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Spontaneous recovery in dynamical networks
Antonio Majdandzic1*, Boris Podobnik1,2,3,4, Sergey V. Buldyrev5, Dror Y. Kenett1, Shlomo Havlin1,6

and H. Eugene Stanley1

Much research has been carried out to explore the structural
properties1–10 and vulnerability11–19 of complex networks. Of
particular interest are abrupt dynamic events that cause
networks to irreversibly fail13–17. However, in many real-
world phenomena, such as brain seizures in neuroscience
or sudden market crashes in finance, after an inactive
period of time a significant part of the damaged network
is capable of spontaneously becoming active again. The
process often occurs repeatedly. To model this marked network
recovery, we examine the effect of local node recoveries
and stochastic contiguous spreading, and find that they can
lead to the spontaneous emergence of macroscopic ‘phase-
flipping’ phenomena. As the network is of finite size and is
stochastic, the fraction of active nodes z switches back and
forth between the two network collective modes characterized
by high network activity and low network activity. Furthermore,
the system exhibits a strong hysteresis behaviour analogous to
phase transitions near a critical point. We present real-world
network data exhibiting phase switching behaviour in accord
with the predictions of the model.

Although some research has focused on the details of such tran-
sient dynamics as failure propagation19, there is an entire class of
real-world dynamic complex systems in which networks can spon-
taneously recover after their collapse, and the mechanism for this
network global recovery has not yet been adequately understood.
The Internet can initially fail after a severe attack and then, after a
period of time, recover. A human brain can spontaneously recover
after an epileptic attack. A traffic network returns to its normal state
after a period of gridlock. A financial network may, after a period of
time, recover after having a large fraction its constituents fail.

We develop a framework for understanding dynamic networks
that demonstrate an ability to spontaneously recover. We start with
three fundamental assumptions.

First, we assume that any node in the network can fail
independently of other nodes (internal failure) with a probability
of p dt during a time interval dt . Second, we assume that any node
can fail owing to external causes, for example, if it has a substantially
damaged neighbourhood. Nodes that are not failed either externally
or internally are regarded as active. We use a simple threshold
rule (similar to that proposed in ref. 20) to define a substantially
damaged neighbourhood: it is a neighbourhood containing fewer
than or equal to m active nodes, where m is an integer. If node j
has more than m active neighbours during dt , we assume that its
neighbourhood is ‘healthy’, but if node j has≤m active neighbours
during the interval dt , there is a probability r dt that node j will
externally fail. Parameter r we denote ‘damage conductivity’. As a
third premise, we assume that there is a reversal process, a recovery

1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA, 2Faculty of Civil Engineering, University of
Rijeka, 51000 Rijeka, Croatia, 3Zagreb School of Economics and Management, 10000 Zagreb, Croatia, 4Faculty of Economics, University of Ljubljana,
1000 Ljubljana, Slovenia, 5Department of Physics, Yeshiva University, New York, New York 10033, USA, 6Department of Physics, Bar-Ilan University,
52900 Ramat-Gan, Israel. *e-mail: antem@bu.edu

from failures. Node j recovers from an internal failure after a time
period τ 6= 0, and it recovers from an external failure after time τ ′.
For simplicity, we set τ ′= 1.

If there are no recoveries (τ = τ ′=∞) the system reduces to the
Watts model20 generalized and rigorously solved in ref. 21. We find
that introducing dynamic recovery leads to spontaneous network
collapse and recovery—the phase switching phenomena.

We first perform numerical simulations for regular networks
(in which all nodes have the same degree k) and then for Erdős–
Renyi networks22,23. In simulations we use τ = 100, and networks
have N = 107 nodes to approximate the thermodynamic limit. As
most numerical results depend only on the product pτ , instead
of using p and τ we define a more convenient single parameter
p∗≡ 1−exp(−pτ ). It can be shown that p∗ represents the av-
erage fraction of internally failed nodes—see the Supplementary
Information for an explanation. The network global state is best
characterized by the fraction of active nodes in the network, z .
The most interesting question is how p∗ (which controls internal
failures) and r (which controls external failures) affect the entire
network. For a set of different values of p∗ and r , we numerically
calculate a time-averaged fraction 〈z〉 = 〈z(r,p∗)〉 of active nodes.
Figure 1a shows 〈z〉 as a function of p∗, for three different r values,
for a regular network with k = 10 and m= 4. For some r values we
encounter a discontinuity in 〈z〉while slowly changing the p∗ value,
for the increasing or decreasing direction of p∗, or sometimes both.
The hysteresis shown in Fig. 1a is the characteristic feature of a first-
order phase transition. Repeating this procedure for many values of
r , in Fig. 1bwe obtain the two-parameter (r,p∗) phase diagram.Dis-
continuity lines (spinodals) in the (r,p∗) space separate two collec-
tive phases corresponding to high network activity (Phase I—large
values of 〈z〉) and lownetwork activity (Phase II—low values of 〈z〉).
Between the spinodals is the hysteresis region (the purple region in
Fig. 1b), inwhich either of the two network phases can exist.

The system can be analytically described using a mean-field
theory (MFT), details of which we provide in the Methods section.
For an arbitrary network with degree distribution fk , the fraction of
failed nodes a=1−〈z〉 is well approximated by the equation

a(r,p∗)= p∗+ r(1−p∗)
∑
k

fk
m∑
j=0

(
k

k− j

)
ak−j(1−a)j (1)

The values of r and p∗ determine whether there is a single
solution for 〈z〉 = 1− a (a single phase) or three solutions (two
physical stable solutions we observe in simulations and the third
solution, which is dynamically unstable). Our approximate solution
is similar to the exact analytical solution of the Watts model21
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Figure 1 | Critical behaviour of the system with first-order phase transition and hysteresis. a, Equilibrium average fraction of active nodes, 〈z(p∗)〉,
simulation results (symbols) and the MFT prediction (solid lines), for three different values of r. Parameters for random regular networks, N= 107, k= 10
and m=4 are used in this example. b, The phase diagram in model parameters (r, p∗) exhibits two phases. Phase I (green region) represents a high-activity
collective network mode; Phase II (orange) represents a low-activity mode. The hysteresis region (purple) is bounded with spinodals, denoted by red and
blue lines. The lines merge at a critical point located at (r=0.637, p∗=0.386). Colours in the diagram highlight regions of different phases. Analytical
MFT results for spinodals are denoted by black lines. Point A shows the parameters used in Fig. 2. c, Comparison of analytical MFT result (dashed lines)
with numerical results (dots), for the spinodals in the (r,p∗) phase diagram, for regular networks. d, Comparison of analytical MFT result with simulation
results, for an Erdős–Renyi (ER) network with 〈k〉= 10, m=4, N= 107.

for cascading failures with no recovery. However, in our model,
because we assume τ ′ = 1, nodes that externally failed at the
previous stage of the cascade (with probability r) may become
active again at the next stage. The solution of equation (1) gives
a discontinuity in 〈z〉 for certain values of r and p∗. Figure 1a
compares analytical results for 〈z(p∗)〉 for three different values of
r with the simulation results. MFT agrees well with simulations,
but the deviation increases close to discontinuities. Figure 1b shows
the MFT prediction for the position of spinodals (black lines). The
deviation of the MFT approximation from simulations becomes
smaller as connectivity k increases (Fig. 1c), which is a mean-field
characteristic. Figure 1d shows numerical and analytical results
for the Poisson degree distribution (Erdős–Renyi network22), for
〈k〉 = 10 and m= 4. In this case, because a substantial fraction of
nodes have k close to the value ofm, there is less agreement between
MFT and simulation results. In the Supplementary Information
we discuss and compare our model with the Ising, lattice gas and
forest fire models24,25.

As many real-world networks are small or medium-sized,
we perform numerical simulations for small networks in which
fluctuations are very pronounced and find dynamic behaviour that
is qualitatively different. Figure 2a shows the fraction of active nodes
z(t ) for a regular (k=10,m=4) network withN =100 nodes when

(r = 0.8,p∗ = 0.28) is an arbitrary point in the hysteresis region.
We find that z flips back and forth from one phase to another,
between 〈z〉high≈ 0.7 in the high-activity phase, and 〈z〉low≈ 0.14 in
the low-activity phase. The probability distribution function (PDF)
of z has a bimodal shape (see Fig. 2b), similar to a random walker
in a double-well potential. This behaviour is characteristic for small
systems near the critical point, in particular, for the spontaneous
folding and unfolding of proteins26, or in fluids27.

To understand this violent dynamics of the network we need
to determine the mechanism of network global recovery/collapse.
Observe a system with a small number of nodes N . Consider
the fraction of externally failed nodes among the nodes having a
critically damaged neighbourhood (CDN). This fraction at random
time t is not exactly r but, owing to probabilistic nature of
external failures, fluctuates around r . Thus, for short time intervals
[t − λ, t ] we can define the local-time realization of r , rλ(t ), as
the time-averaged fraction of externally failed nodes among the
CDN nodes, during that interval. We expect that during short time
intervals the ‘true’ damage conductivity is not r , but rλ(t ). A natural
choice for λ is the system relaxation time. To estimate it, we use
a typical cascade duration in which λ≈ 5 for a N = 100 network.
Similarly we define pλ∗(t ) as the average fraction of internally failed
nodes during [t−λ,t ].
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Figure 2 | Two network modes characterized by high and low network activity. a, Dynamical switching (flipping) of the fraction of active nodes z, between
two collective modes in the subcritical region, an example for p∗=0.28, r=0.80 (point A, in yellow, Fig. 1b), with k= 10, m=4 and N= 100. Green circles
mark avoided transitions. b, The PDF of z shows a bimodal form. c, The white line represents the trajectory (rλ(t), pλ∗(t)) of the system in the phase
diagram, from t=0 to the moment of the first transition (point 1, Fig. 2a), in the same numerical simulation where z(t) in Fig. 2a was simulated. The system
was in the low active phase until the trajectory crossed the left spinodal, resulting in a global recovery event. Analogously, when the system is in the high
active state the right spinodal becomes relevant (points 2 and 4). Transitions between the macroscopic states are essentially first-passage processes on
interchangeable spinodals. d, For the same parameters as in a–c, expected lifetime of the system in a certain state measured in simulations increases
exponentially with the system size N, confirming our theoretical results. Black lines represent linear regressions in the (N, lnT) diagram.

The evolution of the system can then be described as a trajectory
(rλ(t ), pλ∗(t )) in the phase diagram. Our crucial hypothesis is
this: the global recovery event of the network in the low-activity
phase occurs when the trajectory (rλ(t ), pλ∗(t )) crosses the left
spinodal (the red line in Fig. 1b), triggering a cascade and causing
a transition to the high-activity phase. Similarly, the transition
from the high-activity phase to the low-activity phase occurs when
the trajectory crosses the right spinodal (the blue line in Fig. 1b).
The phase-flipping phenomenon is then simply explained as the
interchangeable crossing of the two spinodals by the trajectory
(rλ(t ), pλ∗(t )) in the phase diagram.Numerical simulations confirm
our hypothesis. For z(t ) in Fig. 2a, we measure the corresponding
(rλ(t ), pλ∗(t )) trajectory. Point 1 in Fig. 2a denotes the moment
when the first jump from the down state to the upper state is
registered. The position of the point (rλ(t ), pλ∗(t )) at thatmoment is
marked in the phase diagram in Fig. 2c, and it is very close to the left
spinodal. Similarly, the first jump from the upper state to the lower
state (point 2 in Fig. 2a) is plotted in Fig. 2c. As expected, the system
at that moment is close to the right spinodal. A fewmore transitions
are presented, confirming our hypothesis for the jumpmechanism.
In Fig. 2c, the white curve represents the trajectory (rλ(t ), pλ∗(t ))
from t = 0 to the moment of the first transition at 1. Sometimes the
system crosses the ‘dangerous’ spinodal, leaves the hysteresis region
for a very short time, and then quickly returns to the hysteresis
region without triggering a cascade of failures (recoveries) and

a corresponding transition. Exceptionally large spikes in Fig. 2a
correspond to such avoided transitions. Note that when r = 1 the
global recovery process is disabled. The fluctuations of rλ vanish,
because rλ(t )= 1 for every t , and the system cannot cross the left
spinodal, which is necessary for global recovery.

Two important observables are the average lifetimes Tdown(N )
and Tup(N ) of the system in, respectively, Phase II (down) and
Phase I (up). Derivations for their estimates are presented in the
Supplementary Information, with results

Tdown(N )∼ exp
[
NλE[a(r,p∗)](r− rs)2

2r(1− r)

]
(2)

and similarly Tup(N ) ∼ exp[Nλ(p∗−ps∗)2/2p∗(1−p∗)], where
E[a(r,p∗)] is the average fraction of CDN nodes, and rs (ps∗) is
a typical r (p∗) position on the left (right) spinodal, where most
transitions to the upper (lower) state occur. Thus, equation (2)
predicts that the average lifetime in a certain state exponentially
increases with the sizeN , as confirmed in simulations in Fig. 2d.

To obtain plausible empirical support for our dynamic network
model, we study the economic networks of companies in both
developed and developing countries. To map a real economic
network to our model, we use market returns to construct an
appropriate binary variable for each node. To pick up fundamental
changes in the companies rather than speculations, we measure a
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Figure 3 | Properties of phase-flipping phenomenon in financial data for developing and developed markets. a, For the constituents of the Indian index
(BSE200), the fraction of stocks z with positive return as a function of time switches back and forth between the two network modes characterized by high
and low network activity. b, Bimodal form in the PDF of financial data during the past decade. c, The same as in a but for the S&P500 financial index.
d, Bimodal form in the PDF of the S&P500 financial data.

company’s return for a period of 100 days. The state of company i
at time t we define as ‘good’ (‘bad’) if, during the period [t−100,t ],
the company has a market value increase (decrease). At each t ,
we define z(t ) as the fraction of companies that have positive net
returns during [t−100,t ].

Figure 3 shows results for z(t ) and its PDF P(z) for two real
financial markets over a ten-year period. Figure 3a,b shows the
Indian financial index BSE200, and Fig. 3c,d shows the US financial
index S&P500. Figure 3a,c shows that z(t ) switches back and
forth between high and low values, resembling the phase-flipping
phenomena that our model predicts for the hysteresis regime.
Figure 3b,d shows that the PDF P(z) exhibits an asymmetric
bimodal shape. Hence for both the Indian and the S&P500
index data we find that z suggests a bimodal PDF behaviour
corresponding to the hysteresis regime, for the past decade (which
includes the severe economic crisis), but not during previous
decades. This finding suggests the intriguing possibility that model
parameters of the economic network can change from year to year
or from decade to decade, and that the system can enter and exit
the hysteresis region. A comparison with real data indicates that
our model is a plausible qualitative explanation for the behaviour
we observe in real economic networks. It supports the concept
of economic states28,29 and provides a critical understanding of
possible hysteresis reported in economic systems30. From the phase-
flipping mechanism that we have uncovered, we can draw some
interesting conclusions about economic networks. Several negative
economic events are much more dangerous when concentrated
within a time interval 1t ∼ λ. When they are combined they can
increase pλ∗(t ) and push the system across the right spinodal. If
they are separated by long intervals, the system is more likely
to absorb the damage without collapse. The possible relation
between the avoided transitions in our model, and the flash
crash phenomenon in real-world networks, is discussed in the
Supplementary Information.

Methods
We give a brief derivation of equation (1). The average fraction of internally failed
nodes in the network is p∗ = 1− exp(−pτ ). For external failures, let Ek be the
probability that a node of degree k is located in a CDN (with fewer thanm+1 active

neighbours in the steady state. Assume that the time-averaged fraction of failed
nodes (either internally failed or externally failed) is 0< a< 1. In a mean-field
approximation, a is also the average probability that any node has failed, so using
combinatorics we obtain

Ek =

m∑
j=0

(
k

k− j

)
ak−j (1−a)j

The probability that a node of degree k has externally failed is then rEk . If we denote
the failure events as A= {internal failure} and B= {external failure} and assume
they are approximately independent, the probability that a randomly chosen
node of degree k has failed is ak ≈ P(A)+P(B)−P(A)P(B), where P(A)= p∗
and P(B)= rEk are probabilities of the events. Summing over all k, we obtain
equation (1). We also note that the giant component of active nodes in the network
is existent (non-zero) in the entire region presented in Fig. 1b.

For the phase-flipping mechanism, our initial choice for λ is supported by
simulations. If for λ we choose a much larger value than the relaxation time (which
is the natural choice), the fluctuations of rλ(t ) and pλ

∗(t ) become too small and the
trajectory (rλ(t ), pλ

∗(t )) shrinks to a small region around point A and it does not
cross the spinodals when it is supposed to. If λ is too small (for example, λ= 1), the
system cannot adiabatically follow rapid changes in rλ(t ) and pλ

∗(t ).
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