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Abstract

The fitness effects of new mutations determine key properties of evolutionary processes.
Beneficial mutations drive evolution, yet selection is also shaped by the frequency of
small-effect deleterious mutations, whose combined effect can burden otherwise adaptive
lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as
viruses, microbes, and tumors. The small effect sizes of these important mutations have made
accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on
growth can be especially instructive, as this complex phenotype is closely linked to fitness in
clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells
from mutation-accumulation strains to precisely infer the distribution of mutational effects on
growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on
growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and
frequent enough to suggest that deleterious hitchhikers may impose a significant burden on
evolving lineages. By using lines that accumulated mutations in either wild-type or slippage
repair-defective backgrounds, we further disentangle the effects of two common types of
mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they
have distinct effects on yeast growth rate. Although the average effect of a simple sequence
repeat mutation is very small (~0.3%), many do alter growth rate, implying that this class of
frequent mutations has an important evolutionary impact.
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Introduction

Mutations constitute the raw material upon which selection acts. Understanding the properties of
new mutations is therefore of central importance to evolutionary biology [1]. For example, the
frequency and effect sizes of mutations that increase fitness are key determinants of the rate of
evolutionary adaptation [2]. The frequencies of mutations that decrease fitness also impact
adaptation, as well as patterns of genetic diversity [3]. In addition, mutational properties are
informative of the structure of genetic networks: if a large proportion of mutations affecting a
phenotype is non-neutral, then the phenotype can be affected by changes to the function of a
large number of genes across the genome, suggesting a high degree of interconnectedness among
the gene-regulatory networks operating in the cell. For example, evidence of large numbers of
variants affecting complex traits in humans has recently been proposed to support a model of
widespread interconnectedness among gene-regulatory networks [4]. The relative contributions
of different mutational types (e.g. single-nucleotide substitutions, copy-number variants,
repetitive sequence expansions/contractions) to phenotypic differences among organisms is
another poorly understood property of mutations . Shedding light on this property is critical not
only for understanding a phenotype’s propensity to change, but also for selecting appropriate
technologies to assay the phenotype’s genetic basis [5,6]. Finally, the properties of new
mutations are also of interest because of their relevance to human health: de novo mutations are
thought to constitute a major set of causative variants for many genetic disorders [7], and the rate
of small-effect deleterious mutations has been shown to play a significant role in tumor evolution
[8].

Mutation-accumulation (MA) lines in model organisms have allowed unbiased exploration of the
properties of new mutations. Repeatedly passaging organisms through extreme bottlenecks for
many generations allows mutations to accumulate while largely shielded from selection. The
phenotypes of these MA lines can then be assayed, revealing the spectrum of mutational effects
of new mutations. Studies have used mutation accumulation to probe mutational effects in
diverse organisms, but the resulting estimates of typical effect sizes vary widely, even among
studies assaying closely related phenotypes in the same species (reviewed in [9,10]). Two
culprits likely explain the discrepancies. First, MA studies have historically lacked genotypic
information. That is, it was not known how many mutations were present in each strain, let alone
how many trait-altering mutations there were. Many studies addressed this issue by assuming a
parametric distribution representing a single mutational effect; each MA strain was then modeled
as containing a Poisson random number of mutations with an unknown mean. The parameters of
the distribution of mutational effects were then jointly fitted with a parameter representing the
mean number of mutations present across the MA strains of interest. However, these estimates of
mutation rate are difficult to interpret because in most cases the confidence intervals of such
estimates have no upper bound (see for example [9,11,12]). This problem is caused in part by the
second culprit: noisy phenotype measurements. The identification of small mutational effects
depends on the amount of measurement noise. In addition, because estimates of mutational
parameters are confounded with each other [11], the lack of a precise mutation rate estimate
translates into uncertainty in the estimates of the other mutational parameters, which describe the
shape of the effect distribution.
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Several recent studies have sequenced MA lines to make independent measurements of mutation
rate. The expected numbers of mutations per line for these sequencing-based mutation rates tend
to far exceed the expected numbers of non-neutral mutations estimated from phenotypic
measurements in MA lines. This observation has led to the conclusion that in most cases, the
majority of substitutions are neutral or nearly-neutral with respect to the observed phenotype
(reviewed in [10]). However, caution must be taken in transferring mutation rate estimates
between different MA experiments. There is ample evidence that mutation rate is highly
experiment-dependent even within a species, with substitution rates differing with strain ploidy,
genetic background, and even the environmental conditions in which the mutation accumulation
occurred [13–16]. Recent work using either direct measurement of accumulated mutation
number in phenotyped MA lines in Chlamydomonas reinhardtii [17], Drosophila melanogaster
[18], mice [19], and Escherichia coli [20] or measuring mutation number and phenotype in
parallel MA experiments in a mismatch repair-deficient strain of E. coli [21] has provided more
precise estimates of the distribution of mutational effect size in these species. For example,
Robert et al. 2018 [21] and Böndel et al. 2019 [17] both show strong evidence for highly
leptokurtic (L-shaped, with most mutations having very small effect sizes) distributions of fitness
effects in E. coli and C. reinhardtii, respectively, and Sane et al. 2020 [20] identify significant
differences in the rate of beneficial mutations between transitions and transversions in E. coli.

Interpretation of mean mutational effect sizes is further complicated by the fact that although
precise estimates of single-nucleotide mutation (SNM) rate are now available from MA studies
across a wide range of organisms and conditions, other frequent mutation types, especially
mutations in simple sequence repeats (SSRs), are more difficult to identify using conventional
analyses of next-generation sequencing data [22,23]. However, because of their repetitive nature,
these regions are particularly prone to acquiring mutations by forming loops during replication
(polymerase slippage events), which lead to contraction or expansion of the repeat locus. Recent
advances in genome-wide SSR genotyping (e.g. [24]) have allowed high-throughput studies of
the effects of SSR variants, which demonstrated that variation in these difficult-to-genotype
mutation types contributes significantly to phenotypic variation in nature: thousands of short
SSR loci contribute substantially to the variance attributed to common polymorphisms affecting
gene expression across human tissues and cell lines [6,25,26], rare variants and de novo
mutations in SSRs are associated with Autism Spectrum Disorder [27,28], and expression of
genes whose promoters contain these repeats diverges more than SSR-free promoters among
closely related yeast species [29]. Evidence that mutations in short repeats may contribute
significantly to the spectrum of mutational effects is also emerging in MA studies. For example,
it has been suggested that the higher estimate of fitness-altering mutation rate in Dictyostelium
discoideum when compared to other single-celled organisms may be explained by the large
number of SSRs in its genome, and the resulting high frequency of expansion/contraction events
occurring at these highly mutable loci [9]. More direct evidence comes from estimating the
frequency of SSR mutations in MA experiments in Daphnia pulex [30]. Selection against SSR
mutations was demonstrated by comparing their prevalence in a MA experiment to a control in
which selection was active [30]. However, with the exception of that study, little is known about
the relative contribution of SNMs as compared to SSR indels and other mutation types to the full
spectrum of mutational effects.
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Precise and accurate phenotypic measurements are especially important if mutations of small
effect dominate. In microbes, batch culture can be used to generate growth rate measurements
averaged across tens of millions of cells within a population. However, such measurements can
still have appreciable errors, likely caused by the interactions of small biological and technical
variations with the exponential growth process: for example, in one study, yeast growth rate
measured by optical density in batch culture varied across replicates with a standard deviation of
3% of the mean [31], limiting the ability to detect small mutational effects to strains with the
most extreme effects or largest numbers of mutations. Moreover, in laboratory strains of budding
yeast, frequently occurring respiration-deficient, slow-growing ‘petite’ cells can stochastically
bias average growth rates downwards to extents that are independent of the genetic properties of
each individual strain [32,33]. We have developed an alternative to batch culture measurements
that uses time-lapse microscopy to perform growth rate measurements simultaneously in tens of
thousands of microbial microcolonies [34,35]. Because of the highly replicated nature of the
assay, it yields very precise estimates of strains’ mean growth rates [35,36].

Here, we combine sequence information, precise growth rate measurements, and modeling to
interrogate the properties of spontaneous mutations in yeast. We are particularly interested in
three key questions: how frequent are small-effect deleterious mutations, what proportion of the
genome affects growth when mutated, and how do the effects of different classes of small
mutations affect growth? To answer these questions, we estimate the effects of spontaneous
mutations on growth rate, a complex phenotype closely related to microbial fitness, in two sets of
MA lines with different mutation spectra. We first show that our microscopy-based growth rate
assay allows us to accurately and precisely estimate the net effect on growth of the mutations in
each line, notwithstanding stochastic variation in the proportion of slow-growing petite cells
across the experimental samples. We next use these individual-level growth data along with
substitution rate data from MA lines to fit a distribution of mutational effects. Our results
demonstrate that the distribution of spontaneous SNMs is highly skewed towards mutations with
extremely small effects on growth rate, and that the vast majority of these mutations decrease
growth rate in rich media. Finally, we use an additional, slippage repair-deficient set of MA lines
to show that spontaneous indels in SSRs significantly affect growth rate. By applying
high-throughput phenotyping and integrating genotype and phenotype data into a single
framework for fitting mutational effects, we show that the effects of spontaneous mutations
accumulated in MA experiments can be parsed into multiple classes and that SSR mutations
make important contributions to trait variation, on the order of a quarter of the combined effect
of SNMs. Our results underscore the role that deleterious load from a range of mutational types
is likely to play in clonal evolution.

Results

Statistical modeling accounts for across-strain variability in the proportion of
respiration-deficient (petite) colonies

Our study seeks to infer the effects of spontaneous mutations on yeast growth rate. However,
estimating the growth rates of interest is non-trivial. Laboratory strains of S. cerevisiae are prone
to the spontaneous formation of petites, mutants with impaired mitochondrial function that grow
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at a slower rate than their non-petite counterparts [32,33]. Variation in petite numbers across
samples can arise from chance events that cause different numbers of petites in the original
founder populations for each sample. Such variation would impact the mean growth rate
estimated in each strain, resulting in estimates that reflect stochastic inter-strain differences in
petite proportions, obscuring the genetic effect of mutations on the rate of growth of non-petite
cells.

To determine whether differences in petite proportions across MA line estimates could be
impacting growth rate estimates, we first tested whether experimental aliquots of genetically
similar strains truly differ in the proportion of petite cells. On petri dishes, petite colonies in
ade2- strains can be identified by color, as they lack the red color typical of mutants in the end
stages of the adenine biosynthesis pathway [37]. We therefore assayed the proportion of petites
in a set of 18 MA lines described in [38]. Because these strains differed from each other by only
~2 mutations on average, large variation in the proportion of petites across these strains was not
likely to be explained by genetic differences among the strains. The line with the highest
proportion of non-red colonies had a large proportion of non-petite (large, rapidly growing)
colonies that were not red, indicating a decoupling between colony color and respiratory ability;
this line was excluded from further analysis. We found significant variation in the proportion of
colonies that were red across the remaining lines (p << 0.001 by likelihood ratio test, see
Methods) (S1A Fig).

We next sought to determine whether we could accurately estimate the petite proportion in each
strain directly from microcolony growth rate data. Unlike batch culture-based measures of
growth rate, which estimate population-average growth rates, the output of the microcolony
growth rate measurements we performed is a distribution of individual microcolony growth rates
for each sample (Fig 1A) [35,39]. We therefore can make estimates of the proportion of petites
directly from microcolony growth rate data, while simultaneously estimating the mean growth
rate of the non-petite microcolonies. We model the distribution of colony-wise growth rates as a
mixture of two Gaussian growth rate distributions, with the parameters of the distribution of
petite growth rates estimated from independent petite strains derived from the MA ancestor (see
Materials and Methods). We found that microcolony assay-derived petite proportions are highly
correlated with colony color-based proportion estimates (Pearson correlation coefficient = 0.83),
indicating that microcolony growth rate data can be used directly to partition growth rates of
petite and respiring colonies. Microcolony assay-based petite proportion estimates are ~4%
lower than the colony color-based estimates (S1B Fig). This discrepancy may be a consequence
of underestimation of the proportion of petites using growth rate data; alternatively, the
discrepancy may arise as a result of a small number of non-petite white-colored colonies (which
we have seen in these strains [40]). However, because measurements of mutational effect on
growth rate are relative to the ancestral strain, a consistent offset in the estimated proportion of
petites would result in consistent bias in mean growth rate estimates of all strains, including the
ancestor, resulting in accurate estimates of relative growth rates.
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Fig 1. Measuring the cumulative effects of spontaneously accumulated mutations on growth
rate across MA strains
(A) The microcolony growth rate assay. Microcolony growth rates are measured in parallel using
automated microscopy and image analysis. Fluorescent imaging at the end of the growth period
is used to differentiate between the MA strain and the ancestor-derived strain grown in each well
as a reference. The brightfield images of three timepoints show automated colony detection for
two representative colonies: from a GFP-marked ancestral reference (red) and an MA line (blue),
growing side-by-side with different starting sizes and lag times, but at similar rates. A
fluorescence image taken after the final timepoint shows the GFP expression in the reference
colony. The points on the plot represent log(area) over a 10 hour time period measured for these
colonies, with the best fit used to determine growth rates for each colony (using a 7-timepoint
window) shown as a line. (B) Mutation effects (s) in MA lines relative to ancestral reference
strain. Points in plot on the bottom are colored yellow if their s value differs significantly from
the ancestor at an FDR of 0.05. Blue points represent mutational effects calculated for two
control strains derived from independent haploid spores of the ancestral diploid (these are not
included in histogram or boxplot calculation). Boxplot shows the 25th and 75th percentiles, and
median, of the s value across all MA strains.
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Accumulated mutations have primarily negative effects on haploid growth rate

To assess the effects of spontaneous mutations, we first examined the distribution of growth rates
of a set of haploid MA lines, each likely harboring a unique set of mutations. These lines are
derived from diploid parent strains that accumulated mutations over the course of 2000
generations [31,40,41], accumulating an average of ~8 SNMs each [42] (or ~4 SNMs per haploid
strain assayed here). Hall et al. reported that 2.5% of these diploid yeast MA strains, and 14% of
viable haploid progeny of these strains, had a significant increase in growth rate as compared to
the ancestral line [43]. Sequencing revealed that about a fifth of these diploid MA lines harbored
aneuploidies [42]; we excluded the progeny of these aneuploid strains from our study to avoid
confounding the effects of smaller mutations. We assayed the growth rates of 70 haploid viable
MA line progeny (each derived from a single unique diploid parent MA strain) using the
microcolony growth assay [34,35,39]. Cells of each MA strain were grown and imaged in
independent wells of 96-well plates; each well also contained cells of a reference strain (a
GFP-marked haploid line derived from the MA ancestor) to control for well effects on growth
(Fig 1A). The use of haploid MA lines allows us to assay the effects of any mutations in these
lines in the absence of dominance effects.

We are interested in the distribution of the changes in growth rate among MA-derived haploid
strains relative to the growth rate of the ancestral strain. We measure these differences as the
selection coefficient, s, which is positive when mutations are beneficial (increase growth rate)
and negative when they are deleterious:

Equation 1

𝑠
𝑀𝐴

=  
𝑔

𝑀𝐴

𝑔
𝑎𝑛𝑐

− 1 

where sMA is the selection coefficient representing the combined effect of the mutations in a given
MA line on growth rate, and gMA and ganc are the growth rates of the MA and ancestral strains,
respectively. We estimate the proportion of petites in each strain by fitting a mixture of
Gaussians as described above (and in Materials and Methods), and estimating gMA and ganc as the
respective means of the non-petite colony growth rates for the MA and ancestral strains.

Before examining the distribution of MA-line selection coefficients, we first tested the effect of
partitioning petite and non-petite growth rates. As expected, modeling colony growth rates in
each strain as a mixture of two Gaussians that allows for a subpopulation of petites produces a
significantly better fit to the data (p << 0.001 by likelihood ratio test; see Methods) than simply
fitting a single Gaussian distribution to the colony growth rates of each MA line (S1B Fig). In
addition, the strains subjected to growth rate assays included two non-GFP marked control
strains, derived from independent haploid spores of the ancestral diploid; these served as
independent controls in the experiment, as their growth rates should be the same as that of the
ancestral reference strain. As expected, the confidence interval for the selection coefficient s
estimated for each of these strains overlaps 0, indicating that they do not significantly differ in
growth rate from the ancestral strain. However, these strains do differ in the proportion of petite
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colonies as estimated by our modeling. As a result, if mutational effects are estimated without
accounting for petites, these ancestral control strains are incorrectly estimated to have a
significant mutational effect relative to the GFP-marked ancestral control (S1C Fig). Together,
these results support the importance of using modeling to separate the effects of stochastically
variable petite proportions across strains from the genetic effects of spontaneous mutations on
growth rate.

The distribution of MA-line mutational effects (Fig 1B, S1 Table) reveals that the majority of
strains contain at least one mutation that alters growth rate, and that mutations tend to be
deleterious. At a false discovery rate (FDR) of 0.05, ~4% of strains have a significant increase in
non-petite growth rate (positive s value), and 56% have a significant decrease in non-petite
growth rate (negative s value) relative to the ancestral strain. The growth-rate differences tend to
be small. 37% of strains have an s value between –0.01 and –0.05 (1%-5% decrease relative to
the ancestral growth rate), and only 10% of strains have an s value below –0.05 (growth rate
decrease below 5%); an additional 9% of strains have significant decreases but with an s value
above –0.01. Only a single strain has an s value of >0.01.

Modeling reveals distinct distributions of the effects of SNMs and unidentified mutations

We next sought to determine the properties of the distribution of individual mutational effects
(DME) whose combined effects were observed in Fig 1B. To model the DME, we expanded on
the approach proposed by Keightley [11]; in short, individual mutational effects are modeled as
drawn from a reflected gamma distribution, with sides weighted to represent the different
proportions of mutations with positive vs negative effects on the phenotype of interest. The
gamma distribution is advantageous because it captures a range of distribution shapes, from
highly peaked to exponential, with only two parameters: here, we use the mean (m) and shape (k)
of the distribution. To account for the fact that mutations may be biased in the direction of their
effects, the two sides of the reflected gamma distribution are weighted based on q, a parameter
representing the proportion of mutations causing a positive effect on the observed phenotype (see
http://shiny.bio.nyu.edu/ms4131/MAmodel/ to interactively explore how changes to parameters
affect the distribution of mutational effects in MA lines). We treat individual mutations as
additive: the net mutational effect in each strain (sMA from Equation 1) is the sum of the
mutational effects of individual mutations found in that strain. Unlike earlier work, where the
number of mutations per strain was not known, here we leverage sequence information to
constrain the model. The mean number of non-neutral mutations per strain, U, is modeled as half
the average number of mutations in the MA strains’ diploid parents [42], corrected with a fitted
parameter (p0) estimating the total proportion of mutations that are neutral with respect to growth
rate (Equation 13) (note that U has also been used to denote the deleterious rate specifically
[44], which here would be (1-q)U). The distribution of observed mutational effects in the MA
strains, sMA, is therefore modeled as a multifold convolution of the distribution of individual
mutational effects.

Although we expected that constraining the model by the known number of mutations per
diploid-parent strain would improve fitting, we also considered that there may be a substantial
number of mutations missed in the initial sequencing of the MA lines whose haploid derivatives
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are phenotyped here. In particular, the analysis in [42] disregarded any repetitive regions,
including SSRs, which have a higher mutation rate than the surrounding genome [45]. As a
result, the true number of mutations in the MA lines may be the sum of the number of known
mutations (almost all SNMs) reported in [42], and of an additional set of ‘unidentified’
mutations, which would include indels in SSR regions. Therefore, in addition to the ‘SNMs only’
model described above, we considered three approaches to modeling the distribution of the
effects of ‘unidentified’ mutations: the ‘single DME’ model, in which both substitution effects
and unidentified mutation effects are modeled as being drawn from a single distribution of
mutational effects; the ‘two-gamma’ model, in which the effects of unidentified mutations are
modeled as being drawn from a separate reflected gamma distribution; and a ‘Gaussian’ model,
in which substitution effects are modeled as a reflected gamma distribution and the combined
effects of unidentified mutations in each strain are modeled as a Gaussian distribution. Below,
we lay out the properties and justifications for each of these models in more detail, and then
present the results of fitting these models to our data.

If there is no fundamental difference in the distribution of effects of ‘unidentified’ mutations and
the distribution of SNM effects, it should be possible to model their effects by releasing the
constraint on the average number of mutations per strain (essentially the model proposed by
Keightley [11], with no constraint on the value of U); the difference between the estimate of U in
this model and the estimate of non-neutral mutations estimated by our SNM-only model would
provide an estimate for the typical number of unidentified mutations per strain. We fit this model
to our data in the ‘single DME’ model.

The other two approaches for modeling unidentified mutational effects are rooted in the
possibility that SNMs and unidentified mutations have distinct distributions of phenotypic
effects, and that our phenotyping data are precise enough to be able to distinguish these two
distributions. In this case, the effects of SNMs are described as above in the ‘SNM-only’ model,
but the DME for unidentified mutations is modeled separately in one of two ways. First, it is
possible to model the effects of these mutations as a reflected gamma distribution with an
unknown number of mutations (the ‘two-gamma’ model). This is the same model described
above for SNMs, with the proportion of positive vs negative mutational effects, the shape and
mean of the gamma distribution, and (unlike for SNMs) the average number of unidentified
mutations with an effect on growth rate all fitted by the model. However, we hypothesized that
the parameter estimates from this model would not be very informative due to the confounding
between mutation number and mutation effect size/distribution shape when the total number of
mutations is unknown, especially because the effects being modeled by this distribution represent
an unknown portion of the total observed effects and the rate of non-neutral mutations must be
high enough to be consistent with most strains’ differing in growth rate from the ancestral strain.

Considering the lack of information about the number of unidentified mutations in each MA
strain, we can instead seek to understand the typical combined per-strain contribution of these
mutations. To do so, we modeled the combined effects of unidentified mutations in each line as
being drawn from a Gaussian distribution with mean µunid and standard deviation σunid
(‘Gaussian’ model). In this model, the σunid term fits variance not explained by experimental
noise or by the distribution of mutational effects fit to SNMs. Although this model is not
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informative regarding the parameters of the distribution of single unidentified mutations, it
provides useful information regarding the distribution of the cumulative effects of the
unidentified mutations on the growth of each MA strain.

In all three cases, the observed growth rate of each MA line is the result of the sum of the effects
of its SNMs (whose average number per line is known), its unidentified mutations (whose
number is unknown), and experimental noise.

We initially fit all three models, as well as the ‘SNM-only’ model that includes only the effects of
sequenced substitution mutations, to the mutational effects estimated for each strain (see
Materials and Methods for maximum-likelihood estimation procedure, S1 Table for the data that
was used as input into the models, and S2 Table for model results). The Akaike Information
Criterion (AIC) score was lowest for the ‘Gaussian’ model, suggesting that this model fits the
data best, and that the fit of the ‘two-gamma’ model was not sufficiently improved to warrant the
addition of the extra parameters. We also found that, as expected, it was impossible to interpret
the mutational parameter estimates in the ‘two-gamma’ model, which has large confidence
intervals; this is likely the result of confounding effects among all parameter values when
attempting to fit a distribution of individual mutational effects with an unknown total mutation
number. Importantly, the significantly improved fit of the ‘Gaussian’ model over both the
‘SNM-only’ and ‘single-DME’ models indicates that our phenotypic data were precise enough to
identify the effects of both SNMs and unidentified mutations.

Although our approach of fitting the distribution of mutational effects based on summary
statistics of the mutational effects observed in each strain is computationally efficient, it treats
uncertainty in the mutational effect estimates for the different strains as uncorrelated; however, in
practice, these estimates depend on a number of shared parameters, such as the estimate for the
means and standard deviations in growth rate of the reference strain and of petite yeast
microcolonies. These dependencies mean the parameter space is likely more constrained than it
appears when fitting the model to uncorrelated mutational effect estimates: for example, an
overestimate of the mean growth rate of the reference strain would lead to a consistent
overestimate of the s value across all slow-growing MA strains. The correlated uncertainty in
strain estimates should propagate to the estimates of DME parameters (in this example, likely
leading to an overestimate of the mean effect size of a single mutation). Failing to account for the
correlated structure of strain estimates can lead to incorrect estimates of uncertainty on DME
parameters and of the relative goodness of fits of different models. We therefore repeated the fit
to the distribution of mutational effects model using the microcolony growth rate data directly.
We limited this analysis to the ‘SNM-only’ model and the ‘Gaussian’ model, which had the best
fit to the summary statistic-based data. Parameter estimates and confidence intervals were very
similar to those estimated in the summary statistic-based fit, with slightly less uncertainty in the
parameter estimates of the ‘SNM-only’ model when using the microcolony data directly (Table
1, S2 Table). Consistent with our previous finding, the ‘Gaussian’ model, which modeled SNMs
and unidentified mutations as having two independent DMEs, provided the best fit to the data
(∆AIC = −10.8, LRT-based p = 0.00002 as compared to the ‘SNM-only’ model) (Table 1, Fig
2A, S2 Fig).
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Model Parameter ln(L) AIC ∆AIC
SNMs only kSNM

(shape parameter of gamma
distribution for SNMs)

1.4 × 10−1
(7.8 × 10−2 –
4.9 × 10−1)

384760.6 −769359.3 --

mSNM

(absolute value of gamma
distribution mean for
SNMs)

5.0 × 10−3
(3.4 × 10−3 –
1.4 × 10−2)

qSNM
(proportion of SNMs with
positive effect on growth)

10.5%
(2.5% – 24%)

p0 SNM
(proportion of SNMs with
no effect on growth)

0.1%
(0% – 63.1%)

SNMs +
unid,
‘Gaussian’

kSNM
(shape parameter of gamma
distribution for SNMs)

5.5 × 10−2
(2.0 × 10−2 –

1.8)

384768.1 −769370.1 −10.8

mSNM

(absolute value of gamma
distribution mean for
SNMs)

4.1 × 10−3
(2.0 × 10−3 –
5.5 × 10−2)

qSNM
(proportion of SNMs with
positive effect on growth)

6%
(0.9% – 26.6%)

p0 SNM
(proportion of SNMs with
no effect on growth)

5.9%
(0% – 94%)

µunid

(mean combined effect size
of all unidentified mutations
within a strain)

−3.3 × 10−3
(−7.0 × 10−3 –
7.7 × 10−4)

σunid
(standard deviation of
combined effect sizes of all
unidentified mutations
across strains)

5.5 × 10−3
(2.7 × 10−3 –
8.6 × 10−3)

Table 1
Properties of DMEs identified by alternative models on full data
A model that accounts for unidentified mutations by fitting a Gaussian distribution representing
the effects of these mutations across strains performs better than a model that only accounts for
SNMs. Parameter values for each model shown with 95% Confidence Intervals; ∆AIC is
calculated relative to the “SNMs only” model.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547687doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547687
http://creativecommons.org/licenses/by/4.0/


Fig 2. The distributions of mutational effects estimated by a model with independent
distributions for sequenced and unidentified mutations
(A) The cumulative density function of the fit of the ‘Gaussian’ model (which models SNM
effects as a reflected gamma distribution and the sum of all unidentified mutations in a strain as a
Normal distribution) to all individual MA strain mutational effects s. Inset: histogram of
mutational effects, with probability density function of the model overlaid. To account for the
effect of experimental noise on the estimates of s, the model density function is shown convolved
with a Gaussian noise kernel with a variance that is the mean of the error variances of each
strain’s mutational effect estimate. (B) The distributions corresponding to the maximum
likelihood estimates of individual effects of SNMs (pink line) and combined effects of
unidentified mutations per strain (orange line) plotted over the distribution of MA strain
mutational effects.

We find that the vast majority of non-neutral SNMs are deleterious. We further find that the
inferred distribution of SNM effects is highly skewed towards mutations with an effect size
approaching 0 (Fig 2B). As a result, there is large uncertainty regarding the proportion of SNMs
that are completely neutral with respect to growth rate; however, at a selection coefficient cutoff
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of 10–6 (larger than the reciprocal of effective population size for wild yeast populations, which
has been estimated to be on the order of 3.4 x 106 [46]) our best-fit model indicates that 3% of all
substitutions have a significant positive effect on growth rate, and 39% have a significant
negative effect on growth rate. Our model estimates that the mean effect of unidentified
mutations across the MA lines is likely to be moderately deleterious, and that the typical
combined effect of all the unidentified mutations in an MA line is comparable to the effect of a
single SNM.

Spontaneous simple sequence repeat mutations significantly affect growth rate in yeast

Our modeling results strongly suggest that SNMs alone do not account for the full range of
phenotypic effects observed in the yeast MA lines tested; likely candidates for the source of these
mutational effects are SSR loci. To directly test whether mutations in these loci significantly
affect growth rate, we measured growth in a set of MA lines mutant for the MSH3 gene involved
in slippage repair [38]. These strains accumulated mutations over the course of 200 generations,
and contain an average of 1.8 SSR mutations each, the majority of which are deletions of a single
repeat unit.

We first selected msh3∆ mutant MA lines for which we could confidently report the absence of
any substitutions outside SSR regions, and where any phenotypic change could therefore be
attributed to ‘unidentified’ mutations. After 200 generations of MA, only 15 high-coverage
sequenced strains reported in [38] had no known substitutions. Samples of the strains had been
frozen every 20 generations throughout the mutation accumulation. We therefore genotyped a
subset of strains that had high sequencing coverage, but harbored known substitutions, at the
100-generation point. This analysis resulted in an additional four 100-generation msh3∆MA
strains with high coverage and no known substitutions. We selected 18 200- or 100-generation
MA strains without known substitutions for growth-rate analysis (S3 Table). It is possible that
our chosen strains contain an SNM that was missed. However, based on the previously
calculated non-SSR substitution rate in these strains (0.004 substitutions/strain/generation) [38],
as well as the proportion of each strain’s genome that was either in a repetitive sequence or not
sequenced at 10x coverage, we calculate that the total expected number of unidentified non-SSR
substitutions across all the phenotyped strains is only ~0.6 mutations. As a result, any significant
deviations from the ancestral growth rate in these strains are most likely attributable to the effects
of SSR mutations.

Our phenotyping of msh3∆MA lines shows that they include many lines with significant
deviations from the ancestor in non-petite growth rate (Fig 3, S3 Table). 17% of strains have a
significant increase in growth rate, and 44% have a significant decrease in growth rate relative to
the ancestral msh3∆ strain. Strains with significant mutational effects are found both among the
strains that accumulated mutations for 100 generations (3 of 4 strains) and among strains that
accumulated mutations for 200 generations (8 of 14 strains). The mean mutational effect across
all strains was a decrease in s of approximately 0.0024 per 100 generations. Considering the fact
that there are ~1.8 simple sequence repeat mutations per 200-generation msh3∆MA strain [38],
this change corresponds to a ~0.3% mean decrease in growth rate per SSR mutation. Importantly,
the low average number of mutations in each strain, combined with the high proportion of strains
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with a detected mutational effect on growth rate, suggests that many SSR mutations (at least one
third of them) are not neutral.

Fig 3. Mutational effects of simple sequence repeat mutations
Mutation effects (s) of msh3∆MA lines relative to their msh3∆ ancestor. Points in plot on the
bottom are colored yellow if their s value differs significantly from the ancestor at an FDR of
0.05.

Discussion

The distribution of mutational effects determines key properties of a trait’s evolution. We sought
to understand three critical aspects of the characteristics of new mutations: the frequency of
deleterious mutations that cannot be effectively purged from adaptive lineages during clonal
evolution; the proportion of the genome that affects growth when mutated, which may be a proxy
for the interconnectedness of genetic networks in the cell; and the contributions of different
mutation types to growth effects, an important consideration for future approaches to studying
evolutionarily relevant genetic diversity. We used MA lines of the budding yeast Saccharomyces
cerevisiae to estimate the distribution of the effects of spontaneous mutations on growth, a
complex phenotype that contributes substantially to microbial fitness. By combining precise
measurements of growth phenotypes with genotypic information, we found that SNMs do not
account for all the observed mutational effects, and that an additional set of mutations outside of
this commonly investigated mutational class, indels in SSR loci, makes a significant (but
smaller) contribution to mutational effects on growth rate. We also found that the distribution of
spontaneous substitution effects in yeast is highly skewed towards extremely small effects,
consistent with other recent estimates of mutational effects performed across a range of
organisms (e.g. [17,21]).

Our work provides multiple lines of evidence that a class of frequent mutations besides
single-nucleotide substitutions has significant effects on growth phenotypes in yeast. Our
modeling of 2000-generation phenotypic effects suggests that the unidentified mutations whose
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effects we are detecting have typical combined effect sizes per strain similar to the average effect
size of a single substitution. The exact estimate of the contribution of these mutations may be
affected by the choice of the parametric distribution of mutational effects used in the model.
However, this result matches closely with the mean effect of non-substitution mutations
measured directly in the 200-generation msh3∆ slippage-repair-deficient mutation accumulation.

Mutations in SSRs are the most likely candidate for the identity of the non-substitution mutations
underlying the inferred and observed growth rate effects in the 2000-generation and msh3∆MA
experiments, respectively. Our previous estimates suggest that in the 200-generation msh3∆MA
experiment, SSRs are mutated at a rate of ~0.9 loci per genome per 100 generations [38]. These
mutations are likely relatively frequent in wild type strains as well: although estimates of the
SSR spontaneous mutation rate vary widely, our work suggests that it may be up to half of the
rate observed in the msh3∆ background [38]. However, SSRs were masked in the original
sequencing analysis of the 2000-generation MA lines used here [42], as is commonly done due to
the difficulty of accurately identifying SSR mutations using conventional variant-calling
approaches [24]. Although other mutation types, such as large chromosomal rearrangements and
aneuploidies, are likely to have strong phenotypic effects, strains with potential aneuploidies
were excluded from our analysis, and segmental duplications are very rare: rates in diploid yeast
are on the order of ~1x10–5 duplications per cell division [14,42], suggesting that they are
unlikely to have occurred in even one of the 200-generation msh3∆MA strains assayed here.
Therefore, the most likely explanation for the high number of significant changes in growth rate
observed among these strains is that they are the result of fitness consequences of SSR
mutations. In combination with documented effects of SSR mutations and variants on gene
expression in yeast [29] and humans [6,25–28], and the finding that SSR length is selectively
constrained in laboratory populations of Daphnia [30], our study underscores the importance of
looking beyond genic substitutions in studies aimed at understanding the phenotypic effects of
mutations.

An important question addressed by our study concerns the frequency of mutations affecting
complex traits and fitness (these traits’ genomic target size). If a large proportion of mutations
alter a trait value, it suggests that cellular networks are highly interconnected, because changes to
genes in many pathways affect the trait [4]. Fitness is rightly seen as the ultimate interconnected
trait [47], and the number of mutations affecting growth rate likely serves as a close lower bound
of the number affecting fitness itself. However, estimates of the target size for fitness differ
substantially. For example, Lynch et al. [48] estimate that 0.1–1.8% of all mutations have
‘discernible’ fitness effects in S. cerevisiae. This low estimate, however, is at odds with our
results. Although the overall rate of substitutions in the MA strains assayed here was
independently estimated from sequencing data, the number of those mutations that had an effect
on the phenotype in question was fit as a parameter in our model: the proportion of SNMs that
are neutral (s = 0). This parameter can be interpreted in terms of the genomic target size for our
phenotype of interest: mutations in (1- p0) of the genome result in effects on growth rate in rich
media. Our maximum-likelihood estimate of p0 is 6%, which implies that the majority of SNMs
are non-neutral. In addition, estimates based on the maximum-likelihood parameter values of the
DME suggest that >40% of SNMs would be visible to selection in the wild, where yeast
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population sizes are on the order of 3 x 106 [46]; the effective population sizes are even larger in
typical laboratory evolution experiments, in which Ne of >108 are common (e.g. [49,50]).

The uncertainty in the estimate of the genomic target size is important to consider with respect to
the shape of the DME. Recent studies of mutational effects in C. reinhardtii and E. coli that also
utilized mutation-number information found, as we did, that the DME is skewed toward very
small effects [17,21]. It is therefore important to determine whether these very small effects are
real or are based on faulty inference from noisy data. Unlike other parameters we estimated, the
estimate of p0 has a very large uncertainty that allows both possibilities: although the
maximum-likelihood estimate of 6% suggests that very few SNMs are completely neutral, its
95% confidence interval ranges from 0 to 94% of SNMs. Any amount of measurement noise
makes it difficult for a model to differentiate very small-effect mutations from zero-effect
mutations. Nonetheless, other considerations lead to the conclusion that neutrality is limited.
Despite the uncertainty in the proportion neutrality among individual mutations, we find that a
large proportion of MA strains (~60%) deviate significantly from their ancestor in growth rate,
although most contain only ~4 SNMs, providing evidence that non-neutral mutations must be
relatively frequent. Furthermore, our work suggests that a large number of mutations in SSRs
have a significant effect on fitness: despite the fact that the average SSR mutation number in the
msh3∆MA strains assayed here is ~1.5 (with ~20% of strains expected to have no mutations at
all), ~60% of these strains have detectable changes in growth rate relative to their ancestor.
Overall, our results indicate that mutations affecting fitness are very common, both among
SNMs and additional unidentified mutations.

We also demonstrate that the vast majority (73%–99%) of non-neutral spontaneous substitutions
affecting growth rate in rich media are deleterious. This result is consistent with most previous
studies of the distribution of mutational effects on fitness phenotypes [9,17,31,51]. In our
experiments, growth rate was assayed in rich media in which laboratory yeast are commonly
propagated. The high proportion of deleterious mutations suggests that the strain used is already
well-adapted to these growth conditions.

A key goal of mutation accumulation studies is that the distribution of mutational effects gleaned
from these experiments would shed light on constraints affecting the speed and direction of
evolution. The low frequency of mutations increasing fitness identified in such
experiments—including the present one—often precludes a detailed analysis of the properties of
mutations that may be selected for in the course of evolution. Nonetheless, the distribution of
mutations with deleterious effects on fitness is informative. During clonal evolution—long bouts
of which occur in many microorganisms, as well as during tumor development—deleterious
mutations have a direct effect on evolutionary trajectories due to the prevalence of mutational
hitchhiking. When beneficial mutations are rare, they often appear in individuals harboring a
number of deleterious mutations. As a result, the 'fittest' individuals after a bout of clonal
evolution often contain numerous deleterious mutations. Studies of cancer evolution show that
these hitchhikers can have a significant effect on evolutionary trajectories, and may explain
phenomena such as spontaneous cancer remission and tumor heterogeneity [8,52].
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Our study can help untangle conflicting evidence regarding the prevalence of
deleterious-mutation hitchhiking. A study comparing sexual and asexual evolution in yeast found
that evolved asexual lines had significantly lower fitness than sexual lines, an effect attributed to
hitchhiking deleterious mutations [53]. In contrast, a study that exhaustively measured the effects
of hitchhiking mutations in a set of yeast lines evolved asexually found that only ~3% of these
had significantly deleterious effects, with only a single mutation of 116 assayed decreasing
fitness by >1%, while ~80% were neutral [54]. Our work can bridge the gap between these
results, because it underscores the fact that most mutations are likely deleterious but with very
small effects that are below the detection limit of commonly used growth assays. The DME
estimated here implies that only 7.5% of all mutations can be expected to have individual effects
with an s < −0.01 (1% decrease in growth rate), and about half of these would have deleterious
effects strong enough to counteract the typical beneficial mutation identified by Buskirk et al.,
making them targets of selection. However, we would expect another 88% of mutations to have
deleterious effects smaller than 0.01 (similar to the 80% reported as neutral), and although the
effects of these mutations would not be individually detectable in most assays, their combined
effects would significantly decrease the fitnesses of the clones carrying them, consistent with the
findings by McDonald et al [53]. Thus, robust estimates of the distribution of mutational effects
can provide key parameters for interpreting and potentially predicting the results of evolutionary
processes.

Materials and Methods

Strains

All strains used in this study are derived from MA lines described in [31,41] and [38]. Briefly,
the original lines were created from a haploid strain of genotype ade2, lys2-801, his3-Δ200,
leu2–3.112, ura3–52, ho that was transformed with a plasmid expressing HO to create a diploid
strain homozygous at every locus genome-wide, with the exception of the mating type locus
[31]. This strain was then passaged independently in 151 replicates by streaking a single colony
every 2 days for ~2000 generations on YPD media (‘2000-generation’ experiment) [41]. To
generate MA lines deficient in SSR slippage repair, the MSH3 gene was deleted in a strain
(MAT0.a1) derived from a spore of the diploid ancestor of the 2000-generation experiment, and
the resulting strain was passaged independently in 36 replicates as above for ~200 generations
[38]. Because respiring ade2 mutant colonies are red, petites could be detected by their white
color and were not passaged to the next generation. To avoid unconscious bias in the passaging
procedure, the red colony closest to a pre-marked spot on the plate was chosen at every passage
[31] [38].

The haploid 2000-generation MAH strains used in this study were created previously: a subset of
the MA lines were sporulated, and a random spore of a mating type was selected [40,55]. Two a
mating type spores from a full tetrad derived from the diploid ancestor, MAT0.a1 and MAT0.a2,
were phenotyped alongside the 2000-generation MAH lines. These two strains were also streaked
out onto YPD plates, and six independent white colonies on these plates were picked and used as
petite control strains in the 2000-generation growth assays; for the 200-generation assays, three
petite colonies from the MAT0.a1 strain were selected for use as the microcolony phenotyping
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assay petite controls.

To construct a GFP-marked ancestral reference strain, a GFP gene driven by an Scw11 promoter
was cloned upstream of a HERP1.1 positive/negative selection cassette [56] that was flanked by
two Cyc1 terminator sequences. This construct was inserted into a neutral locus (YFR054C
dORF) [34] in either the diploid ancestor or the msh3∆ haploid ancestor for the 2000 and msh3∆
MA experiments, respectively, and, after selection on hygromycin and genotyping, yeast were
re-selected on 50 µg/ml 5-fluorodeoxyuridine. The resulting strain was
YFR054C/YFR054C∆::pScw11-GFP-Cyc1T in the ancestral background of the 2000-generation
MA experiment, or YFR054C∆::pScw11-GFP-Cyc1T; msh3∆ in the ancestral background of the
msh3∆MA experiment. For the 2000-generation experiment, this strain was sporulated, and
haploid, GFP-marked, a-mating type spores were selected to act as in-well ancestral reference
strain controls.

For the msh3∆MA experiment, we previously reported that we have likely identified every
substitution in these strains that falls into a region of the genome that was sequenced at 10x or
higher and that is not repetitive (telomere, centromere, or long terminal repeat) [38]. We
therefore selected 28 ‘high-coverage’ strains in which no more than 10% of the genome was
sequenced at <10x or was part of a repetitive sequence, and then selected strains with no further
mutations either at the final (200th) generation of MA or at the 100th MA generation.

Growth rate assays

Strains were randomized into 96-well U-bottom plates and stored frozen at –80°C in 20 µL of
50% YPD + 15% glycerol. ‘Petite-only’ control strains were included in each experimental plate.
Three days before each growth rate assay, a plate each of MA and reference strains was thawed
and 180 µL SC media supplemented with 50 mg/L adenine (SC+Ade) added to each well
(adding adenine decreases selection pressure for Ade+ phenotypes, including [PSI+] cells). After
one day of growth in a shaking incubator at 30°C, each strain was diluted 1:10 in SC+Ade in a
new plate. The experiment was performed following an additional two days of growth from the
resulting saturated cells of each line.

The microscope growth rate assay was performed largely as described in [35]. On the day of the
growth rate assay, MA line and reference strains were mixed in a 2:1 ratio and diluted
~1x10–4-fold with vigorous mixing. For the 2000-generation experiments, in an attempt to
identify petite microcolonies directly rather than through statistical modeling, strains were
stained with MitoTracker Red CMXRos dye for 10 mins as described in [33], followed by 10–4
dilution in SC media. However, this treatment was found not to efficiently stain mitochondria in
the high-throughput experimental setup used here, so the fluorescence values were not used and
the staining was not repeated for the msh3∆MA experiment. The MitoTracker dye does not
affect microcolony growth [33]. Cells were imaged hourly for 10 hours in brightfield, followed
by a single GFP exposure, as described previously [34]. Image analysis was performed using the
PIE software [39]. PIE settings are listed in S1 File.
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Petite proportion experiments

To independently estimate the proportion of petites in 200-generation msh3∆MA strains, we
used a subset of the cells cultured on two experimental days and plated ~200 colonies per plate
onto YPD plates. We tested at least three replicates of each strain per experimental day, and the
assay was repeated on two different experimental days. Plates were grown for 2 days at 30°C and
then left at room temperature for an additional 8 days before counting. Red colonies were
counted as wild type, whereas white colonies were counted as petites.

To estimate the significance of variance in non-red colony proportion across strains as measured
by the colony color assay, we fit a mixed effect logistic regression to estimate the odds of a
colony being non-red, with strain as a random effect. We compared this model to one without the
strain effect by a likelihood ratio test.

To estimate the significance of the improved fit of the individual line effect model when
accounting for the existence of petites in the 2000-generation MA experiment, we compared
likelihoods of a ‘full’ model, in which MA strain growth rates were estimated as described in
Equation 3 below, to a model in which all petite proportions were set to 0, meaning that MA
strain growth rates were estimated as a Gaussian with a common standard deviation across all
MA strains and a strain-specific mean.

Outline of parameter estimation

We are interested in identifying the values of the parameters of the DME, θDME, based on a set of
observations of colony growth (here generally denoted O). Within a single strain i, this
probability is the convolution of the probability of mutational effect Si (e.g. as defined in
Equation 1) being drawn from a DME with parameters θDME, and the probability of the set of
observations of strain i given s:

Equation 2

𝑃 𝑂
𝑖
|θ

𝐷𝑀𝐸( ) = 𝑃 𝑆
𝑖

= 𝑠|θ
𝐷𝑀𝐸( ) ∗ 𝑃 𝑂

𝑖
|𝑠( )

where * denotes convolution. The overall likelihood of θDME is the product of all the likelihoods
over strains i, and is maximized by maximizing the sum of the log likelihoods across all strains,
as discussed in detail below.

Below, we first outline the computation of the probability of colony growth observations given s.
We then describe the computation of the distribution of mutational effects for different classes of
candidate probability functions. We present two ways in which we combined these two functions
(one summary statistic-based, and one jointly performing the likelihood computation across
every individual observation) to calculate the total likelihood of a set of θDME values given a set
of growth observations. Finally, we briefly describe the computational methods used to perform
likelihood maximization. Note that parameters in θDME are described in S2 Table, and other
parameter names used in this section are listed in S4 Table.
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Computation of the likelihood of single-strain growth rate observations

In this section, we describe the calculation of the probability of making growth observations of a
strain given its mutational effect, . We discuss the need to account for the fact that growth𝑃 𝑂

𝑖
|𝑠( )

rate distributions consist of populations of both respiration-deficient (petite) and respiring
colonies, as well as for the substantial batch effects in growth rate estimation. We show that
using the differences in growth rates between randomly paired MA and reference strain colonies
as the observations of interest allows us to account for both factors in a computationally efficient
manner.

Accounting for petites

The colonies of a single strain consist of two distinct subpopulations that grow at different rates.
The first subpopulation, constituting the majority of the population, consists of cells with a
strain-characteristic growth rate for each strain i (µi) and with a standard deviation that we model
with a parameter that is common to all strains within a MA experiment (σnonpetite-bio). Each
population also contains a smaller proportion of petite colonies, which have lost the ability to
respire and grow at a lower rate than their non-petite counterparts in fermentation conditions. We
model these petite cells as having a common mean growth rate (µpetite) and standard deviation
(σpetite-bio) across all strains. Experimental data show that the strains in our experiment vary in the
proportion of petites, ρi. Therefore, we model the growth rate, g, of each colony a of strain i as
being drawn from the distribution:

Equation 3
𝑔

𝑎𝑖
∼ 1 − ρ

𝑖( )𝑁  µ
𝑖
, σ

𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒−𝑏𝑖𝑜
2( ) + ρ

𝑖
𝑁 µ

𝑝𝑒𝑡𝑖𝑡𝑒
, σ

𝑝𝑒𝑡𝑖𝑡𝑒−𝑏𝑖𝑜
2( )

The setup of the growth rate assays described in this paper is such that ρi may vary among strains
for non-biological reasons: after the completion of the mutation accumulation, the strains are
passed through a relatively narrow bottleneck before being frozen, followed by 6–8 generations
of subculture. As a result, ρi may vary as a result of jackpotting events rather than underlying
biology. Because of this, we chose to focus on understanding mutational effects affecting µi, not
ρi, such that Equation 1 can be restated as

Equation 4

𝑠
𝑖

=  
µ

𝑖

µ
𝑎𝑛𝑐

− 1 

Note that although ρi is not the focus of our study, it is important to estimate this strain-specific
proportion of petites in order to accurately estimate µi, and it is therefore estimated for each
strain as part of our model fitting.

Accounting for batch effects and colony measurement noise in experimental setup
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The growth rate assay is performed in batches. In the assay for the 2000-generation experiment,
each MA strain is assayed in a single well on an experimental plate, with a total of 14
experimental plates assayed. In the assay for the msh3∆ experiment, each MA strain is assayed in
three wells per plate, and the ancestral strain is present in 9 wells per plate, with a total of 10
experimental plates assayed. For each well, growth rates were typically obtained for ~500
microcolonies of the strain being assayed as well as ~500 microcolonies of a single GFP-marked
reference strain.

Previous work has shown that the experimental organization can result in significant batch
effects across wells within a plate and across plates (which correspond to experimental days)
[36]. These batch effects can be accounted for in the context of a mixed effect model:

Equation 5
𝑔𝑜𝑏𝑠∼𝑁  µ

→
,  Σ( )

Where gobs is the vector of measured (observed) growth rates, µ is the vector of mean growth
rates and Σ is the covariance matrix of colony growth rates derived from the block design.

Colonies from ‘petite-only’ samples can be analyzed in the above way. However, as described in
Equation 3, the growth rates of MA and reference strains are described by bimodal distributions
with an unknown proportion of petites, complicating the computation of the likelihoods of
observing specific growth rates.

If random batch effects are additive on the growth rate scale, then their effects can be eliminated
by calculating the difference in growth rate between a reference strain colony and an MA colony
that share the same experimental plate and well. For example, consider the observed growth
rates, gaiobs and gbjobs, of two colonies a and b of MA strain i and reference strain j, respectively,
growing in the same microscope plate k, in well l. The genetic component of the growth rate of
each colony is distributed as described in Equation 3: two sources of measurement error are
responsible for the difference between observed and ‘genetic’ growth rates: εkl, which is the sum
of the batch effect of the plate and well in which the colonies are grown (with standard
deviations σplate and σwell, respectively) and an independent and identically distributed (iid)
measurement noise across colonies (with standard deviation σcol):

Equation 6
𝑔

𝑎𝑖
𝑜𝑏𝑠 =  𝑔

𝑎𝑖
+ ε

𝑎
+ ε

𝑘𝑙

𝑔
𝑏𝑗
𝑜𝑏𝑠 =  𝑔

𝑏𝑗
+ ε

𝑏
+ ε

𝑘𝑙

ε
𝑎,𝑏

∼𝑁 0,  σ
𝑐𝑜𝑙
2( ) 

ε
𝑘𝑙

∼𝑁 0,  σ
𝑝𝑙𝑎𝑡𝑒
2( ) + 𝑁 0,  σ

𝑤𝑒𝑙𝑙
2( ) 

(note that indices kl were left off of ga and gb, respectively, to streamline notation).
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Because the colony measurement terms εa and εb are iid random variables, we can subsume them
into a combined noise term that includes both the biological variation in colony growth rates and
the independent cross-colony measurement noise:
Equation 7

σ
𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒
2  = σ

𝑐𝑜𝑙
2 +  σ

𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒−𝑏𝑖𝑜
2

σ
𝑝𝑒𝑡𝑖𝑡𝑒
2  =  σ

𝑐𝑜𝑙
2 + σ

𝑝𝑒𝑡𝑖𝑡𝑒−𝑏𝑖𝑜

2

This eliminates the εa and εb terms from Equation 6, although it also means that we are not able
to independently estimate the biological and measurement noise components of petite and
nonpetite colony growth variance.

Next, subtracting the growth rates of colonies a and b from each other yields the formula for the
growth rate difference, D, eliminating the random batch effect term εkl. Thus, by estimating the
likelihood of the difference in growth rates between two colonies that share random batch
effects, D, we eliminate the necessity of using a mixed effect model to estimate likelihood.
Instead, the probability of observing a particular difference in colony growth rates between a
same-well colony pair becomes dependent on a mixture of independent normal distributions:

Equation 8
𝐷 ∼ 1 − ρ

𝑖( ) 1 − ρ
𝑗( )𝑁  µ

𝑖
− μ

𝑗
, 2σ

𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒
2( )

+ 1 − ρ
𝑖( ) ρ

𝑗( )𝑁  µ
𝑖
− μ

𝑝𝑒𝑡𝑖𝑡𝑒
, σ

𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒
2 + σ

𝑝𝑒𝑡𝑖𝑡𝑒
2( )

+ ρ
𝑖( ) 1 − ρ

𝑗( )𝑁  µ
𝑝𝑒𝑡𝑖𝑡𝑒

− μ
𝑗
, σ

𝑛𝑜𝑛𝑝𝑒𝑡𝑖𝑡𝑒
2 + σ

𝑝𝑒𝑡𝑖𝑡𝑒
2( )

+ ρ
𝑖
ρ

𝑗
𝑁 0, 2σ

𝑝𝑒𝑡𝑖𝑡𝑒
2( )

We select random pairs of colonies without replacement from an MA strain and the GFP-marked
reference strain within each imaging field in each well, and estimate the likelihood of the
parameter values above given each pair’s difference in growth rates.

The logs of these likelihoods are then added to the sum of the log likelihoods of the petite
parameters given each colony growth rate in the petite-only samples to calculate the total
likelihood of our data. To identify the maximum likelihood parameter values, we iterate over
values of each of the following ‘general’ parameters: µancestor, µpetite, ρancestor, σnonpetite, σpetite, σplate,
σwell; and find the maximum likelihood parameter values of the MA strain petite proportions ρMA

and selection coefficient sMA for each MA strain (as defined in Equation 4). We then find the
values of the ‘general’ parameters that result in the maximum overall likelihood.

In the 2000-generation experiment, the GFP-marked reference strain was treated as the
‘ancestral’ strain, and indeed this strain did not differ significantly in growth rate from two
haploid strains derived from the diploid MA ancestor. In the 200-generation msh3∆ experiment,
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the in-well GFP reference strain was found to have a different growth rate than the ancestral
msh3∆ strain, so the s value for each MA strain was estimated relative to the ancestral msh3∆
strain.

Computation of the probability density function for the distributions of mutational effects

To jointly estimate the distributions of effect sizes of SNMs and unidentified mutations based on
the MA lines, we expanded on a modeling approach developed by Keightley [11,12]. As
described in Results, we model the distribution of mutational effects as a reflected gamma
distribution with shape k and mean m; the two sides of the distribution are weighted by the
proportion of non-neutral beneficial mutations q. The distribution of MA line phenotypes is the
convolution of a Poisson random number of single DFE distributions with mean U.

Previous work has found that fitting the model described in [12] is non-trivial due to the
significant amount of time required for the numerical integration used to estimate the combined
probability density function of mutational effects caused by multiple mutations. Rather than
performing multiple numerical integrations, we transferred the computation of the density
function into the Fourier domain, as follows.

First, consider a mutation whose mutational effect, Y, is gamma-distributed. We can describe the
probability density function (PDF) of observing a mutational effect s of this mutation using its
characteristic function (the Fourier transform of the PDF):

Equation 9
𝐹

𝑌
ω( ) = 1

1−𝑖ω 𝑚
𝑘( )𝑘

where m and k are the mean and shape parameters of the distribution, as described above.

We would like to instead model the distribution of single mutational effects Z as a reflected
gamma distribution weighted by q and 1-q for positive and negative mutational effects. The
characteristic function of Z is then

Equation 10

𝐹
𝑍

ω( ) = 1−𝑞

1+𝑖ω 𝑚
𝑘( )𝑘 + 𝑞

1−𝑖ω 𝑚
𝑘( )𝑘

For a strain with a known number of mutations, n, the combined mutational effect S can be
expressed as:

𝑆 = 𝑍
1

+ 𝑍
2

+ … + 𝑍
𝑛

The PDF of S, fS, is the convolution of n PDFs of Z, and the characteristic function of S in this
known-mutation number case is thus
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Equation 11
𝐹

𝑆
𝑘𝑛𝑜𝑤𝑛 𝑚𝑢𝑡 # ω( ) = 𝐹

𝑍
ω( )( )𝑛

In our analysis of haploid 2000-generation MA strains, the number of mutations in the strains is
not known exactly, even for substitutions. However, the mean number of mutations across the
parental diploid strains has been precisely estimated [42]. We therefore treat the number of
non-neutral mutations in each MA strain as a Poisson-distributed random variable, N, with mean
U:

𝑓
𝑁

𝑁 = 𝑛( ) =
𝑛=0

∞

∑
𝑈 𝑛

𝑛! 𝑒
−𝑈

For a set of strains each containing an unknown number of non-neutral mutations drawn from a
single Poisson distribution with mean U the characteristic function of the combined mutational
effect S observed in the MA strains is therefore

Equation 12

𝐹
𝑆
𝑆𝑁𝑀−𝑜𝑛𝑙𝑦 ω( ) =  𝐹

𝑆
𝑠𝑖𝑛𝑔𝑙𝑒 𝐷𝑀𝐸 ω( ) =

𝑛=0

∞

∑
𝑈 𝐹

𝑍
ω( )( )𝑛

𝑛! 𝑒
−𝑈

= 𝑒
𝑈 𝐹

𝑍
ω( )−𝑈

= 𝑒
𝑈 𝐹

𝑍
ω( )−1( )

This equation applies to both the ‘single DME’ model, in which U is a parameter estimated by
the model, and the ‘SNM-only’ model, in which U is a function of Mdiploid (the mean number of
mutations per diploid MA strain) and the parameter p0 (the probability that any single mutation is
neutral, with s = 0), which is in turn estimated by the model:

Equation 13

𝑈𝑆𝑁𝑀−𝑜𝑛𝑙𝑦 =
𝑀

𝑑𝑖𝑝𝑙𝑜𝑖𝑑

2 𝑝
0 𝑆𝑁𝑀

For the models that treat SNMs and unidentified mutations as being drawn from distinct
distributions, fS is a convolution of the distributions of SNMs and unidentified mutational effects
in each strain; thus, for the ‘two-gamma’ model described in the text, there are two distinct
reflected gamma distributions with different parameters, one for the sequenced SNMs (‘SNM’)
and one for the unidentified mutations (‘unid’):

Equation 14

𝐹
𝑆
𝑡𝑤𝑜−𝑔𝑎𝑚𝑚𝑎 ω( ) = 𝑒

𝑈𝑆𝑁𝑀 𝐹
𝑍
𝑆𝑁𝑀 ω( )−1( )𝑒𝑈𝑢𝑛𝑖𝑑 𝐹

𝑍
𝑢𝑛𝑖𝑑 ω( )−1( )

and for the ‘Gaussian’ model described in the text, the unidentified mutational effects are
normally distributed:
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Equation 15

𝐹
𝑆
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 ω( ) = 𝑒

𝑈𝑆𝑁𝑀 𝐹
𝑍
𝑆𝑁𝑀 ω( )−1( ) 𝐹

𝑁
𝑢𝑛𝑖𝑑 ω( )

Where FN
unid(ω) is the fourier transform of a Gaussian PDF with mean and standard deviations

µunid and σunid, respectively.

Estimation of the distribution of mutational effects from MA-line-wise summary statistics

One approach described in the Results section for calculating the likelihood of the observed
growth data was to first estimate a mutational effect Si and standard error of the Si estimate for
each 2000-generation MA strain, and then use sampling distributions parameterized by these
values as the probability of the observed growth rate differences in Equation 2. To calculate the
likelihood of the observed results, the distribution of MA line phenotypes (relative to the
ancestral strain) is convolved with a normal distribution whose standard deviation is the error
estimate based on the confidence intervals of each line’s mutational effect Si, following [11,12],
here with an individual strain-specific error estimate derived from likelihood profiles of each
strain’s mutational effect estimates. In practice, fS is also convolved with a narrow Gaussian
kernel to resolve numerical issues that occur in computing fS in certain parts of parameter space.

As a result, the characteristic function of the estimated mutational effect of MA strain i, Siest, is

Equation 16

𝐹
𝑆

𝑖
𝑒𝑠𝑡 ω( ) =  𝐹

𝑆
ω( )𝐹

𝑁
𝑘𝑒𝑟𝑛𝑒𝑙 ω|0, 2−16( )𝐹

𝑁
𝑒𝑟𝑟𝑜𝑟 ω|0, σ

𝑀𝐴
𝑖

( )
Where FS(ω) is given by Equation 12, 14, or 15 above, depending on the model.

By computing this convolution in the Fourier domain, and then performing a discrete inverse
Fourier transform, we compute the probability density function of estimating a mutational effect
given a set of DME parameter values. We then interpolate estimated mutational effects measured
in each MA strain, Siest, (S1 Table) within the computed values for this density function to
compute the likelihood of each mutational effect estimate. This likelihood is maximized across
all parameters shown in S2 Table.

Estimation of the distribution of mutational effects from complete colony growth data

To directly jointly estimate the likelihood of observing v differences D(i)
1…v in growth rates

between each MA strain colony of a single strain i and ancestral reference colony given a
distribution of mutational effects fS, we computed the likelihood of the DME parameters (θDME),
the strain-specific petite proportions, and the ‘general’ parameters described above (θgeneral, which
includes the mean petite and ancestral strain growth rates, the petite proportion of the reference
strain, the standard deviations of petite and non-petite colony growth rates, and random batch
effect standard deviations), given the observed set of growth rate differences between random
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pairs of MA and reference colonies in each well:

Equation 17

𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑟𝑜𝑤𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 =  𝐷
1...𝑣

𝑖

(𝑖) |θ
𝐷𝑀𝐸

, θ
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

, ρ
𝑖( )

= ∫ 𝑃 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 𝑆
𝑖

= 𝑠|θ
𝐷𝑀𝐸( ) *

𝑗=1

𝑡
𝑖

∏ 𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑟𝑜𝑤𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐷
𝑗
(𝑖)|θ

𝑔𝑒𝑛𝑒𝑟𝑎𝑙
, 𝑠, ρ

𝑖( )⎡⎢⎣
⎤⎥⎦( )𝑑𝑠

where Dj
(i) is the jth difference observed in strain i, and vi is the number of observed differences

(colony pairs) in strain i.

The integral above was computed using numerical integration, with the individual probabilities
inside computed as described above: using Equation 12, 14, or 15 to calculate the PDF over s
for the first half of the integral, and Equation 8 to calculate the probability inside the product.
Note that the random variable µi from Equation 8 appears in every term of the product in
Equation 17, and that the change of variable

µ
𝑖

= µ
𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟

* (1 + 𝑆
𝑖
) 

is done before doing the integration in Equation 17, also within the product. All of the terms
within the integral are initially calculated as log likelihoods and only exponentiated for
integration. The log likelihood of the complete set of measurements across strains is computed
by summing over all strains the log of the likelihoods as in Equation 17; for each term, the
strain-specific set of D values is used.

The maximum likelihood parameters were identified by iterating over sets of parameter values in
a nested algorithm similar to that described above for strain mutational effects: the maximum
likelihood parameter values of ρMA are identified for fixed values of θDME and θgeneral; the
maximum likelihood of θDME are found for a fixed set of values of θgeneral.

Maximum likelihood parameter value and confidence interval identification

Maximum likelihood parameter values were identified by implementing an interior-point
minimization algorithm in MATLAB and minimizing the negative log likelihood [57], using
constrained optimization with wide bounds on possible parameter values. Optimization code can
be found at https://github.com/plavskin/MutationEffectEstimation, and likelihood calculation
code can be found at https://github.com/plavskin/GR_diff_DFE. The data and additional analysis
code can be found at https://osf.io/h4j9f/?view_only=4229c3876f28477a898acda665fcf33a.

Confidence intervals on all parameter values were calculated using the profile likelihood method
following [11], where the value of a single parameter is fixed at various points, and likelihood is
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maximized with respect to all other parameters. 95% confidence interval bounds were then
identified via quadratic interpolation between points along the parameter of interest to identify
the point corresponding to a log likelihood change of ~2.5.

To ensure global likelihood maxima were identified, constrained maximum likelihood estimation
was started at multiple points across most parameters. The maximum likelihood parameter
search was repeated multiple times, starting at the optimal parameter values from the previous
run and additional points in parameter space, until a consistent maximum likelihood value was
identified regardless of starting point, and each parameter’s log likelihood profiles were
monotonically ascending from the left and monotonically descending to the right of the
maximum likelihood parameter values.
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