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The rupture of a liquid film on a solid surface and of a free liquid film have been studied using 
hydrodynamic stability theory. The films are not thicker than several hundred hgstrom. A sinall 
perturbation applied to the free interface generates motions in the film, and the assumption is made 
that the NavierStokes equations can be used to describe them. The difference in forces acting upon 
an element of liquid in a thin film and in a bulk fluid is accounted for by introducing a body force 
in the Navier-Stokes equations. This force is calculated from the potential energy per unit volume 
in the liquid caused by the London-van der Waals interactions with the surrounding molecules of the 
liquid and with those of the solid. If the perturbation grows, it leads to the rupture of the film. 
The range of wavelengths of the perturbation for which instability occurs is established and the time 
of rupture is evaluated. The effect of insoluble and soluble surface active agents is analyzed. Avail- 
able experimental data concerning condensation on a solid surface and coalescence of bubbles are 
explained on the basis of the obtained results. 

The mechanism of rupture of thin liquid films is of importance for the under- 
standing of flotation, of foams and emulsions, of coalescence of bubbles and droplets, 
of vapour condensation on a solid surface, and so on. In flotation, for instance, the 
thinning and the rupture of the liquid film between particles and bubbles might be 
the rate determining step of the process.' Two bubbles may coalesce if the contact 
time between them is longer than the time needed for the thinning and rupture of the 
liquid film between then. In water vapour condensation on a shock-tube wall, 
experiment shows that on a hydrophobic surface a thin film is formed, which breaks 
up into droplets upon reaching a critical thickness of about 100A.2 

was the first to relate via a thermodynamic treatment the rupture 
of thin liquid films to their instability to small surface deformations. Although the 
surface free energy increases with the increasing surface area associated with these 
deformations, the total free energy of the film can decrease because of the London-van 
der Waals forces between molecules. A critical wavelength Ac is predicted for which 
the total free energy is not changed by the corresponding perturbation. For a free 
film this critical wavelength is given by* 

Scheludko 3 9  

The film is stable for all wavelengths less than lc, and it is unstable for greater wave- 
lengths. 

This thermodynamic treatment of the problem gives no information about the 

* the nomenclature is given in Appendix 1. 

132 



E. RUCKENSTEIN A N D  R .  K .  JAIN 133 

time needed for the occurrence of rupture. Assuming laminar liquid flow parallel to 
the surfaces of the free film of uniform thickness, ho, and no slip at the interfaces, 
Vrij has established a kind of diffusion equation for the thickness of the film, which 
allows one to calculate the growth rate of the perturbation. His results for thin free 
liquid films are 

and 

where z, is a time constant for rupture corresponding to the wavelength for which the 
rate of growth is maximum. 

One can obtain information about the film rupture, including the time of rupture, 
from a more rigorous procedure than that used in the cited papers, namely hydro- 
dynamic linear stability theory.6 Whereas the previously cited authors have solved 
parts of the problem (using a specific model for each), the stability analysis permits a 
unified approach leading to the prediction of both the critical wavelength and time of 
rupture. Felderhof has applied the hydrodynamic stability analysis to a thin free 
film accounting for the van der Waals dispersion forces and the double layer forces. 
His treatment is, however, restricted to the unrealistic situation of inviscid flow. In 
recent papers, brought to our notice by one of the referees, Lucassen et aZ.* and Vrij 
et aL9 have extended the treatment to a free film of a viscous liquid. 

In the present paper two situations are treated : (i) stability of a thin layer of liquid 
on a solid surface and (ii) stability of a thin free film. The emphasis is on the first 
situation because it was not examined previously. Compared to the previous ones, 
the present treatment has the advantage of simplicity. Because the thickness of the 
layer is very small, it is natural to use from the beginning the lubrication approxima- 
tion of the hydrodynamic equations of rnotion.'O This approximation, applied here 
to pure liquids and to liquids containing surface active impurities, allows one to 
obtain, in a simple way, information about the critical wavelength A, and time of 
rupture 2,. 

T H I N  PURE LIQUID LAYER O N  A SOLID SURFACE 

Consider a thin layer of liquid having a thickness ho, not larger than several 
hundred Angstrom. Since the distance over whch the London dispersion forces are 
effective is of the same order of magnitude, the behaviour of the film is strongly 
influenced by such forces. Small perturbations are applied to the liquid-gas interface 
(fig. 1). The film is unstable and will rupture if the perturbation grows in time ; the 
film is stable in the opposite case. If the forces of interaction between the molecules 
of the solid and liquid are stronger than those between the molecules of the liquid, 
the film will always be stable. In the opposite case it may be unstable. The perturb- 
ation generates motion in the film and the assumption will be made that the Navier- 
Stokes equations can be used to describe the motion. The forces which act upon an 
element of liquid in a thin layer differ from those in a bulk fluid because the range of 
intermolecular forces is larger than the thickness of the film. Compared to a bulk 
liquid, some liquid molecules are replaced by the atoms of the solid or of the gas 
within the range of intermolecular forces. The difference in forces between the thin 
layer and the bulk liquid is accounted for in the equations of motion by a body force. 
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Since the motion is very slow, the inertial terms can be neglected compared to the 
viscous terms. Consequently, assuming a two-dimensional motion, 

au av 
ax a y  
-+- = o .  

In eqn (4) and (9, 4 is the potential energy function per unit volume in the liquid 
accounting for the difference in behaviour between a thin film and a bulk liquid. It 
is caused by the London-van der Waals interaction with the surrounding molecules 
of the liquid and with the sclid and by the double layer forces. The function 4 
depends on the thickness h of the liquid film and on y. 

FIG. 1 .-Perturbation applied at the liquid-gas interface. 

The boundary conditions at the solid-liquid interface are 

u = v = O  at y =  -ho. (7) 
At the free surface, for deformations of small amplitude, the equality of the normal 

stresses leads to : 

and the equality of tangential stresses leads to 

p -+- = O  a t y E 0 .  c; ::) (9) 

For ultra thin films the surface tension may depend on the thickness of the film and 
consequently the derivative do/dx has to be introduced in the right-hand-side of the 
boundary condition (9). Such an effect is, however, ignored here. 

The kinematic condition at the interface gives : 

For wavelengths of the perturbation which are large compared to the thickness of the 
film, the lubrication approximation of the Navier-Stokes equations can be used. 
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Consequently, eqn (4) and (5) become 
a2u a dP 

p- = - ( p + 4 )  = - 
a y 2  ax ax 

a ap 
0 = - ( p + + )  = - . 

aY al’ 
Using the boundary condition (8), one can write* : 

av a2E 

aY ax 
P = p0+2p-++0-~-2 at y = 0 

and since eqn (12) shows that P is independent of y ,  eqn (1  1) and (1 3) lead to : 

Because & = &(h) = & , ( / Z ~ + E )  

and eqn (14) becomes 

The question of interest is whether the surface perturbation grows or decays in 
time. The stability will be examined with respect to a small periodic perturbation 
because the effect of any small perturbation can be obtained by superimposing the 
effects of its Fourier components. Consequently, 

Introducing expressions (17) in eqn (6), (16), (7) and (9), one obtains 

DO-k-ikCl = 0 

Q = 9  = 0 at y =  -/zo 
DG+ikO = 0 at y ~ 0 .  

Eliminating u from eqn (16a), (7a), and (9a) by using eqn (6a), one obtains : 

D38 = - ok4+ - k2 8+2k2(DO),=o 
P ’[ (;?)?t=ho ] 

O =  DO = 0 at y = -h ,  
(D2+k2)0 = 0 at y ~ 0 .  

* The lubrication approximation is applied here only to the Navier-Stokes equations, but not to 
the boundary conditions. This leads to some smaller order terms in the final results. 
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RUPTURE OF THIN LIQUID FILMS 

solution of eqn (18) has the form : 

9 = c1 + C,(Y + (k2y3) /3)  + c3y2 + 
boundary conditions (19) and (20) lead to 

k 2  c3 = -- 2 c1* 

kinematic condition, eqn (lo), leads to the result 

Rupture of the film will occur for those wave numbers for which /?> 0. 
The lubrication approximation used here is valid only if h o / l  < 1. Consequently, 

the denominator in eqn (23) is positive in the range of values for which the above 
mentioned approximation can be made. 

The condition B = 0 defines a critical wavenumber k, 

The growth coefficient p has a maximum for the dominant wavenumber k,, which 
is given by 

Since k,ho < 1 ,  eqn (25) can be approximated by 
kd ,/2 x k,. 

The coefficient for maximum rate of growth, pm, is therefore given by 

Because the growth of the perturbation is dominated by the fastest growing perturba- 
tion, one may expect that the time needed for the rupture of the film will be of the 
order of p i 1  x ~ ~ .  

To determine the values of k, and zm, an explicit expression for the potential 
energy, +o(h), is needed. This potential is due to London-van der Waals dispersion 
forces and to the double layer forces. Neglecting the double layer forces, one obtains 
(see Appendix 2) 

where A = A11-A12  and A t ,  is Hamaker’s constant for the interactions between 
+o(h) = &+A/6xh3 (28) 
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FIG. 2.-Time constant (7 = 1//3) as a function of wavelength h for a thin film on a solid surfacc. 
The values of the parameters are given in table 1. The unit of 7 is the value of Tm calculated from eqn 
(31) and the unit of h is the value of h, calculated from eqn (30). Curve 1, pure liquid film ; curve 2, 
liquid film with gaseous monolayer of insoluble surfactant ; curve 3, liquid film with a condensed 
monolayer of insoluble surfactant ; curve 4, liquid film with a gaseous monolayer of soluble sur- 

factant. 
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FIG. 3.-Critical wavelength &/A as a function of film thickness ho/a.  Curve 1, Hamaker constant 
A = u = 30 dyn/cm ; erg ; u = 30 dyn/cm ; curve 2, Hamaker constant A = lo-'' erg ; 

-, liquid film on a solid surface ; - - -, free liquid film. 
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molecules of type i a n d j  (1 refers to the liquid and 2 to the solid). 
the molecules of the gas are neglected. 

Interactions with 
Using eqn (28), eqn (23), (24) and (27) lead to 

10 3- 

lo2- 

10'- 

,E Id'- 

c Id2= 

12- 
16'- 
16'- 

I -  
rn 1 

8 

Eqn (29), (30) and (31) are plotted in fig. 2,  3 and 4 respectively. 

lo4, 2 

69 
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h01A 
FIG. 4.-Time constant T,,.,/s and T ~ / S  of the most rapidly growing fluctuations as a function of film 
thickness h , / k  The values of the parameters are given in table 1. - , Liquid layer on a solid 
surface; --- , free liquid film. Curve 1, pure liquid film ; curve 2, liquid film with a large enough 
concentration of surfactant. The results are practically the same for a wide range of values of the 
parameters (including the parameters from table l), both for soluble and insoluble surfactants. They 
coincide with those given by eqn (57) for a thin film on a solid surface and by eqn (69) for a thin free 

film. 

EFFECT OF SURFACE ACTIVE AGENTS 

Surface active agents generate surface forces which have a damping effect upon the 
wave motion. Levich has developed a hydrodynamic theory of this wave damping 
for a thick film. Here the case of a thin liquid film on a solid surface is treated using 
the lubrication approximation. Compared to the case of a pure liquid, the boundary 
condition (9) at the free surface has to be replaced by 
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Using for the dynamic surface tension (r the expression 

where ,us is the surface viscosity, eqn (9b) can be rewritten as 

139 

(33) 

I N S O L U B L E  SURFACE ACTIVE AGENTS 

In this case the surface concentration I? of the surface active impurity satisfies the 
e qua t i on 

a2r, ar a 
- + -(r-U) = D , ~ ~  
at ax y w 0. (34) 

Writing r = T o + r f ,  where To is the surface concentration on the undeformed 
surface and r’+To, eqn (34) becomes 

a2rf, art au 
--+To- - - Ds-- 
at f3X a x 2  

y x 0. 

Looking for a solution of the form 

one obtains 

The boundary condition (9b) leads to 
(D2 + k2)0 = Mk2(DO), y ~ 0 ,  

where 

One obtains, using the sa.me procedure as for pure liquid films, 

Using eqn (28) for 4, eqn (38) becomes 

The effect of surface active agents is contained in the parameter M. 
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SOLUBLE SURFACE ACTIVE AGENTS 

Neglecting surface diffusion, the perturbation r' satisfies the eqn 

The perturbation c' ( c  = co + c') of the concentration in the film satisfies the diffusion 
equation 

Assuming adsorption equilibrium at the free interface and using the Langmuir 
isotherm 

one obtains 

rf = ec', ~ W O  

where 
8 -= kl-2cok~/r,. 

Looking for a solution of the form 

c' = <(y)  eikxePt, 
eqn (41) leads to 

d2t D b k 2 f a  5, - = -  
d Y 2  Dtl 

The solution of eqn (45) is 

Eqn (45) has to be solved for the boundary conditions 

act act au --&- = 8-+r0 - for y w 0 
ay at ax 

(42) 

(43) 

(434  

(44) 

(45) 

(47) 

One obtains 

and 
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where 

Hence 

B = exp [ -2( Dbk2 O,)ih,]. + p 
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(5  1) 

The boundary condition (96) leads to 
(a2+ k2)0 = Nk2(DD), y ~ 0 ,  (53) 

where 

The equation obtained for p is identical to eqn (38) if M is replaced by N. 
The growth coefficient p has a maximum for the dominant wavelength. The 

time of rupture z, of the film can be evaluated from the maximum growth coefficient 
z,=#!-,l. The curves /3 = p(k) (eqn (39)) and the minimum time of rupture as 
function of ho are presented in fig. 2 and 4. The values of various parameters are 
given in table 1. 

TABLE 1 
gaseous monolayer 

P 0.01 P 
P S  10-3 g/s 
TO 8.3 x mol/cm2 
(atJoiar)ro - 2.4 x 1 O 1 O  erg/mol 
0 0  30 dyn/cm 
DS cm2/s 
Db cm2/s 
e 2~ 10-4 cm 

A 
h0 

erg 
loo A 

condensed monolayer 

0.01 P 
10 g/s 
8.3 x mol/cm2 
- 1.34 x 10l2 erglmol 
30 dyn /cm 

cm2/s 
cm2/s 

2x cm 

erg 
100 A 

If ~ ~ o ( a o o / a ~ ) ~ , , ~  is large enough, the parameters - M (for insoluble) and - N (for 
soluble) become large and p can be approximated as for - M  (or -N)-,co : one 
obtains 

In this case the dominant wavenumber is given by 

and an explicit expression is obtained for z, 
kd M 2-*k, = ( 4 x ) - + A * ~ - * h , ~  (56) 

z,,,~ 192n2pcrh$A-2 - N (or -M)+co. (57) 
For pure systems M(or N )  = 0 and eqn (39) reduces to eqn (29). The time of rupture 
can be evaluated in this case by eqn (31). One may observe that the ratio of times of 
rupture in the extreme cases - M(or - N ) 4  00 and M(or N )  = 0 is about 4. 
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THIN FREE LIQUID FILMS 

This situation was treated previously by Lucassen et aL8 for free films of a11 
thicknesses. The present approach is simpler, but restricted to thin films. Thc 
effect of surface active impurities is treated here in more detail. 

The perturbation can be created in this case at both free surfaces. If the wave 
numbers of the perturbations at both the interfaces are equal, then two extreme cases 
of perturbations are possible, namely spatially in phase (asymmetric) and 180" out of 
phase (symmetric). The latter leads to the most rapid rupture. Therefore, the 
analysis which follows is based on the 180" out of phase perturbations. 

P U R E  SYSTEMS 

The equations of motion (4) and (5) ,  the continuity eqn ( 6 )  and the boundary 
New boundary conditions specific conditions (8) and (9) still hold for this situation. 

to this case are, 

u = 0 at y = -ho/2 (58)  

= 0 at y = -ho/2. (59) 
Now h = h, + 2 ~ ,  then eqn (1 5) must be replaced by 

- = 2 -  a40 840 a& 
d X  ( ah),=,,% 

and eqn (16) takes the form 

d2U 

The same procedure as that used for thin film on a solid surface leads in this situation 
to 

and 

One may observe that in this case no dominant wavelength exists. 
large wavelengths, however, p becomes independent of the wavelength 

For sufficiently 

The time needed for the rupture of the film is in this case of the order of 

(65) 
1 67cph: 

& a = - = -  

P a  A * 

The constant A is equal to the difference A l  - 2 A I 3 ,  where A ,  is Hamaker 
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constant for the interaction between the molecules in the film and AI3 is the 
Hamaker constant for the interaction between the molecules in the film and the 
molecules of the other phase. Eqn (63), (64) and (65) are plotted in fig. 5, 3 and 
4 respectively. 

EFFECT O F  S U R F A C E  A C T I V E  AGENTS O N  T H I N  FREE L I Q U I D  FILMS 

For insoluble surface active agents one obtains 

3 ho 18 
where M is given by eqn (37). 

(66) if M is replaced by 
For soluble surface active agents the growth coefficient can be calculated from eqn 

where 

Eqn (66) is plotted in fig. 5 for both soluble and insoluble surfactants using for the 
parameters the values from table 1. The time of rupture z, is evaluated as the 
reciprocal of fl for the dominant wavenumber. Some numerical values are plotted in 
fig. 4. 

3 

7 

2 

I 
0 I 2 3 4 

A 

FIG. 5.-Time constant (T = 1/8) as a function of wavelength h for a thin free film. The values of 
the parameters are given in table 1. The unit of 7 is the value of Ta calculated from eqn (65) and the 
unit of X is the value of Xc calculated from eqn (63). Curve 1, pure liquid film ; curve 2, liquid film 
with gaseous monolayer of insoluble surfactant ; curve 3, liquid film with condensed monolayer of 

insoluble surfactant ; curve 4, liquid film with a gaseous monolayer of soluble surfactant. 
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Several effects, which are important under certain conditions,12 have not been 
included in the present treatment : (i) the double layer forces (ii) the influence of 
surface active agents on the van der Waals interaction forces and (iii) the effect of the 
thickness of the layer on the surface tension. 

DISCUSSION 

The hydrodynamic stability analysis allows us to interpret some of the available 
experimental information. 

Concerning the rupture of a thin film on a solid surface, the present treatment 
gives some understanding of the results obtained by Goldstein in a study of water 
vapour condensation on a shock-tube wall. For condensation on a clean hydro- 
phobic surface, Goldstein reports that a continuous film of condensate is formed, 
which, after reaching a thickness of about 100 A in about 10 ps after the compression, 
begins to break up into many small droplets. In all mechanical systems there are 
perturbations of various wavelengths; consequently the rupture of the film can be 
considered in this case to be a consequence of hydrodynamic instability. It is also of 
interest to mention that if Hamaker's constant A is taken to be of the order of 10-l2 
erg and ho of the order of 50 A, then the time of rupture computed from eqn (31) with 
az70 dyn/cm and p =  

Concerning the rupture of a free thin film, it is important to stress that in any real 
system there are surface active impurities. Minute quantities of them have a strong 
stabilizing effect, damping the waves which occur at a free surface. For this reason 
eqn (65), which is valid for the time of rupture in a pure liquid, gives a lower bound of 
the time of rupture. In the presence of surface active impurities the time of rupture 
can be several orders of magnitude longer than for a pure liquid (fig. 4). An upper 
bound for the time of rupture can be obtained from eqn (66) if (r,(da/dr>,,l is large 
enough so that one may assume that - M  (for insoluble surfactants) or - N  (for 
soluble surfactants) tends to infinity. 

The coalescence time between two bubbles in contact in a pure liquid is indeed very 
short.l3 In the presence of surface active impurities the coalescence time is much 
longer, of the order of lo-' s.13 If one assumes, as suggested by Marucci, that the 
drainage time is negligible and hence that the rupture of a thin film of some hundred 
Angstrom thick, is the mechanism that controls the rate of coalescence, eqn (69) and 
(65) give an upper and lower bound of the coalescence time. One may verify that 
indeed the value lo-' s is bounded by these equations (fig. 4). 

P is of the order of 10 ps ,  as was found experimentally. 

One obtains Vrij's result 

~ , ~ 9 6 n ~ a p h ~ A - ~ ,  -M(or -N')+oo. (69) 

APPENDIX 1 
NOMENCLATURE 

A l-A 12 for a film on a solid surface and A 1-2A 
Hamaker constant for the interaction between molecules of type i and j .  

quantities defined by eqn (51) and (68) 
integration constants given by eqn (49) and (50) 
bulk concentration of surfactants 
concentration of surfactant in the undeformed film 
c- co 
integration const ants 

for a free film 

7%yl 
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k 
kc 
k d  

k l  
M ,  N ,  N ’  
n1 
n2 

P 
Po 
P 
r 
t 
U 

ui j 

ui, 
L’ 

V 
x ,  Y 
Y 
Qij 

P 
P m  

P a  
& 

4 B  r 

a lay 
diffusion coefficient in the bulk 
surface diffusion coefficient 
constant defined by eqn (36) 
average film thickness 
actual film thickness (h = h, + E for a film on a solid surface and /z = 12, + 28 
for a free film) 
wavenumber of the perturbation 
critical wavenumber 
dominant wavenumber 
constant in eqn (42) 
quantities defined by eqn (37), (54) and (67) 
molecular density of the liquid 
molecular density of the solid 
hydrost at ic pressure 
external pressure on the film 
(P + 4) 
distance between two molecules 
time 
velocity component in the x direction 
interaction potential between two molecules of type i and j separated by 
the distance r 
potential energy of one molecule of type i due to all molecules of type j 
velocity in the y direction 
volume of the solid 
Cartesian coordinates 
h-y  
London-van der Waals parameter for interaction between molecules of 
type i a n d j  
growth parameter 
maximum value of /3 for a thin film 
maximum value of /3 for free films of pure liquids 
perturbation of the film thickness (E = h-ho for a film on a solid surface 
and 2~ = h-ho for a free film) 
maximum amplitude of perturbation E 

wavelength = 2n/k 
critical wavelength 
dominant wavelength 
viscosity of the liquid 
surface viscosity 
liquid-gas surface tension 
static liquid-gas surface tension 
1 /#I, characteristic time 
1/Pm 
1 /Pa 
interaction potential per unit volume at a point in the liquid 
interaction potential per unit volume at the free surface of liquid 
interaction potential per molecule of the liquid situated at the free surface 
in a semi-infinite liquid 
n14b 
surface concentration of surfactants 
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To 

raJ constant in eqn (42) 
8 

value of I‘ for undeformed film 
r’ r-ro 

quantity defined by eqn (43a) 

APPENDIX 2 
The potential energy of a molecule in the liquid film due to the molecules of the semi- 

infinite solid is given by l4 
n n  

U12(Y) = I I n2u12(r)2nr2 dr sin 8 d8 
J J v  

where n2 is the number of molecules per unit volume of solid and u12 is the potential energy 
due to the interaction between two molecules at distance Y. Yis the lower half space. For 
London-van der Waals type interaction 

t i i j  = -ctij/r6 
consequently 

If the molecule is located at the free surface, Y = h and 

Similarly, the potential due to the molecules of the liquid film on one molecule situated at the 
free surface of the liquid is given by 

Therefore the total potential energy per unit volume of liquid acting at the free surface is 
given by: 

where AQ is the Hamaker constant (subscript 1 refers to the liquid and 2 to the solid) 
Aij = n2ctijninj 

and 
$ B  = n14k* 
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