel of normals (PON). The remaining candidates were also
filtered out using in-house criteria (total depth < 30 and variant read depth
for SNV < 3 or variant read depth for InDel < 5). These somatic candidates
were annotated using Variant Effect Predictor (VEP) version 9124 and
converted to MAF format using vcf2maf version 1.6.15 (https://github.com/
mskcc/vcf2maf). Then, the annotated candidates within intronic regions
were removed. Next, as variants annotated as “germline risk” are included
in the Genomic Aggregation Database (gnomAD) and because some of
these variants may be somatic mutations, the variants considered to be
true germline variants were filtered out based on the distribution of the
“PASS” variants using a kernel density algorithm in the subsequent filtering
step as follows:

(i) “PASS” variants were assumed to be true somatic mutations.
(ii) Distribution of the variant allele fraction of the somatic mutations

was assumed to be nonparametric.

Kernel density; f xð Þ ¼ 1
nh

P

n

i¼1

K x�xi
h

� �

(1)

xi= variant allele fraction of each mutation in passed somatic mutations;

K uð Þ ¼ 1
ffiffiffiffi

2π
p e�

1
2u

2

; h ¼ 4σ5

3n

� �1
5� 1:06σn�

1
5 (2)

If f(x) [for varianti in germline risk] ≈ 0, the variant was discarded.
Among the filtered variants in this step, the variants were rescued if they

fulfilled these two criteria: (1) predicted to be deleterious variants in
Sorting Intolerance From Tolerant (SIFT),25 and (2) predicted to be probably
or possibly pathogenic variants in Polymorphism Phenotyping version 2
(PolyPhen-2).26 For POLE, only mutations within the exonuclease domain
were considered pathogenic. In this study, the final remaining candidates
were considered somatic mutations.

Estimation of tumor mutation burden (TMB)

For the AMC and TCGA cohort, all SNV and InDel types, including
synonymous and non-synonymous mutations in all exonic regions and
splice sites, were used to calculate TMB,16 and the same methods were
applied for all data used in this study. The TMBs measured by tNGS and
WES were defined as the TMB-tNGS and TMB-WES, respectively. The total
mutation count within the TTN gene was defined as the TTN-TMB. For all
annotated genes harboring mutations (n= 19,360) in the TCGA CRC
cohort, coding sequence (CDS) lengths were obtained from the Ensembl
BioMart database.27

Correlation analysis

Pearson correlation analyses between the total mutation count detected
by NGS and the mutation count in each gene were performed for all cases,
and correlation coefficients (rho) and p-values were obtained for each
gene. The correlation analysis is described in detail in Supplementary
Fig. 4.

Immune stimulatory signature score based on the gene
expression

We downloaded normalized gene expression data for 8145 cases with DNA
sequencing data from Broad GDAC Firehose (https://gdac.broadinstitute.
org/). Briefly, these data were upper-quartile normalized gene expression
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data generated from RNA sequencing. The data included the expression
levels for a total of 20,502 genes. The gene expression level was further
transformed by log2(expression value+ 1). We selected known genes,
including IFNG, IL2, IL12A, IL12B, IL15, and TNF, that were related to
immunostimulatory signals (https://www.qiagen.com/ie/shop/pcr/primer-
sets/rt2-profiler-pcr-arrays/?catno=PAHS-181Z#geneglobe). The immunos-
timulatory signature (IS) score was then simply defined as the average of
the expression values of these six genes from the log2 transformed
dataset.

DNA replication time

DNA replication times for 17,667 genes provided by previous studies14,28

were used. The replication time indicates the order in which segments of
chromosomal DNA duplicated at a particular time during the S-phase.29 A
lower replication time indicates an earlier replication.

Enrichment analysis of TTN mutation in the immune stimulatory
signature

We used an enrichment score30,31 to determine if cases with TTN mutation
were enriched among cases with high immune stimulatory signature
across the whole sample. Briefly, a total of 8145 pan-cancer cases with
corresponding RNA sequencing expression data were decreasingly
ordered by immune stimulatory signature score. We then calculated the
enrichment score, which was normalized by Kolmogorov-Smirnov
statistics,30,31 as follows.

Enrichment score ESð Þ for TTN

¼ MAX
P

n

j¼1

ffiffiffiffiffiffiffi

N�G
G

q

if TTN in Ptjð Þ �P
n

j¼1

ffiffiffiffiffiffiffi

G
N�G

q

if TTN not in Ptjð Þ
 !

(3)

N= total patient (Pt) number; G= number of patients with TTN
mutation.
The ES reached a higher positive score when samples within the TTN

mutated group were consistently ranked at the top of the sample list. The
maximum ES was obtained when the N samples in the TTN mutated group
were ranked as the top N most mutated samples among the 8145 samples.
We permuted the TTN class label 10,000 times, and each time, we recorded
the maximum ES generating background distribution. The permutated p-
value was then calculated by

~p ¼ B�1
P

B

b¼1

I maxES0 � maxESbð Þ; B ¼ 10; 000 (4)

Data visualization

MAF files for the AMC cohort were visualized using R package maftools
version 1.7.05.32 A lollipop plot was generated using PCGP protein paint
(https://pecan.stjude.cloud/proteinpaint).

Classification modeling using machine learning with internal and
external validation

To test the diagnostic accuracy of TTN-TMB, a classification model was
constructed using the SNV count within TTN, the InDel count within TTN,
the total mutation number (SNV+ InDel) within TTN, index 1 (InDel/[SNV
+ InDel]), and index 2 (InDel/SNV). To construct the model, a Random
Forest model was used, and the model was constructed to predict MSI-H
versus MSS as a binary outcome for 541 CRCs, 438 STADs, and 478 UCECs.
The UCS cohort was excluded due to only 2 MSI-H cases. To evaluate the
predictive performance of the prediction model, a 10-fold cross-validation
(CV) procedure was used as follows:
Step 1—The total data were randomly divided into 10 equally sized

subsets.
Step 2—A single subset was used as the validation data, and the

remaining nine subsets were used as training data.
Step 3—Random Forest was applied to the training set to fit a

prediction model.
Step 4—A fitted prediction model was applied to the validation data,

and the predicted probabilities were calculated.
Step 5—Steps 2–4 were repeated 10 times.
Step 6—After the cross-validation was completed, the predicted

probability values of all samples calculated by 10-fold CV were combined
together. A single ROC curve was drawn according to Simon et al.,33 and

the area under the curve (AUC) value was calculated. To remove the
overfitting bias of 10-fold CV as detailed by Simon et al.33, we calculated a
permutation p-value from 10,000 random permutations as follows;
(1) compute naive AUC value (AUC0) from the 10-fold CV procedure for
the original data, (2) compute AUC value (AUCb) from the 10-fold CV
procedure for the b-th permuted data (b= 1,…,B), (3) calculate a
permutation p-value by

~p ¼ B�1
P

B

b¼1

I AUC0 � AUCbð Þ; B ¼ 10; 000 (5)

An external validation using the AMC cohort was performed for the CRC
type by creating a prediction model with total CRC TCGA data.

Statistical analysis

Wilcoxon rank-sum tests or Kruskal-Wallis tests were performed to
compare the differences in continuous variables, including TMB. All
reported p-values are two-sided, and p < 0.05 was considered statistically
significant. All statistical analyses were performed using R version 3.5.2.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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