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Spontaneous polarization and piezoelectricity in boron nitride nanotubes
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Ab initio calculations of the spontaneous polarization and piezoelectric properties of boron nitride nanotubes
show that they are excellent piezoelectric systems with response values larger than those of piezoelectric
polymers. The intrinsic chiral symmetry of the nanotubes induces an exact cancellation of the total spontaneous
polarization in ideal, isolated nanotubes of arbitrary indices. Breaking of this symmetry by intertube interaction
or elastic deformations induces spontaneous polarization comparable to those of wurtzite semiconductors.
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[. INTRODUCTION symmetry is broken by, e.g., intertube interactions or elastic
distortions.

Piezoelectric and pyroelectric materials for modern tech- The rest of this paper is organized as follows: Sec. Il
nological applications should display an excellent piezoelecbriefly reviews the formulation of the modern polarization
tric response, combined with high mechanical stability andheory in terms of Berry phases or Wannier functions. It also
low environmental impact. Existing materials, which can bePresents the details of the numerical techniques that were
broadly divided into the families of ceramics and polymers,used to compute polarization. In Sec. Ill we discuss the re-
can only partially fulfill the above requirements. Lead zir- Sults and the complementary nature of the two techniques to
conate titanate(PZT) ceramics, for example, are strong compute the spontaneous polarization. Finally, Sec. IV pre-
piezoelectrics and pyroelectricsbut, unfortunately, they are Sents the summary and conclusions.
also brittle, heavy, and toxic. On the other hand, polymers
such as polyvinylidene fluoridéPVDF) are lightweight,
flexible, and virtually inert, but their polar properties are an
order of magnitude weaker than those of PZ.this paper, A. Modern theory of polarization
we examine spontaneous polarization and piezoelectricity in

boron nitride nanotubedBNNT'’s) in order to estimate their very subtle and is best approached by the “Berry-phase”

pote_zntial us_eful_ness in various pyroelectric _and piezoelectrignethod' introduced only a decade ago by Vanderbilt and
device applications, _anq to _understand the interplay betweelQing—Smith? and Rest&.Within this approach, the polariza-
symmetry e polarlgatlon_ In nano.tubular systems. . tion difference between two states of a system is computed
. EZNNTS’ broadl_y |n\{est|gated since their initial predic- as a geometrical quantum phase. In practice, this difference,
tion* and succeeding discovetyre already well known for AP=P*1)—p(a) can be obtained if one can find an adia-

their excellent mecr?amcal propertfesiowever, unlike car- batic transformatiom from one state to the other that leaves
bon nanotube$CNT’s), most of BN structures are noncen- e system insulating. In the spirit of Ref. 1B can be
trosymmetric and polar, which might suggest the existence otfh ' L

nonzero spontaneous polarization fields. Recently, thes%pllt Into two partsPjo, andpe;”, corresponding to the ionic

properties have been partially explored by Mele andlKra anq electronic cqntrlbutlons respectlvely. In the case .Of
using a model electronic HamiltonidnThey predicted that paired electron spins, the expression for the total polarization

BNNT's are piezoelectric and pyroelectric, with the direction of the system can be written as follows:
of the spontaneous electric field that changes with the index

1. COMPUTATIONAL METHODS

The problem of computing polarization in materials is

of the tubes. Thab initio calculations presented in this pa- \ e

. o —p(\) (N — — M) (M)
per provide a much fuller description and show that BNNT PO = Pign+Pg) RV Z« 2303
systems are indeed excellent lightweight piezoelectrics, with
comparable or better piezoelectric response and superior me- 2ie

chanical properties than in piezoelectric polymers. However,
contrary to the conclusions of Ref. 7, our combined Berry
phase and Wannier functidiiVF) analysis demonstrates that
electronic polarization in BNNT’s does not change its direc-whereV is the volume of the unit cellZ, andr, are the
tion but rather grows monotonically with the increasing di- charge and position of theth atom in the cell, and; are
ameter of the tube. Furthermore, the electronic and ioni¢he occupied cell-periodic Bloch states of the system. For the
spontaneous polarizations in BNNT's cancel exactly ancelectronicpart, an electronic phase(a” (Berry phasg de-
these systems are pyroelectric only if their intrinsic helicalfined modulo 2r can be introduced as
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eM=VvG, PYre, 2

whereG,, is the reciprocal lattice vector in the direction.
Similarly, one can construct an angular variable foritréc
part, called, in what follows, the “ionic” phase, so that the
total geometrical phase is

M= 7MW, .t 4 W) 3)
The total polarization in thex direction becomes
PM=edMR,/V, (4)

where R, is the real-space lattice vector corresponding to

G,, (R,-G,)=1.

Alternatively, the electronic polarization of a system can
be expressed in terms of the centers of charge of the Wanni
functions of its occupied bands*

pg%l):—%zi fr|Wi()\)(r)|2dr:_$zi (M), )

where the WRNV™(r) is constructed from the Bloch eigen-
statesu}) of bandi using the unitary transformation

W;(r)=

j e'uy(r)dk, (6)
BZ

(2m)®

and(r™) is the center of charge for the WW™) . However,
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er FIG. 1. lonic-phase difference between the polar and nonpolar
configurations for zigzag nanotubes; the ionic phase of the nonpolar
configuration is set to zero. Inset: ionic phases wrapped into the
[—r,ar] interval. Phases are given in units of

responds to the contefin at%) of a site that is transformed
from pure boron to the nonpolar reference statee versa
for nitrogen sitep

We used arab initio multigrid-based total-energy method,
employing a real-space grid as a bdSior all the Berry-
phase calculations presented here. The Ceperley-Alder
form, parametrized by Perdew and Zuniferwas used
for the exchange-correlation energy functional in the local-

because of the arbitrariness in the choice of the phases of thfnsity approximation. The norm-conserving pseudo-

Bloch orbitals[nonuniqueness of transformatit)], there is

potential$® for all the elements, including “virtual” ones,

no unique representation of the WF’'s of a given group ofwere generated by theHiosPp packagé® utilizing the

bands. In our approach, we employ an algorithm that ha
been recently developed by Marzari and Vanderbilhich
exploits the freedom in transformati@6) to construct WF's

Kleinman-Bylander formulatiof’
To isolate the contribution of individual nanotubes, we
performed polarization calculations for periodic crystals of

that are as localized as possible. This is achieved by mininoninteracting(i.e., positioned sufficiently far aparhano-
mizing the sum of the quadratic spreads of the Wannier probrybes in hexagonal and tetragonal arrangements. The elec-

ability distributions|W;(r)|?,

M
Q=2 [(rH)~(r)’], (7)
where the sum is over an isolated group of bands. The max
mally localized WF's generated by this procedure are real
apart from an overall phase factor.
In the both methods presented aba®) can be obtained
only modulo 2R/V due to the arbitrariness in the choice of

tronic structure calculations were carried out using two spe-
cial k points along thd’-A direction in the hexagonal dr-Z
direction in the tetragonal Brillouin zones. Tkespace inte-
gration to comput@?’ was done on a string of 20points
uniformly distributed along the same direction and shifted to
Bvoid thel" point. The internal consistency of our approach
was checked against the results obtained usingatheiT
codé?® for a few selected systems with excellent agreement.
Because of the different alignments of the polar bond with
respect to the nanotube axis, we anticipate that the symmetry

the phases of the Bloch functions. However, the difference iyt the nanotube will play an important role in determining

polarization AP is well defined if |AP.|<|2eR/V|. The
same indetermination issues applyRg) .1°

B. Calculations

the magnitude of the spontaneous polarization field. In par-
ticular, since the zigzag geometry maximizes the axial dipole
moment, we expect to observe the strongest effects @) (
nanotubes.

In computing the spontaneous polarization as the differ-

ence between a polar BNNT and a nonpolar reference stat
a natural choice for the nonpolar state is a nanotube of th

same geometry, but with boron and nitrogen atoms substi-

CH
e

Ill. RESULTS AND DISCUSSION
A. Berry-phase method

tuted by “pseudocarbon” atoms, which are 50% boron and The ionic part of the polarization in zigzag BNNT’s, pre-
50% nitrogen. The adiabatic transformation is then definedented in Fig. 1, is large and directly proportional to the

by a “virtual crystal” procedure, in which paramet&rcor-

nanotube’s index. This is in contrast, for instance, to the
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FIG. 2. Electronic-phase differences between the polar and non-
polar configurations for zigzag nanotubes. FIG. 3. (Color onling Upper panel: Examples of Wannier func-
tions (WF) of the o and 7 occupied bands of Qeft pane) and BN
corresponding wurtzite 1I-V and 1I-VI system$?° where  (right panel nanotubes. Lower panel: Schematic positions of the
the spontaneous polarization can be viewed as the differen@enters of the Wannier functions in C and BN hexagons, and the
between the polarizations of the wurtzitgolan and  projections of them WF onto the nanotube axes. The positions of
zincblende(nonpolal geometries. Since these configurationsthe centers o WF are indicated by circles, and those ofby
become geometrically distinct only in the second shell ofsquares. The direction of the shifts @fand = WF in an adiabatic
neighbors, their ionic phases are very close. The major corffansformation from C to BN is indicated by arrows. The projec-
tribution to the spontaneous polarization in wurtzite materi-tions of shifts of thec WF cancel, so that the: WF do not con-
als is then due to the difference between the electronic pdfibute to polarizatior{see text
larizations (which are 0.04-0.08 C/f), while in BNNT’s _ ) ) ) o
both ionic and electroniccontributions are essential. that differ by arbitrary multiples of 2. Unlike the ionic
The ionic phase differencese;,, between the polar and Phase model, where discontinuities¢i,,(\) can be easily
nonpolar configurations of zigzag nanotubes were evaluate@ionitored, Berry-phase calculations always produce phases
via the virtual crystal approximation. The inset in Fig. 1 thatare smoothly folded into the-,] interval and cannot
shows the results obtained by a simple lattice summatioR®€ €xtrapolated. To obtain an unambiguous determination of
over the ionic chargefthe first term in Eq.(3)], with the  the spontaneous polarization of BNNT’s of arbitrary diam-
phases translated into the ] interval. The phases plot- etgrs, one has to compute the polarization in a different way,
ted in the main graph were “unfolded” by eliminating all the Using the centers of charge of the WF's of the occupied
21 discontinuities and setting the phase of the nonpolar refands[Eq. (5)]. Note that this approach does not solve the
erence configuration to zero. For the unfolded phases, as tfgoblem of branch indetermination, since while Berry phases
diameter of a nanotube increases, i.e., as another hexagond&® defined modulo2, Wannier centers are defined modulo
added around the circumference of the tube, the ionic phase lattice vectoR. However, by shifting the indetermination
goes up bym/3, so that the total ionic phase for a,0) BN from the_ phase to t.he lattice vector, we are able to map the
nanotube amounts tom/3. electronic polarization problem onto a simple electrostatic
In Fig. 2 we show the electronic-phase differendas,, moo_lel, where Othe unfolding of the electronic phase is
between the polar and nonpolar configurations for Zigzaétrmghtforwardl.
nanotubes. These data suggest a natural division of the nano-
tubes into three families with differemh¢g: 7/3 for n B. Maximally localized Wannier functions
=3l-1, —#/3 forn=3l+1, and— 7 for n=3l, wherel is

an mtegef, which is S|m|Iar_to the result obtained by Mele or BNNT's are summarized in Fig. 3, where examples of
and Krd.” However, the existence of such three classes o

behavior is surprising, given that the ionic character of the Fs for Cand BN £19zag nanotubgs of arbltrary Q|ameter
electronic charge der]sitj@ssociated with the B-N boid are sh_own, together Wlth a scher_nanc dra\_/vmg _that illustrates
X . - the shift of the Wannier centers in the adiabatic transforma-

does not change with the nanotube index. Additionally, there. .
. . . on from C to BN. Since
is an important difference between our results and those of
Ref. 7, where the electronic polarization of heteropolar nano-
tubes was studied within a simple-orbital tight-binding pBN) _ _ E 2 (rBN _((©) ®
approximation. In Ref. 7, the rf=31" family has a zero ¢l v g b
electronic phase instead ef.

This discrepancy is due to the ambiguity of the definitionthe magnitude of the shift of the centers is directly propor-
of electronic polarization as a multivalued quantftyvhich  tional to the electronic polarization of the BNNT with re-
can assume a lattice of values corresponding to Berry phasepect to the nonpolar CNT.

The results of the maximally localized WF calculations
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The o-band WF's are centered in the middle of the C-Chbroken, is different from zero. For example,(in0) bundles
bonds in carbon nanotubes, while they are shifted towardat equilibrium distance of 3.2 #~0.01 C/nf. However, in
the cations in BN nanotubes because of the different elechis case it is hard to estimate the separate contributions to
tronegativities of B and N atoms. Since these shifts have thpolarization due to bundling, extreme curvature, and elastic
same magnitude along each of the three bond directions, traeformation. Although smaller than in polymers or PZT, this
vector sum of all shifts is zer(see bottom panel of Fig)3 polarization is comparable to some wurtzite pyroelectrics:
and theo orbitals do not contribute to the total polarization e.g.,P=0.06 C/nf in w-ZnO2°
of the system. Ther-band WF's are centered on the cations
in BNNT’s, while in CNT’s they have a peculiar V shape,
with centers somewhat outside of the C-C bond. The sum of
the shifts of ther-band Wannier centers is nonzero only for ~ The Berry-phase method can also be employed to com-
the axial component, which means that the electronic polarPute piezoelectric properties of BNNT's, which are directly
ization in BNNT's is purely axial. related to polarization differences between strained and un-
The bottom panel of Fig. 3 shows the projection of the strained tubes. In the linear regime, the change in polariza-
WF centers onto the axis of the tube. The projections of thdion due to strain can be decomposed into a sum of two
centers have an effective periodicity of half of the axial lat-terms: a uniform axial strain and a relative displacement of
tice constantc, which leads to the indetermination of the the two sublattices. It is therefore natural to describe the
electronic phase by multiples af. Moreover, the WF de- geometry of a BNNT of a given radius in terms of an axial
scription allows for an unambiguous unfolding of the elec-lattice constant and an internal parameteywhereuc is the
tronic phase. In analogy to the ionic phase, we find that eactength of the vector connecting the anion with the cation.
individual hexagon carries a phase efn/3, leading to a With this choice, the axial piezoelectric polarization is
total electronic phase of n#/3 for a (n,0) nanotube. This
result demonstrates that the direction of the electronic polar- IP3 IP3
ization in a BNNT is specified by the orientation of the B-N 6P3=egze3=——(C—Co)+ —=(U—Up), (10
bond and does not oscillate in direction with the nanotube
diameter, contrary to the model Hamiltonian predictions. yhere the strain ig3=(C—Co)/Co, andc, andug are the
We should point out that the Wannier function results aregqyilibrium values ot andu. The only surviving piezoelec-
completely consistent with the Berry-phase calculationsyic srain tensor component is
since an electronic phase efn#/3 for anyn can be folded,

C. Piezoelectricity

modulo 7, into the three families found previously. e<% du
When we combine the results for the ionic and electronic eg= e+ —NZ* —, (1)
phases into a general formula for the phase of an arbitrary \ dc
(n,m) BNNT, ] o
whereN is the number of B-N pairs in the supercell. Here,
. n—m n—-m
AR (n,m)= A" (nm)+Agf(n,m) = —o—— ——, efd)=cooP3/ic (12)

9 . . . . .
© is the “clamped-ion” piezoelectric constafrepresenting the

we find that the two contributions cancel exactly and the€ffect of strain on the electronic structirand
total spontaneous polarization in any BNNT is zero, i.e., the
Wannier centers are arranged in such a way as to completely Z*=(VleNg)dP3/du (13
compensate the polarization due to ions. We have verified
this result by two-poinfA =50 and 100%calculations of the is the axial component of the Born dynamical charge tensor.
Berry-phase difference for a number of chiral nanotubeBoth polarization derivatives were computed as finite dif-
[(3,D, (3,2, (4,1, (4,2, (5,2, and(8,2)] and found an exact ferences, changingc or u by *=1%. The parameterf
cancellation in all BNNT's, except for those narrower than=cydu/dc, describing the change in the bond lengths under
~4 A, where a residual polarization is present as an effect ofixial strain, was obtained by rescaliegtogether with the
the very high curvature. In such nanotubes Wannier centerassociated components of ionic coordinates, and then relax-
cannot fully compensate the ionic polarization, due to theéng the geometry of the system. For all the systems consid-
severe distortion of the atomic bonds, which makes thesered below, the value of is approximately the same and is
systems weakly pyroelectric. For exampie=0.11 C/nf in equal to—0.085.
(3,1), 0.008 C/m in (7,0), and 0.002 C/rhin (12,0 nano- We have calculated the piezoelectric properties for vari-
tubes. ous bundles of zigzag BNNT’s with individual diameters
The exact cancellation is a result of the overall chiralranging from 3.9 to 10.2 A. These results are summarized in
symmetry of the nanotubes, which, although not centrosymTable | and compared to a few well-known piezoelectric and
metric, are intrinsically nonpolar. Nevertheless, cancellatiorpyroelectric materials. While the piezoelectric constants of
of ionic and electronic polarizations is exact only in the limit zigzag BNNT’s are modest when compared with inorganic
of an isolated BNNT. The spontaneous polarization in acompounds, they are still substantially larger than those in
nanotube bundle, where the chiral symmetry is effectivelythe PVDF polymer family.
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TABLE |. Piezoelectric properties of zigzag BNNT bundles
(Ref. 22. The corresponding values for a few piezoelectric materi
als are listed for comparison.

(n,m) Diameter (A) Z* () |esd (C/nP)  Ref.
(5,0 3.91 2.739 0.389
(6,0 4.69 2.696 0.332
(7,0 5.47 2.655 0.293
(8,0 6.24 2.639 0.263
(9,0 7.04 2.634 0.239
(10,0 7.83 2.626 0.224
(11,0 8.57 2.614 0.211
(12,0 9.38 2.609 0.198
(13,0 10.16 2.605 0.186
W-AIN 2.653 1.50 [19]
w-ZnO 211 0.89 [20]
PbTIO; 3.23 [2]
P(VDF/TIFE) ~0.12 [3]

IV. SUMMARY AND CONCLUSIONS

PHYSICAL REVIEW B57, 235406 (2003

function analysis, and show that a real-space description is

-necessary to unravel the Berry phases in complicated cases.

The results suggest that BNNT's are excellent nonpolar pi-
ezoelectrics that exhibit substantially higher strain response
than polar polymers. Moreover, we have shown that, con-
trary to the previous expectations, ideal noninteracting nano-
tubes are effectively nonpolar due to their intrinsic chiral
symmetry, which leads to a total cancellation between the
ionic and electronic polarizations. Breaking of this symme-
try, as in the simple case of interacting nanotubes in a
bundle, induces spontaneous polarization fields that are com-
parable to those of wurtzite semiconductors. Due to their
piezoelectric and pyroelectric properties, BNNT’s are excel-
lent candidates for various nanoelectromechanical applica-
tions.
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