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In this work we first derive a generalized conditional master equation for quantum measurement by a
mesoscopic detector, then study the readout characteristics of qubit measurement where a number of
remarkable new features are found. The work would, in particular, highlight the qubit spontaneous
relaxation effect induced by the measurement itself rather than an external thermal bath.
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The recent renewed interest of measuring a two-state
quantum system (qubit) stems largely from the rapidly
developing field of quantum computing. A possible solid-
state implementation of such measurement is to measure a
charge qubit by a mesoscopic detector which, for instance,
can be either a quantum-point contact (QPC) [1–4] or a
single-electron transistor [5].

For a realistic setup of such measurement, the nontrivial
correlation between the detector and the qubit has been the
focus of recent theoretical studies. However, sometimes
the treatment of this correlation is incomplete. For in-
stance, in a number of publications on the qubit measure-
ment by a QPC [1,4,6,7], the energy transfer between the
detector and the qubit has been ignored, which leads the
qubit to an incorrect statistical mixture under low measure-
ment voltage, as shown in our work [8]. Two recent pub-
lications considered the energy-exchange induced inelastic
effect on the detector power spectrum by using, respec-
tively, the real-time Green function approach [9] and the
quantum jump technique [10], where a number of contro-
versial results were attained and are cause for further
debate [11].

In this Letter, by generalizing the work of Gurvitz et al.
[1,3,4], we present an alternative approach to study the
inelastic effect in the qubit measurement by a QPC.
Connections with the previous work will be established
in a transparent way, and new features will be illustrated in
both the output current and the power spectrum. In par-
ticular, we shall highlight the qubit spontaneous relaxation
effect induced by energy exchange with the measuring
device, instead of coupling to an external thermal bath as
discussed in Ref. [4].

For the sake of generality, we first formally consider an
arbitrary quantum system measured by a QPC, described
by

H � H0 �H0; (1a)

H0 � Hs �
X
k

��Lk c
y
k ck � �Rk d

y
k dk�; (1b)

H0 �
X
k;q

�Tqkfj sih sjgd
y
qck � H:c:
: (1c)
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In this decomposition, the free part of the total Hamiltonian
H0 contains the Hamiltonians of the measured system Hs
and the QPC reservoirs (the last two terms). The interaction
Hamiltonian H0 describes electron tunneling through the
QPC, e.g., from state jki in the left reservoir to state jqi in
the right reservoir, with tunneling amplitude Tqkfj sih sjg
that is conditioned on the eigenstate j si of the observable.

Regarding the tunneling HamiltonianH0 as perturbation,
on the basis of the second-order cummulant expansion we
can derive a formal equation for the reduced density matrix
as [12]

_��t� � �iL��t� �
Z t

0
d�hL0�t�G�t; ��L0���Gy�t; ��i��t�:

(2)

Here the Liouvillian superoperators are defined as
L�� � �� � �Hs; �� � ��
, L0�� � �� � �H0; �� � ��
, and G�t; ���
�� � �� � G�t; ���� � ��Gy�t; ��, with G�t; �� the usual propa-
gator (Green’s function) associated with Hs. The reduced
density matrix ��t� � TrD��T�t�
, resulting from tracing
out all the detector degrees of freedom from the entire
density matrix. However, for quantum measurement where
the specific readout information is likely to be recorded,
the average should be performed over the unique class of
states of the detector we are trying to keep track of.

For the measurement setup under study, the relevant
quantity of readout is the transport current i�t� in the
detector, or equivalently, the number of electrons that
have tunnelled through the detector, n�t� �

R
t
0 dt

0i�t0�.
We therefore classify the Hilbert space of the detector as
follows. First, we define the subspace in the absence of
electron tunneling through the detector as D�0�, which is
spanned by the product of all many-particle states of the
two isolated reservoirs, formally denoted as D�0� �
spanfj�Li � j�Rig. Then, we introduce the tunneling op-
erator fy � fyqk � dyqck, and denote the Hilbert subspace
corresponding to n electrons tunnelled from the left to the
right reservoirs as D�n� � �fy�nD�0�, where n � 1; 2; . . . .
The entire Hilbert space of the detector is D � �nD�n�.

With the above classification of the detector states, the
average over states inD in Eq. (2) is replaced with states in
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the subspace D�n�, leading to a conditional master equation

_� �n��t� � �iL��n��t� �
Z t

0
d�TrD�n� �L0�t�G�t; ��L0���Gy�t; ���T�t�
: (3)

Here ��n��t� � TrD�n� ��T�t�
, which is the reduced density matrix of the measured system conditioned by the number of
electrons tunnelled through the detector until time t. Now we transform the Liouvillian operator product in Eq. (3) into the
conventional Hilbert form:

L 0�t�G�t; ��L0���Gy�t; ���T�t� � �H0�t�G�t; ��H0���Gy�t; ���T�t� �G�t; ��H0���Gy�t; ���T�t�H0�t�
 � H:c:

� �I � II
 � H:c: (4)
For the convenience of description, we rewrite the in-
teraction Hamiltonian as H0�t� � QF�t�. Here we have
assumed the tunneling amplitude Tkq to be real and inde-
pendent of the reservoir state ‘‘kq’’ and denoted it by Q,
which depends on the state of the measured system. The
detector fluctuation is described by F�t� � f�t� � fy�t�,
with f �

P
kqc

y
k dq and fy �

P
kqd

y
qck. To proceed, two

physical considerations are further involved as follows:
(i) Instead of the conventional Born approximation for
the entire density matrix �T�t� ’ ��t� � �D, we propose
the ansatz �T�t� ’

P
n�

�n��t� � ��n�
D , where ��n�

D is the den-
sity operator of the detector reservoirs with n electrons
tunnelled through the detector. With the ansatz of the
density operator, tracing over the subspace D�n� yields

TrD�n� �I
�TrD�F�t�F����
�n�
D 
�QG�t;��QGy�t;����n�
;

(5a)

TrD�n� �II
�TrD�f
y�����n�1�

D f�t�
�G�t;��QGy�t;����n�1�Q


�TrD�f����
�n�1�
D fy�t�


��G�t;��QGy�t;����n�1�Q
: (5b)

Here we have utilized the orthogonality between states
in different subspaces, which in fact leads to the term
selection from the entire density operator �T . (ii) Be-
cause of the closed nature of the detector circuit, the extra
electrons tunnelled into the right reservoir will flow back
into the left reservoir via the external circuit. Also, the
rapid relaxation processes in the reservoirs will quickly
bring the reservoirs to the local thermal equilibrium state
determined by the chemical potentials. As a consequence,
after the procedure (i.e., the state selection) as done in
Eq. (5), the detector density matrices ��n�

D and ��n�1�
D in

Eq. (5) can be well approximated by ��0�
D , i.e., the local

thermal equilibrium reservoir state. Under this considera-
tion, the detector fluctuation correlation functions become,
respectively, hfy�t�f���i � C����t� ��, hf�t�fy���i �
C����t� ��, and hF�t�F���i � C�t� �� � C����t� �� �
C����t� ��. Here, h� � �i stands for TrD��� � ���

�0�
D 
.

Under the Markovian approximation, the time integral in
Eq. (3) is replaced by 1

2

R
1
�1 . Substituting Eqs. (4) and (5)

into Eq. (3), we obtain
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_��n� � �iL��n� �
1

2
f�Q ~Q��n� � H:c:


� � ~Q�����n�1�Q� H:c:
 � � ~Q�����n�1�Q� H:c:
g:

(6)

Here ~Q��� � ~C����L�Q, ~C����L� �
R
1
�1 dtC

����t�e�iLt,
and ~Q � ~Q��� � ~Q���. Under the wideband approximation
for the detector reservoirs, the spectral function ~C����L�

can be explicitly carried out as [8] ~C����L� � ��x=�1�
e�x=T�
x��L�V , where � � 2�gLgR and T is the tempera-
ture. In this work we will use the unit system of �h � e �
kB � 1. In Eq. (6) the terms in f g describe the fluctuation
effect of the forward and backward electron tunneling
through the detector on the measured system. In particular,
the Liouvillian operator ‘‘L’’ in ~C����L� contains the
information of energy transfer between the detector and
the measured system, which correlates the energy (sponta-
neous) relaxation of the measured system with the inelastic
electron tunneling in the detector. At the high-voltage limit
(i.e., the bias voltage is much larger than the internal
characteristic energy difference of the measured system),
the spectral function ~C����L� ’ ~C����0�, and Eq. (6) re-
duces to the previous result derived in Refs. [1,3,4,7].

In the following, we specify the measured system as a
pair of coupled quantum dots (a solid-state charge qubit),
described by the Hamiltonian Hqu � �ajaihaj � �bjbi�
hbj ���jbihaj � jaihbj�. Introduce � � ��a � �b�=2, and
set ��a � �b�=2 as the reference energy. The qubit eigene-
nergies are obtained as E1 �

������������������
�2 ��2

p
� �=2, and E0 �

�
������������������
�2 ��2

p
� ��=2. Correspondingly, the eigenstates

are j1i � cos&2 jai � sin&2 jbi for the excited state and j0i �
sin&2 jai � cos&2 jbi for the ground state, where & is intro-
duced by cos& � 2�=� and sin& � 2�=�. The coupling
between the qubit and detector is characterized by H0 �

QF, where Q�T �'jaihaj and F�
P
k;q�c

y
k dq�H:c:�.

With the knowledge of ��n��t�, one is able to carry out
the various readout characteristics of the detector. In the
strong projective measurement regime (e.g., � � 0), the
measurement-induced wave function collapse of the qubit
can be perfectly manifested by the probability distribution
function P�n; t� � Tr���n��t�
. Switching on � such that
1=� is comparable to or smaller than the measurement
time [5], the qubit state oscillation cannot be read out by a
3-2
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FIG. 1. (a) Noise spectrum in the presence (solid curves) and
absence (dashed curves) of the qubit relaxation. (b) Voltage
effect on the noise spectrum, particularly on the peak-to-pedestal
ratio (inset: where the solid and dashed curves correspond to the
presence and absence of the qubit relaxation). The results in (a)
and (b) are obtained, respectively, by altering ' (for a fixed
voltage V � 2� ) and the voltage V (for a fixed ' � 0:1�).
Other parameters are gL � gR � 2:5=� and T � �.
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series of single shot measurement. In this regime, the
continuous weak measurement is an alternative approach
to register the qubit oscillations. In the remaining part of
this Letter we calculate the output current and noise spec-
trum based on Eq. (6).

Straightforwardly, the average current flowing through
the detector can be generally expressed as

I�t� �
X
n

nTr� _��n��t�
 �
1

2
Tr� �Q�Q� H:c:
; (7)

where �Q � ~Q��� � ~Q���. For symmetric qubit (i.e., � � 0
or & � �=2), the stationary current reads

Is � g0V � g1V
�
1�

�

V
G���

G���

�
: (8)

Here g0 � ��T � '=2�2, g1 � ��'=2�2, and G��� � 1
2 �

�F�����; V� � F�����; V�
, with F�����; V� � ��� V��
coth���V2T �. We notice that Eq. (8) coincides with the result
derived in Ref. [9], but differs from that in Ref. [10]. The
former was obtained on the basis of the real-time Green
function diagram technique, while the latter resulted from
the quantum trajectory technique under rotation-wave ap-
proximation. In addition to the measurement current, in the
following we detail the studies of output noise spectrum in
the regime of continuous weak measurement, where a
number of remarkable new features will be revealed.

The noise spectrum can be calculated using
MacDonald’s formula [4]

S�!� � 2!
Z 1

0
dt sin!t

d
dt

�hn2�t�i � � �It�2
; (9)

where �I is the average current over time and hn2�t�i �P
nn

2P�n; t�. It can be shown that

d
dt

hn2�t�i � Tr
�
�QN̂�t�Q�

1

2
~Q��t�Q� H:c:

�
; (10)

where N̂�t� �
P
nn�

�n��t�, which can be calculated via its
equation of motion

dN̂
dt

� �iLN̂ �
1

2
�Q; ~QN̂�N̂ ~Qy
 �

1

2
� �Q�Q� H:c:�:

(11)

For symmetric qubit, it would be desirable to carry out the
explicit result. Denoting S�!� � S0 � S1�!� � S2�!�, the
result reads

S0 � 2I0 coth
V
2T

�
'2�
2

�
G��� �

�2

G���
� V coth

V
2T

�
;

(12a)

S1�!� �
�
1�

�

2V
G���

G���

�
I2d�d�

2

�!2 � �2�2 � �2
d!

2 ; (12b)

S2�!� � '2���dDz � - �I

G���

!2 � �2
d

: (12c)
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Here three currents are defined as I0 � �Ia � Ib�=2,
Id � Ia � Ib, and �I � I0 �

1
4�'

2�G���=G���, with Ia �
��T � '�2V and Ib � �T 2V being the detector cur-
rents corresponding to qubit states jai and jbi, respec-
tively. Other quantities in Eq. (12) are introduced as
�d �

�'2

2 G���, - � �'2

2 �, and Dz � ��
���������
IaIb

p
=G��� �

�'2G���=4. The three noise spectrum components are,
respectively, (i) the zero-frequency noise S0, (ii) the
Lorentzian spectral function S1�!� with a peak around
the qubit Rabi frequency ! � �, and (iii) S2�!� com-
pletely originating from the qubit relaxation induced in-
elastic tunneling effect in the detector. In addition to S2�!�,
the qubit relaxation also manifests its effect in S0 and
S1�!�, i.e., giving rise to the second term of S0 and
reducing the prefactor in S1�!� from unity. If the qubit
relaxation induced inelastic effect is neglected, or at the
limit of high bias voltage V � �, Eq. (12) returns to the
known result of previous work [6,7].

The measurement-induced relaxation effects of the qubit
are further shown in Fig. 1. The major effect of the qubit
relaxation shown in Fig. 1(a) is lowering the entire noise
spectrum, in qualitative consistence with the finding by
Gurvitz et al. [4], where an external thermal bath is intro-
duced to cause qubit relaxation. However, the spontaneous
relaxation discussed here does not diminish the telegraph
noise peak near zero frequency in the incoherent case,
which implies the surviving of the Zeno effect, in contrast
to the major conclusion of Ref. [4]. Also, the transition
behavior from the coherent to the incoherent regime is
different. Figure 1(b) shows the voltage effect on the
coherent peak around ! � �. It is found that the peak
would be reduced by lowering the measurement voltage.
Interestingly, this effect alters the fundamental upper
3-3



FIG. 2. 3D plot of the noise spectra for (a) the symmetric qubit
and (b) the asymmetric qubit. The adopted parameters are gL �
gR � 2:5=�, ' � 0:1�, and T � �.
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bound limit of 4 for the value of the peak-to-pedestal
(‘‘signal-to-noise’’) ratio, �S����S0
=S0, which was
found by Korotkov et al. at the high-voltage limit (see
the inset) [6].

The voltage effect is further shown in Fig. 2 by the 3D
plot of the scaled spectra for different qubit symmetries. In
contrast to the present result, we notice that in Ref. [10] no
spectral structure was found, i.e., S�!� � S�1� � 0, in the
wide range of V < 10� for the symmetric qubit (& �
�=2). However, Shnirman et al. showed the existence of
the coherent peaks at ! � �� for voltage higher than �
[9]. For the asymmetric qubit as shown in Fig. 2(b), the
coherent peaks at ! � �� are destroyed and a peak
around ! � 0 is formed. This transition originates from
the breakdown of the resonant condition, which replaces
the Rabi oscillation of the qubit by incoherent jumping.

Finally, simple analysis in limiting cases can provide
additional insight into the correlation between the detector
and the qubit. At zero temperature, we obtain a prefactor
1=2 in S1�!� in the low-voltage regime (V < �). This
result is in sharp contrast to previous conclusions: In
Ref. [9] such types of contributions vanish, while in
Ref. [10] it does not exist at all in a much wider range of
voltage. At the same limit, Eq. (12) also predicts non-
vanishing S2�!� and nonzero correction to the Schottky
shot noise 2I0 in S0. Remarkably, all these contributions
were absent from previous work [9,10], and the reason
was attributed to the complete relaxation of the measured
qubit to its ground state. Here we understand our distinct
result as follows. Consider the key quantity hn2�t�i �P
nn

2P�n; t�. Despite the fact that the qubit would relax
to its ground state under the concerned limit, the fluctua-
tion of hn2�t�i remains according to Eq. (6), since the
conditional qubit state ��n��t� is not at all stationary. In par-
ticular, the nonzero off-diagonal elements of ��n��t� contain
the information of qubit coherence, which gives rise to the
peak structure of the noise spectrum. Therefore, differing
from the previous work [9,10] and going beyond the very
recent debate [11], we conclude here that at zero tempera-
ture and even in low bias voltage (V � �), the detector
06680
output noise spectrum still has spectral structure, i.e., with
excess components in addition to the Schottky shot noise,
due to the quantum fluctuations induced by the coupling of
the detector and the qubit. This novel feature may deserve
further study in future work.

In summary, we have generalized the validity range of
the quantum measurement theory developed by Gurvitz
et al. to arbitrary voltage and temperatures. The general-
ized theory properly accounts for the energy transfer be-
tween the detector and the measured system. Its application
to charge qubit measurement reveals a number of interest-
ing new readout characteristics associated with the new
treatment of the correlation between the detector and the
qubit.
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