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Spontaneous polarization and piezoelectricity in boron nitride nanotubes
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Ab initio calculations of the spontaneous polarization and piezoelectric properties of boron nitride nanotubes
show that they are excellent piezoelectric systems with response values larger than those of piezoelectric
polymers. The intrinsic chiral symmetry of the nanotubes induces an exact cancellation of the total spontaneous
polarization in ideal, isolated nanotubes of arbitrary indices. Breaking of this symmetry by intertube interaction
or elastic deformations induces spontaneous polarization comparable to those of wurtzite semiconductors.
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I. INTRODUCTION

Piezoelectric and pyroelectric materials for modern te
nological applications should display an excellent piezoe
tric response, combined with high mechanical stability a
low environmental impact. Existing materials, which can
broadly divided into the families of ceramics and polyme
can only partially fulfill the above requirements. Lead z
conate titanate~PZT! ceramics, for example, are stron
piezoelectrics and pyroelectrics1,2 but, unfortunately, they are
also brittle, heavy, and toxic. On the other hand, polym
such as polyvinylidene fluoride~PVDF! are lightweight,
flexible, and virtually inert, but their polar properties are
order of magnitude weaker than those of PZT.3 In this paper,
we examine spontaneous polarization and piezoelectricit
boron nitride nanotubes~BNNT’s! in order to estimate thei
potential usefulness in various pyroelectric and piezoelec
device applications, and to understand the interplay betw
symmetry and polarization in nanotubular systems.

BNNT’s, broadly investigated since their initial predic
tion4 and succeeding discovery,5 are already well known for
their excellent mechanical properties.6 However, unlike car-
bon nanotubes~CNT’s!, most of BN structures are noncen
trosymmetric and polar, which might suggest the existenc
nonzero spontaneous polarization fields. Recently, th
properties have been partially explored by Mele and K´l,
using a model electronic Hamiltonian.7 They predicted that
BNNT’s are piezoelectric and pyroelectric, with the directi
of the spontaneous electric field that changes with the in
of the tubes. Theab initio calculations presented in this pa
per provide a much fuller description and show that BNN
systems are indeed excellent lightweight piezoelectrics, w
comparable or better piezoelectric response and superior
chanical properties than in piezoelectric polymers. Howe
contrary to the conclusions of Ref. 7, our combined Be
phase and Wannier function~WF! analysis demonstrates th
electronic polarization in BNNT’s does not change its dire
tion but rather grows monotonically with the increasing
ameter of the tube. Furthermore, the electronic and io
spontaneous polarizations in BNNT’s cancel exactly a
these systems are pyroelectric only if their intrinsic heli
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symmetry is broken by, e.g., intertube interactions or ela
distortions.

The rest of this paper is organized as follows: Sec.
briefly reviews the formulation of the modern polarizatio
theory in terms of Berry phases or Wannier functions. It a
presents the details of the numerical techniques that w
used to compute polarization. In Sec. III we discuss the
sults and the complementary nature of the two technique
compute the spontaneous polarization. Finally, Sec. IV p
sents the summary and conclusions.

II. COMPUTATIONAL METHODS

A. Modern theory of polarization

The problem of computing polarization in materials
very subtle and is best approached by the ‘‘Berry-pha
method, introduced only a decade ago by Vanderbilt a
King-Smith,8 and Resta.9 Within this approach, the polariza
tion difference between two states of a system is compu
as a geometrical quantum phase. In practice, this differe
DP5P(l1)2P(l0), can be obtained if one can find an adi
batic transformationl from one state to the other that leav
the system insulating. In the spirit of Ref. 10,P(l) can be
split into two parts:Pion

(l) andPel
(l) , corresponding to the ionic

and electronic contributions respectively. In the case
paired electron spins, the expression for the total polariza
of the system can be written as follows:

P(l)5Pion
(l)1Pel

(l)5
e

V (
t

Zt
(l)rt

(l)

2
2ie

8p3 (
i
E

BZ
dk^uik

(l)u“kuuik
(l)&, ~1!

where V is the volume of the unit cell,Zt and rt are the
charge and position of thetth atom in the cell, anduik are
the occupied cell-periodic Bloch states of the system. For
electronic part, an electronic phasewa

(l) ~Berry phase! de-
fined modulo 2p can be introduced as
©2003 The American Physical Society06-1
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wa
(l)5VGa•Pel

(l)/e, ~2!

whereGa is the reciprocal lattice vector in thea direction.
Similarly, one can construct an angular variable for theionic
part, called, in what follows, the ‘‘ionic’’ phase, so that th
total geometrical phase is

Fa
(l)5(

t
Zt

(l)Ga•rt
(l)1wa

(l) . ~3!

The total polarization in thea direction becomes

Pa
(l)5eFa

(l)Ra /V, ~4!

where Ra is the real-space lattice vector corresponding
Ga , (Ra•Ga)51.

Alternatively, the electronic polarization of a system c
be expressed in terms of the centers of charge of the Wan
functions of its occupied bands:8,9

Pel
(l)52

2e

V (
i
E ruWi

(l)~r!u2dr52
2e

V (
i

^r i
(l)&, ~5!

where the WFWi
(l)(r) is constructed from the Bloch eigen

statesuik
(l) of bandi using the unitary transformation

Wi~r!5
V

~2p!3EBZ
eikruik~r!dk, ~6!

and^r i
(l)& is the center of charge for the WFWi

(l) . However,
because of the arbitrariness in the choice of the phases o
Bloch orbitals@nonuniqueness of transformation~6!#, there is
no unique representation of the WF’s of a given group
bands. In our approach, we employ an algorithm that
been recently developed by Marzari and Vanderbilt,11 which
exploits the freedom in transformation~6! to construct WF’s
that are as localized as possible. This is achieved by m
mizing the sum of the quadratic spreads of the Wannier pr
ability distributionsuWj (r)u2,

V5(
j 51

M

@^r j
2&2^r j&

2#, ~7!

where the sum is over an isolated group of bands. The m
mally localized WF’s generated by this procedure are re
apart from an overall phase factor.

In the both methods presented above,Pel
(l) can be obtained

only modulo 2eR/V due to the arbitrariness in the choice
the phases of the Bloch functions. However, the differenc
polarization DP is well defined if uDPelu!u2eR/Vu. The
same indetermination issues apply toPion

(l) .10

B. Calculations

In computing the spontaneous polarization as the dif
ence between a polar BNNT and a nonpolar reference s
a natural choice for the nonpolar state is a nanotube of
same geometry, but with boron and nitrogen atoms sub
tuted by ‘‘pseudocarbon’’ atoms, which are 50% boron a
50% nitrogen. The adiabatic transformation is then defin
by a ‘‘virtual crystal’’ procedure, in which parameterl cor-
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responds to the content~in at%! of a site that is transformed
from pure boron to the nonpolar reference state~vice versa
for nitrogen sites!.

We used anab initio multigrid-based total-energy method
employing a real-space grid as a basis,12 for all the Berry-
phase calculations presented here. The Ceperley-Ald13

form, parametrized by Perdew and Zunger,14 was used
for the exchange-correlation energy functional in the loc
density approximation. The norm-conserving pseud
potentials15 for all the elements, including ‘‘virtual’’ ones
were generated by theFHI98PP package16 utilizing the
Kleinman-Bylander formulation.17

To isolate the contribution of individual nanotubes, w
performed polarization calculations for periodic crystals
noninteracting~i.e., positioned sufficiently far apart! nano-
tubes in hexagonal and tetragonal arrangements. The e
tronic structure calculations were carried out using two s
cial k points along theG-A direction in the hexagonal orG-Z
direction in the tetragonal Brillouin zones. Thek-space inte-
gration to computewz

(l) was done on a string of 20k points
uniformly distributed along the same direction and shifted
avoid theG point. The internal consistency of our approa
was checked against the results obtained using theABINIT

code18 for a few selected systems with excellent agreeme
Because of the different alignments of the polar bond w

respect to the nanotube axis, we anticipate that the symm
of the nanotube will play an important role in determinin
the magnitude of the spontaneous polarization field. In p
ticular, since the zigzag geometry maximizes the axial dip
moment, we expect to observe the strongest effects in (n,0)
nanotubes.

III. RESULTS AND DISCUSSION

A. Berry-phase method

The ionic part of the polarization in zigzag BNNT’s, pre
sented in Fig. 1, is large and directly proportional to t
nanotube’s index. This is in contrast, for instance, to

FIG. 1. Ionic-phase difference between the polar and nonp
configurations for zigzag nanotubes; the ionic phase of the nonp
configuration is set to zero. Inset: ionic phases wrapped into
@2p,p# interval. Phases are given in units ofp.
6-2
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corresponding wurtzite III-V and II-VI systems,19,20 where
the spontaneous polarization can be viewed as the differe
between the polarizations of the wurtzite~polar! and
zincblende~nonpolar! geometries. Since these configuratio
become geometrically distinct only in the second shell
neighbors, their ionic phases are very close. The major c
tribution to the spontaneous polarization in wurtzite mate
als is then due to the difference between the electronic
larizations ~which are 0.04–0.08 C/m2), while in BNNT’s
both ionic andelectroniccontributions are essential.

The ionic phase differencesDw ion between the polar and
nonpolar configurations of zigzag nanotubes were evalu
via the virtual crystal approximation. The inset in Fig.
shows the results obtained by a simple lattice summa
over the ionic charges@the first term in Eq.~3!#, with the
phases translated into the@2p,p# interval. The phases plot
ted in the main graph were ‘‘unfolded’’ by eliminating all th
2p discontinuities and setting the phase of the nonpolar
erence configuration to zero. For the unfolded phases, as
diameter of a nanotube increases, i.e., as another hexag
added around the circumference of the tube, the ionic ph
goes up byp/3, so that the total ionic phase for a (n,0) BN
nanotube amounts tonp/3.

In Fig. 2 we show the electronic-phase differencesDwel
between the polar and nonpolar configurations for zig
nanotubes. These data suggest a natural division of the n
tubes into three families with differentDwel : p/3 for n
53l 21, 2p/3 for n53l 11, and2p for n53l , wherel is
an integer,21 which is similar to the result obtained by Me
and Král.7 However, the existence of such three classes
behavior is surprising, given that the ionic character of
electronic charge density~associated with the B-N bond!
does not change with the nanotube index. Additionally, th
is an important difference between our results and thos
Ref. 7, where the electronic polarization of heteropolar na
tubes was studied within a simplep-orbital tight-binding
approximation. In Ref. 7, the ‘‘n53l ’’ family has a zero
electronic phase instead of2p.

This discrepancy is due to the ambiguity of the definiti
of electronic polarization as a multivalued quantity,10 which
can assume a lattice of values corresponding to Berry ph

FIG. 2. Electronic-phase differences between the polar and n
polar configurations for zigzag nanotubes.
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that differ by arbitrary multiples of 2p. Unlike the ionic
phase model, where discontinuities inw ion(l) can be easily
monitored, Berry-phase calculations always produce pha
that are smoothly folded into the@2p,p# interval and cannot
be extrapolated. To obtain an unambiguous determinatio
the spontaneous polarization of BNNT’s of arbitrary diam
eters, one has to compute the polarization in a different w
using the centers of charge of the WF’s of the occup
bands@Eq. ~5!#. Note that this approach does not solve t
problem of branch indetermination, since while Berry pha
are defined modulo 2p, Wannier centers are defined modu
a lattice vectorR. However, by shifting the indeterminatio
from the phase to the lattice vector, we are able to map
electronic polarization problem onto a simple electrosta
model, where the unfolding of the electronic phase
straightforward.10

B. Maximally localized Wannier functions

The results of the maximally localized WF calculatio
for BNNT’s are summarized in Fig. 3, where examples
WF’s for C and BN zigzag nanotubes of arbitrary diame
are shown, together with a schematic drawing that illustra
the shift of the Wannier centers in the adiabatic transform
tion from C to BN. Since

Pel
(BN)52

2e

V (
i

~r i
(BN)2r i

(C)!, ~8!

the magnitude of the shift of the centers is directly prop
tional to the electronic polarization of the BNNT with re
spect to the nonpolar CNT.

n-
FIG. 3. ~Color online! Upper panel: Examples of Wannier func

tions ~WF! of thes andp occupied bands of C~left panel! and BN
~right panel! nanotubes. Lower panel: Schematic positions of
centers of the Wannier functions in C and BN hexagons, and
projections of thep WF onto the nanotube axes. The positions
the centers ofs WF are indicated by circles, and those ofp by
squares. The direction of the shifts ofs andp WF in an adiabatic
transformation from C to BN is indicated by arrows. The proje
tions of shifts of thes WF cancel, so that thes WF do not con-
tribute to polarization~see text!.
6-3
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The s-band WF’s are centered in the middle of the C
bonds in carbon nanotubes, while they are shifted towa
the cations in BN nanotubes because of the different e
tronegativities of B and N atoms. Since these shifts have
same magnitude along each of the three bond directions
vector sum of all shifts is zero~see bottom panel of Fig. 3!,
and thes orbitals do not contribute to the total polarizatio
of the system. Thep-band WF’s are centered on the catio
in BNNT’s, while in CNT’s they have a peculiar V shap
with centers somewhat outside of the C-C bond. The sum
the shifts of thep-band Wannier centers is nonzero only f
the axial component, which means that the electronic po
ization in BNNT’s is purely axial.

The bottom panel of Fig. 3 shows the projection of thep
WF centers onto the axis of the tube. The projections of
centers have an effective periodicity of half of the axial l
tice constantc, which leads to the indetermination of th
electronic phase by multiples ofp. Moreover, the WF de-
scription allows for an unambiguous unfolding of the ele
tronic phase. In analogy to the ionic phase, we find that e
individual hexagon carries a phase of2p/3, leading to a
total electronic phase of2np/3 for a (n,0) nanotube. This
result demonstrates that the direction of the electronic po
ization in a BNNT is specified by the orientation of the B-
bond and does not oscillate in direction with the nanotu
diameter, contrary to the model Hamiltonian prediction7

We should point out that the Wannier function results
completely consistent with the Berry-phase calculatio
since an electronic phase of2np/3 for anyn can be folded,
modulop, into the three families found previously.

When we combine the results for the ionic and electro
phases into a general formula for the phase of an arbit
(n,m) BNNT,

DFz
tot~n,m!5Dwz

ion~n,m!1Dwz
el~n,m!5

n2m

3
2

n2m

3
,

~9!

we find that the two contributions cancel exactly and
total spontaneous polarization in any BNNT is zero, i.e.,
Wannier centers are arranged in such a way as to comple
compensate the polarization due to ions. We have veri
this result by two-point~l550 and 100%! calculations of the
Berry-phase difference for a number of chiral nanotub
@~3,1!, ~3,2!, ~4,1!, ~4,2!, ~5,2!, and~8,2!# and found an exac
cancellation in all BNNT’s, except for those narrower th
'4 Å, where a residual polarization is present as an effec
the very high curvature. In such nanotubes Wannier cen
cannot fully compensate the ionic polarization, due to
severe distortion of the atomic bonds, which makes th
systems weakly pyroelectric. For example,P50.11 C/m2 in
~3,1!, 0.008 C/m2 in ~7,0!, and 0.002 C/m2 in ~12,0! nano-
tubes.

The exact cancellation is a result of the overall chi
symmetry of the nanotubes, which, although not centros
metric, are intrinsically nonpolar. Nevertheless, cancellat
of ionic and electronic polarizations is exact only in the lim
of an isolated BNNT. The spontaneous polarization in
nanotube bundle, where the chiral symmetry is effectiv
23540
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broken, is different from zero. For example, in~7,0! bundles
at equilibrium distance of 3.2 ÅP'0.01 C/m2. However, in
this case it is hard to estimate the separate contribution
polarization due to bundling, extreme curvature, and ela
deformation. Although smaller than in polymers or PZT, th
polarization is comparable to some wurtzite pyroelectri
e.g.,P50.06 C/m2 in w-ZnO.20

C. Piezoelectricity

The Berry-phase method can also be employed to c
pute piezoelectric properties of BNNT’s, which are direc
related to polarization differences between strained and
strained tubes. In the linear regime, the change in polar
tion due to strain can be decomposed into a sum of
terms: a uniform axial strain and a relative displacement
the two sublattices. It is therefore natural to describe
geometry of a BNNT of a given radius in terms of an ax
lattice constantc and an internal parameteru, whereuc is the
length of the vector connecting the anion with the catio
With this choice, the axial piezoelectric polarization is

dP35e33e35
]P3

]c
~c2c0!1

]P3

]u
~u2u0!, ~10!

where the strain ise35(c2c0)/c0, and c0 and u0 are the
equilibrium values ofc andu. The only surviving piezoelec-
tric strain tensor component is

e335e33
(0)1

ec0
2

V
NZ*

du

dc
, ~11!

whereN is the number of B-N pairs in the supercell. Here

e33
(0)5c0]P3 /]c ~12!

is the ‘‘clamped-ion’’ piezoelectric constant~representing the
effect of strain on the electronic structure!, and

Z* 5~V/eNc0!]P3 /]u ~13!

is the axial component of the Born dynamical charge ten
Both polarization derivatives were computed as finite d
ferences, changingc or u by 61%. The parameterj
5c0du/dc, describing the change in the bond lengths un
axial strain, was obtained by rescalingc together with the
associated components of ionic coordinates, and then re
ing the geometry of the system. For all the systems con
ered below, the value ofj is approximately the same and
equal to20.085.

We have calculated the piezoelectric properties for va
ous bundles of zigzag BNNT’s with individual diamete
ranging from 3.9 to 10.2 Å. These results are summarize
Table I and compared to a few well-known piezoelectric a
pyroelectric materials. While the piezoelectric constants
zigzag BNNT’s are modest when compared with inorga
compounds, they are still substantially larger than those
the PVDF polymer family.
6-4
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IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the spontaneous po
ization and piezoelectric properties of BN nanotubes us
state-of-the-artab initio methods. Our calculations demon
strate the complementary nature of Berry phase and Wan
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