(Supplementary information)

Spontaneous resolution of 3D chiral

hexadecavanadate-based frameworks incorporating achiral flexible and rigid ligands

Yun-lei Teng, ${ }^{a}$ Bao-xia Dong, ${ }^{* a}$ Jun Peng, ${ }^{* b}$ Shi-yang Zhang ${ }^{a}$, Lu Chen ${ }^{a}$, Liang Song ${ }^{a}$ and Jun Ge ${ }^{a}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China. Fax: +86 51487975590-9201; Tel: +86 51487975590-9201; E-mail: bxdong@yzu.edu.cn (B-X. Dong).
${ }^{b}$ Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of
Chemistry,Northeast Normal University, Changchun, Jilin, 225002, P. R. China; E-mail:
jpeng@nenu.edu.cn (J. Peng).

Contents:

1. Table S1. Crystal data and structure refinement for $\mathbf{1}$.
2. Table S2. Selected Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.
3. The details for the refinement.
4. The confirmation of the molecular formula.
5. Figure S1. Ball-stick (left) and polyhedral (right) representations of $\left[\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right]^{5-}$ polyoxoanion as well as the connection mode with $\mathrm{Cu}^{\mathrm{I}}(1)$.
6. Figure S2. Representation of (a) the 3D homochiral $\left\{[\mathrm{Cu}(\mathrm{bbi})]\left[\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right]\right\}^{4-}$ anionic framework (left) and (b) a stacking cationic framework of $\left\{\mathrm{Cu}_{2} \text { (phen) }\right)_{2}($ bbi $\left.)\right\}^{2+}$ (right).
7. Figure S3. Illustration of the conformations of (a) bbi1 (TTT) and (b) bbi2 (GTG) in $_{\mathrm{L}} \mathbf{- 1}$.
8. Figure S 4 . Illustration of the bottle-like $\left\{\mathrm{Cu}_{2}(\mathrm{phen})_{2}(\mathrm{bbi})\right\}_{2}$ cationic dimer in $\mathrm{L}_{\mathrm{L}} \mathbf{- 1}$.
9. Figure S5. View of the short contact interactions between the adjacent $\left[\mathrm{Cu}_{2}(\text { phen })_{2}(\mathrm{bbi})\right]^{2+}$ cationic units.
10. Figure S4. The IR spectrum of $\mathbf{1}$.
11. Figure S5. UV spectra of ligands of bbi and phen molecules as well as compound 1 in EtOH.
12. Figure S6. Solid-state CD spectrum of $\mathbf{1}$ (the mixture of $\mathrm{L}_{\mathrm{L}}-1$ and ${ }_{\mathrm{D}}-1$).

Table S1 Crystal data and structure refinement for $\mathbf{1}$.

Empirical formula	L-1	D-1
	C78H75N20Cu5V16O38.5	C78H75N20Cu5V16O38.5
	Cl	Cl
Formula weight	3076.79	3076.79
Temperature (K)	293(2)	293(2)
Wavelength (A)	0.71073	0.71073
Crystal system	Tetragonal	Tetragonal
Space group	14122	14122
$a(\mathrm{~A})$	27.600(4)	27.672(4)
b (\AA)	27.600(4)	27.672(4)
$c($ (̊)	26.700(5)	26.693(5)
Volume (\AA^{3})	20339(6)	20440(6)
Z	8	8
$\mathrm{D}_{\text {calc }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	2.004	1.999
Absorption coefficient (mm^{-1})	2.531	2.519
$F(000)$	12160	12128
Reflns collected	73861	64690
Unique reflns	8955	8514
R(int)	0.1410	0.1210
θ range (deg)	$3.05 \leq \theta \leq 25.00$	$3.05 \leq \theta \leq 24.50$
Limiting indices	$\begin{aligned} & -32 \leq h \leq 32, \quad-32 \leq k \leq 32, \\ & -28 \leq l \leq 31 \end{aligned}$	$\begin{aligned} & -31<=\mathrm{h}<=30,-32<=\mathrm{k}<=32, \\ & -30<=1<=31 \end{aligned}$
Goodness-of-fit on F^{2}	1.041	0.926
Final R indices [$1>2 \sigma(I)]$	$R_{1}=0.0748, w R_{2}=0.1861$	$R_{1}=0.0620, w R_{2}=0.1471$
R indices (all data)	$R_{l}=0.1116, w R_{2}=0.2084$	$R_{I}=0.1204, w R_{2}=0.1721$

Table S2. Selected Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.

$\mathrm{L}-\mathbf{1}$			
$\mathrm{V}(1)-\mathrm{O}(13)$	$1.581(10)$	$\mathrm{V}(1)-\mathrm{O}(1)$	$1.835(10)$
$\mathrm{V}(1)-\mathrm{O}(6)$	$1.893(10)$	$\mathrm{V}(1)-\mathrm{O}(14) \# 1$	$1.901(11)$
$\mathrm{V}(1)-\mathrm{O}(18)$	$1.996(9)$	$\mathrm{V}(2)-\mathrm{O}(3)$	$1.586(10)$
$\mathrm{V}(2)-\mathrm{O}(14)$	$1.928(8)$	$\mathrm{V}(2)-\mathrm{O}(18) \# 1$	$1.946(10)$
$\mathrm{V}(2)-\mathrm{O}(11)$	$1.920(10)$	$\mathrm{V}(2)-\mathrm{O}(12)$	$1.948(9)$
$\mathrm{V}(3)-\mathrm{O}(4)$	$1.596(9)$	$\mathrm{V}(3)-\mathrm{O}(12)$	$1.857(9)$
$\mathrm{V}(3)-\mathrm{O}(8) \# 1$	$1.875(10)$	$\mathrm{V}(3)-\mathrm{O}(15)$	$1.921(9)$
$\mathrm{V}(3)-\mathrm{O}(19)$	$1.924(10)$	$\mathrm{V}(4)-\mathrm{O}(5)$	$1.605(11)$

$\mathrm{V}(4)-\mathrm{O}(18)$	$1.861(18)$	$\mathrm{V}(4)-\mathrm{O}(8)$	$1.858(11)$
$\mathrm{V}(4)-\mathrm{O}(6)$	$1.902(10)$	$\mathrm{V}(4)-\mathrm{O}(7)$	$1.906(9)$
$\mathrm{V}(5)-\mathrm{O}(2)$	$1.578(9)$	$\mathrm{V}(5)-\mathrm{O}(15)$	$1.954(9)$
$\mathrm{V}(5)-\mathrm{O}(7)$	$1.967(10)$	$\mathrm{V}(5)-\mathrm{O}(6)$	$1.976(9)$
$\mathrm{V}(5)-\mathrm{O}(19)$	$2.002(9)$	$\mathrm{V}(6)-\mathrm{O}(10)$	$1.577(9)$
$\mathrm{V}(6)-\mathrm{O}(1)$	$1.836(10)$	$\mathrm{V}(6)-\mathrm{O}(19)$	$1.862(9)$
$\mathrm{V}(6)-\mathrm{O}(11)$	$1.929(9)$	$\mathrm{V}(6)-\mathrm{O}(12)$	$1.980(9)$
$\mathrm{V}(7)-\mathrm{O}(20)$	$1.607(17)$	$\mathrm{V}(7)-\mathrm{O}(17)$	$1.682(4)$
$\mathrm{V}(7)-\mathrm{O}(11) \# 1$	$1.838(10)$	$\mathrm{V}(7)-\mathrm{O}(14)$	$1.818(8)$
$\mathrm{V}(7)-\mathrm{O}\left(17^{\prime}\right)$	$1.884(10)$	$\mathrm{V}(7)-\mathrm{O}(1) \# 1$	$2.228(11)$
$\mathrm{V}(8)-\mathrm{O}(9)$	$1.586(9)$	$\mathrm{V}(8)-\mathrm{O}(16)$	$1.801(5)$
$\mathrm{V}(8)-\mathrm{O}(7)$	$1.888(9)$	$\mathrm{V}(8)-\mathrm{O}(15) \# 1$	$1.893(9)$
$\mathrm{V}(8)-\mathrm{O}(8)$	$2.082(11)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.860(12)$
$\mathrm{Cu}(1)-\mathrm{O} 4$	$2.688(3)$	$\mathrm{Cu}(2)-\mathrm{N}(3)$	$1.972(17)$
$\mathrm{Cu}(2)-\mathrm{N}(4)$	$2.023(16)$	$\mathrm{Cu}(2)-\mathrm{N}(5)$	$1.876(16)$
$\mathrm{Cu}(3)-\mathrm{N}(9)$	$1.967(17)$	$\mathrm{Cu}(3)-\mathrm{N}(10)$	$2.10(2)$
$\mathrm{Cu}(3)-\mathrm{N}(8)$	$1.915(19)$		

Symmetry transformation used to generate equivalent atom: \#1-x+1,-y+2,z+0 D-1

$\mathrm{V}(1)-\mathrm{O}(20)$	$1.577(7)$	$\mathrm{V}(5)-\mathrm{O}(9)$	$1.598(7)$
$\mathrm{V}(1)-\mathrm{O}(12)$	$1.804(4)$	$\mathrm{V}(5)-\mathrm{O}(3) \# 2$	$1.825(7)$
$\mathrm{V}(1)-\mathrm{O}(14) \# 2$	$1.872(7)$	$\mathrm{V}(5)-\mathrm{O}(1) \# 2$	$1.871(7)$
$\mathrm{V}(1)-\mathrm{O}(10)$	$1.884(6)$	$\mathrm{V}(5)-\mathrm{O}(8)$	$1.895(7)$
$\mathrm{V}(1)-\mathrm{O}(2)$	$2.046(7)$	$\mathrm{V}(5)-\mathrm{O}(15)$	$2.005(7)$
$\mathrm{V}(2)-\mathrm{O}(5)$	$1.628(8)$	$\mathrm{V}(6)-\mathrm{O}(6)$	$1.609(7)$
$\mathrm{V}(2)-\mathrm{O}(15) \# 2$	$1.852(7)$	$\mathrm{V}(6)-\mathrm{O}(14)$	$1.959(7)$
$\mathrm{V}(2)-\mathrm{O}(2) \# 2$	$1.880(9)$	$\mathrm{V}(6)-\mathrm{O}(10)$	$1.966(7)$
$\mathrm{V}(2)-\mathrm{O}(14)$	$1.931(7)$	$\mathrm{V}(6)-\mathrm{O}(1)$	$1.970(7)$
$\mathrm{V}(2)-\mathrm{O}(1)$	$1.934(8)$	$\mathrm{V}(6)-\mathrm{O}(16)$	$1.973(7)$
$\mathrm{V}(3)-\mathrm{O}(4)$	$1.565(7)$	$\mathrm{V}(7)-\mathrm{O}(13)$	$1.575(7)$
$\mathrm{V}(3)-\mathrm{O}(11)$	$1.938(7)$	$\mathrm{V}(7)-\mathrm{O}(3)$	$1.859(7)$
$\mathrm{V}(3)-\mathrm{O}(8)$	$1.938(7)$	$\mathrm{V}(7)-\mathrm{O}(16)$	$1.873(6)$
$\mathrm{V}(3)-\mathrm{O}(15)$	$1.946(7)$	$\mathrm{V}(7)-\mathrm{O}(17)$	$1.916(7)$
$\mathrm{V}(3)-\mathrm{O}(17)$	$1.957(7)$	$\mathrm{V}(7)-\mathrm{O}(11)$	$2.000(7)$
$\mathrm{V}(4)-\mathrm{O}(7)$	$1.589(7)$	$\mathrm{V}(8)-\mathrm{O}(18)$	$1.607(11)$
$\mathrm{V}(4)-\mathrm{O}(11)$	$1.852(7)$	$\mathrm{V}(8)-\mathrm{O}(19 \mathrm{~A})$	$1.674(4)$
$\mathrm{V}(4)-\mathrm{O}(2)$	$1.866(7)$	$\mathrm{V}(8)-\mathrm{O}(8) \# 2$	$1.819(8)$
$\mathrm{V}(4)-\mathrm{O}(10)$	$1.925(7)$	$\mathrm{V}(8)-\mathrm{O}(17)$	$1.890(7)$
$\mathrm{V}(4)-\mathrm{O}(16)$	$1.941(7)$	$\mathrm{V}(8)-\mathrm{O}(19)$	$1.867(7)$
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.879(9)$	$\mathrm{Cu}(1)-\mathrm{N}(1) \# 1$	$1.879(9)$
$\mathrm{Cu}(1)-\mathrm{O}(7)$	$2.694(3)$	$\mathrm{Cu}(2)-\mathrm{N}(5)$	$1.875(11)$
$\mathrm{Cu}(2)-\mathrm{N}(3)$	$2.028(11)$	$\mathrm{Cu}(2)-\mathrm{N}(4)$	$1.991(12)$
$\mathrm{Cu}(3)-\mathrm{N}(8)$	$1.923(15)$	$\mathrm{Cu}(3)-\mathrm{N}(9)$	$1.934(13)$
$\mathrm{Cu}(3)-\mathrm{N}(10)$	$2.055(12)$		

Symmetry transformations used to generate equivalent atoms:

$\# 1-x+1 / 2, y,-z+7 / 4 \quad \# 2-x+1,-y+1, z+0$

The details for the refinement:

In the refined structure of $\mathrm{L}_{\mathrm{L}}-1, \mathrm{~N} 9, \mathrm{O} 20, \mathrm{C} 4, \mathrm{C} 8, \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 22$, C29, C31, C32, C35, C37 and C38 were treated as isotropic atoms. Besides, C5 in the butyl group is disordered and was modeled as isotropic.

In the refined structure of ${ }_{\mathrm{D}}-1, \mathrm{~N} 3, \mathrm{~N} 9, \mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 28, \mathrm{C} 29$, C30, C33, C34 and O1W were treated as isotropic atoms. Besides, C5 in the butyl group is disordered and was modeled as isotropic.

The confirmation of the molecular formula:
$\left[\mathrm{Cu}_{2}(\text { phen })_{2}(\mathrm{bbi})\right]_{2}[\mathrm{Cu}(\mathrm{bbi})]\left[\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right] \cdot \mathbf{0 . 5} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

The confirmation of the molecular formula is based upon the bond valence sum calculations $\left(\sum \mathrm{s}\right)$ and the charge balance. For $\mathrm{L}-\mathbf{1}$, the valence sums for all the V atoms are 4.73 (V1), 4.36 (V2), 4.62 (V3), 4.63 (V4), 4.16 (V5), 4.72 (V6), 4.44 (V7) and $4.68(\mathrm{~V} 8)$, respectively, and for the three Cu atoms are $1.12(\mathrm{Cu} 1), 1.16(\mathrm{Cu} 2)$ and $1.16(\mathrm{Cu} 3)$, respectively. For ${ }_{\mathrm{D}} \mathbf{- 1}$, the valence sums for all the V atoms are $4.71(\mathrm{~V} 1)$, 4.50 (V2), 4.38 (V3), 4.66 (V4), 4.69 (V5), 4.11 (V6), 4.64 (V7) and 4.52(V8), respectively, and for the three Cu atoms are $1.11(\mathrm{Cu} 1), 1.14(\mathrm{Cu} 2)$ and $1.16(\mathrm{Cu} 3)$, respectively. The total sums of sixteen V are 72.68 for $_{\mathrm{L}} \mathbf{- 1}$ and 72.42 for ${ }_{\mathrm{D}} \mathbf{- 1}$. The average values for V atoms are 4.54 and 4.53 for $\mathrm{L}_{\mathrm{L}} \mathbf{- 1}$ and $\mathrm{D}_{\mathrm{D}} \mathbf{- 1}$, respectively, very close to the expected value 4.5 for $\mathrm{V}^{\mathrm{IV}}{ }_{8} \mathrm{~V}^{\mathrm{V}}{ }_{8}$. Thus the $\left\{\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right\}$ cluster, has a calculated charge of -4.32 and -4.58 for ${ }_{L}-\mathbf{1}$ and ${ }_{D} \mathbf{- 1}$, respectively, which is approximately balanced by five $\mathrm{Cu}(\mathrm{I})$ ions.

Figure S1. Ball-stick (left) and polyhedral (right) representations of $\left[\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right]^{5-}$ polyoxoanion as well as the connection mode with $\mathrm{Cu}^{\mathrm{I}}(1)$.

Figure S2. Representation of (a) the 3D homochiral $\left\{[\mathrm{Cu}(\mathrm{bbi})]\left[\mathrm{V}_{16} \mathrm{O}_{38} \mathrm{Cl}\right]\right\}^{4-}$ anionic framework (left) and (b) a stacking cationic framework of $\left\{\mathrm{Cu}_{2}(\mathrm{phen})_{2}(\mathrm{bbi})\right\}^{2+}($ right $)$.

TTT conformation
Bbil

Bbi2

Figure S3. Illustration of the conformations of (a) bbi1 (TTT) and (b) bbi2 (GTG) in $\mathrm{L}-1$.

Figure S4. Illustration of the bottle-like $\left\{\mathrm{Cu}_{2}(\mathrm{phen})_{2}(\mathrm{bbi})\right\}_{2}$ cationic dimer in $\mathrm{L}_{\mathrm{L}} \mathbf{- 1}$.

Figure S5. View of the short contact interactions between the adjacent $\left[\mathrm{Cu}_{2}(\text { phen })_{2}(\mathrm{bbi})\right]^{2+}$ cationic units.

Figure S6. The IR spectrum of $\mathbf{1}$.

Figure S7. UV spectra of ligands of bbi and phen molecules as well as compound $\mathbf{1}$ in EtOH .

Figure S 8 . Solid-state CD spectrum of $\mathbf{1}$ (the mixture of $\mathrm{L}_{\mathrm{L}}-1$ and $\mathrm{D}_{\mathrm{D}}-1$).

The CD spectra of several samples of $\mathbf{1}$ were measured between 190 and 350 nm using a JASCO J-810 spectropolarimeter in solid state. However, it is too hard to differentiate the enantiomorphic crystals through the geometrical character in a racemic mixture under a microscope. The separated crystals, which are thought to be one kind of enantiomorphic crystal, did not show the expected dichroic signal, but some noise instead.

