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Abstract
Spontaneous conversation is optimized for human-human com-
munication, but differs in some important ways from the types
of speech for which human language technology is often devel-
oped. This overview describes four fundamental propertiesof
spontaneousspeech that present challenges for spoken language
applications because they violate assumptions often applied in
automatic processing technology.

1. Introduction
Most of the speech we produce and comprehend each day is
spontaneous. This “speech in the wild” requires no special
training, is remarkably efficient, imposes minimal cognitive
load, and carries a wealth of information at multiple levels.
Spontaneous conversation is optimized for human-human com-
munication, but differs in some important ways from the types
of speech for which human language technology is often de-
veloped [33]. This overview describes four fundamental prop-
erties of spontaneous speech that present problems for spoken
language applications because they violate assumptions often
applied in automatic processing technology. While not meant
to be exhaustive, the four properties are chosen because they
are either pervasive or important to spoken language applica-
tions when they do occur, and because they represent difficult
and interesting challenges to speech science and engineering.
Together they cover a range of phenomena—from lower-level
linguistic structure to higher-level phenomena.

2. Four Fundamental Challenges
2.1. Recovering hidden punctuation

In many formal written languages, punctuation is rendered ex-
plicitly. But spoken language is a stream of words, with no
overt lexical marking of the punctuation itself. Instead, phras-
ing is conveyed through other means, including prosody [16].
Sentence boundaries and other types of punctuation are useful
for many types of automatic downstream processing (includ-
ing parsing, information extraction, dialog act modeling,sum-
marization, and translation), as well as for human readability
[40, 47, 18, 24, 22, 33, 21, 32]. These methods are typically
trained on text data, which contains punctuation. Modeling
sentence-level punctuation can also improve speech recognition
performance itself [44, 24].

Historically, speech recognition researchers have built lan-
guage models based on sentences as found in text and then
tried to acoustically segment the speech into sentence-like units.
This is typically done by chopping at longer pauses and speaker
changes. Pauses are relatively easy to detect and minimize the

risk of fragmenting words in the process. Speaker changes are
also often available, especially if speakers are recorded on dif-
ferent channels. For some applications, if a speaker produces
one sentence at a time (for example, to a dialog system) thereis
typically little problem. But for processing of natural conversa-
tion, finding the sentence boundaries by machine is a challenge.
Pauses are neither necessary nor sufficient indicators of sen-
tence boundaries. People often string together sentences with-
out pauses. And conversely, people pause (as during hesitations
or disfluencies) at locations other than sentence boundaries.

Computational models for finding sentence boundaries in
speech typically involve a combination of N-gram language
models (over words and boundary labels) and prosodic classi-
fiers [46, 40]. Knowledge sources are often combined using an
HMM framework. More recently, other model types have been
used successfully, such as maximum entropy models and con-
ditional random fields [31]. Prosodic models have used proba-
bilistic classifiers such as decision trees or neural networks, and
can be improved by sampling and ensemble techniques [29].
Additional approaches and features are described in [45]. While
initial research used hand-transcribed words as input, more re-
cent work has studied the problems arising from imperfect rec-
ognizer hypotheses. In particular, work on strategies for using
multiple recognition hypotheses appears promising [14].

The tasks described above typically apply to offline pro-
cessing of speech intended for human listeners. But there is
an important application of punctuation detection for online
human-computer dialog systems: “endpointing”, or determin-
ing when a speaker has completed an utterance to a system. The
endpointing task has some relationship to turn-taking (a topic
discussed further in Section 2.3), but is described here because
it requires the same basic disambiguation between hesitation
and grammatical pauses that is involved in offline punctuation
work. Most current endpointers wait for a pause that is longer
than some predetermined duration threshold. But this assump-
tion that a pause signals the end of a speaker’s turn is violated
when the speaker pauses while hesitatating. The challenge in
endpointing, as compared with offline sentence segmentation,
is that endpointing is an online task and must be accomplished
using information onlybeforethe potential endpoint under con-
sideration.

An approach to reducing cutoffs during hesitation and also
for speeding responses after true utterance ends is described in
[9]. The approach models prosodic features occurring before
pauses. Not only do these features significantly reduce prema-
ture cutoffs during hesitations, they also provide a remarkable
reduction of up to 81% for the “average speaker waiting time”
for true utterance ends. Prosodic features such as intonation
add confidence to true ends even before a speaker pauses, thus
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Figure 1: Speaker Waiting Time (SWT) vs. False Alarm Rate (FAR)
for four endpointing systems, from [9]. Systems, ordered from worst to
best performance, are: baseline system (pause-only), language-model
system, prosody system, combined prosody + language model system.

shortening the required pause threshold for a given false alarm
rate and speeding the overall interaction.

2.2. Coping with disfluencies

Disfluencies such as filled pauses, repetitions, repairs, and false
starts are frequent in natural conversation. Across many corpora
and languages, disfluencies occur at rates higher than every20
words, and can affect up to one third of utterances [38]. Al-
though disfluencies were once viewed as “errors”, a growing
literature on the topic has come to appreciate them as an inte-
gral part of natural language and conversation. They reflectboth
cognitive aspects of language production and the management
of interaction [26, 38, 5].

Disfluencies are important to model in speech technology
because they cause problems for higher level natural language
processing, such as parsing, translation, information extraction,
and summarization; they also degrade transcript readabililty for
humans [47, 11, 3, 21]. In some contexts, modeling disfluen-
cies can also improve speech recognition performance [44, 28].
Most of the approachesto the natural language processing prob-
lems are based on training using large amounts of written text,
which typically does not contain disfluencies. One strategyis
thus to detect and then remove (or “clean up”) the disfluencies
prior to further processing.

Detecting filled pauses can be nearly trivial for words such
as “um” in English, if recognition output is correct, but is diffi-
cult for cases like “uh” (homophonous with “a”), or for words
that can function either as a filler or nonfiller. A common ap-
proach to edit detection is to first detect the interruption point
of a disfluency using lexical and prosodic cues, and to then use
other cues to determine the extent of the excision region. Early
work [15] assumed that the interruption point is known and fo-
cused on identifying the reparandum and repair regions. Find-
ing the interruption point, however, is a nontrivial problem in
itself. Some words, such as filled pauses and editing terms, are
direct evidence, but in general these cues are ambiguous and
more powerful machine learning techniques must be used.

In [13], a statistical model is developed for the correspon-
dence between words in the reparandum and repair regions for
disfluency detection. More recently, a source-channel model
has been used, together with a tree adjoining grammar [20] or
a statistical model to represent the possibility of a word being
disfluent [17]. Transformation-based learning is another data-
driven learning paradigm that has been applied to the problem
[41]. Finally, the same basic techniques employed for sentence

Table 1:Percentage of overlappedspeech units in different corpora, for
words (in plainface) and “spurts” (stretches of speech thatdo not con-
tain any pauses greater than 500 msec.; in italics). “MR” meetings are
discussions; “ROB” meetings are directed by a speaker who produces
60% of all words, and tend toward individual reporting. “CH”= Call-
Home (friends and family, real calls); “SWB” = Switchboard (strangers
paid to discuss prescribed topics).

Meetings Phone convs.
Backchannels MR ROB CH SWB
Included

words 17.0 8.8 11.7 12.0
spurts 54.4 31.4 53.0 54.4

Excluded
words 14.1 5.6 7.9 7.8
spurts 46.4 21.0 38.8 38.9

boundary detection have also been applied to process disfluen-
cies [30].

2.3. Allowing for realistic turn-taking

Spontaneous speech has another dimension of difficulty for au-
tomatic processing when more than one speaker is involved. As
described in classic work on conversation analysis [36], turn-
taking involves intricate timing. In particular, speakersdo not
alternate sequentially in their contributions as often suggested
by the written rendition of dialog. Rather, listeners project the
end of a current speaker’s turn using syntax, semantics, prag-
matics, and prosody, and often begin speaking before the cur-
rent talker is finished [36, 16, 4, 27].

Overlap is frequent not only in corpora like multiparty
meetings, but also in two-party phone conversations, as shown
in Table 1 [39]. Overlap rates are high even when backchan-
nels (such as “uh-huh”) are removed from consideration. What
is important is that overlap in two-party phone conversations is
not necessarily lower than in meetings. It is also interesting that
familiarity with the other talker does not appear to affect the rate
of overlap, since there is no difference in overall rates between
the CallHome and Switchboard conversations.

Modeling realistic turn-taking has a fascinating application
to dialog system design; some researchers are developing con-
versational systems that can mimic human turn-taking by pro-
viding backchannel responses,e.g., [10]. Overlap in turn-taking
also introduces several problems for many current offline au-
tomatic speech processing tasks. An obvious difficulty is the
acoustic modeling of simultaneous speakers on a single record-
ing channel. Relatively little work has focused on this problem
to date, although source separation and auditory scene analysis
techniques may ultimately lead to solutions. In this paper we
focus on the impact of overlap for higher-level phenomena.

One area is language modeling. Conversational speech
recognition work has largely focused on the case in which each
speaker is recorded on a separate channel, and the channel is
modeled separately as an independent stream of words. How-
ever, recent work has shown that conditioning word prediction
across speakers leads to improvements [19]. The situation be-
comes complicated when, because of overlap, a given word is
immediately preceded by words from both the same and another
speaker. Further complications arise in multiparty meetings,
when several other speakers could provide the preceding words
to condition on. Lack of strictly sequential turns also causes
problems for the automatic classification of dialog acts. Work
has shown that in telephone conversations, the dialog context
(the preceding and following utterances, and who said them)
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Figure 2: Annoyance and frustration detection results for a tele-
phone dialog system, from [1]. Pro = prosody features (automatic),
Sty = hyperarticulation-related features (hand-coded), Rep = repeti-
tion/correction feature (hand-coded). Human agreement ison the more
difficult task (Annoyed+Frustrated vs. Else).

can be an important source of information in disambiguating
dialog acts [43]. The models used for this purpose are typically
sequential (e.g., HMMs), and it is not clear how to best gener-
alize them to the case of overlapping speech.

Evenevaluatingspeech recognition in the face of simulta-
neous speech is not straightforward. NIST meeting recognition
evaluations in the United States have until recently simplyex-
cluded regions of overlapping speech from word error scoring.
The method used is computationally demanding, since a sin-
gle hypothesized stream of words has to be aligned to multiple
reference streams [12].

2.4. Hearing more than words

A fourth challenge area is to “hear” a speaker’s emotion or state
of being, through speech. Modeling emotion and user state
is particularly important for certain dialog system applications.
For example, in an automated assistance application, one would
want to transfer an angry user to a human. Detecting affect
through speech obviously requires more than just words. De-
spite a growing literature in both linguistics and applied fields,
this area remains a challenge both because it is such an inher-
ently difficult task, and because it is hard to obtain naturalemo-
tion data [25, 1, 7, 2, 37, 8, 35, 42, 6]. Most data comes from
acted speech, which is usually not a good predictor of natural
emotions, and any natural data that is collected has to be la-
beled for emotion, which is difficult for humans to do [1, 42, 6].
Relatively few studies examine the detection of non-acted emo-
tions in a realistic setting, using an automatic dialog system and
automatic speech recognition output.

One exception is a large-scale study of natural emotion in
interaction with a telephone dialog system [1]. The study in-
vestigated both human-human and human-computer agreement
on detection of annoyance and frustration. Automatic detection
was explored for both true and recognized words. In addition
to using features based on lexical and prosodic information, ex-
periments examined the effect of two other types of features
hypothesized to be important in this context: hyperarticulation
(often used after recognition errors) and repeated attempts at
getting the same information (obviously correlated with frus-
tration). These last two feature types were hand-coded, since
the goal was to find out how the features interacted with auto-
matically extracted lexical and prosodic features. Results are
shown in Figure 2.

A number of points can be noted. First, performance is bet-

ter for the more extreme emotions. This is not surprising, but
given the much smaller amount of training data for this task,
the effect is quite large. Second, machine performance against
a second-pass consensus labeling by multiple human labelers is
similar to the agreement obtained over individual labelers. Ma-
chine accuracy is about equal to human agreement when only
prosodic features are used, and it is even better than human
agreement when the additional features are included. Finally,
in this type of data, word information alone (other than the oc-
casional expletive) is a rather poor predictor of emotionalstate.

3. Future Directions

All four phenomena discussed would benefit from improved
basic features, as well as from better methods for integrating
knowledge from different feature types. For both lexical and
prosodic features, another challenge is robustness to speech
recognition errors. To optimize downstream performance inan
application (for example, to best use sentence boundaries for
parsing, or emotion recognition for a tutoring system), it will be
important to preserve multiple hypotheses or use soft decisions.
And for work in multimodal recognition, improvements in all
four areas could come from integration of spoken and visual
information.

The first three phenomena could also benefit from the in-
corporation of longer-range information than is typicallycur-
rently modeled. This applies to both language modeling (where
largely only N-grams are used) and prosodic modeling (where
longer-range features should offer more than local features, but
would also increase the complexity of the search). Another
challenge for these phenomena is to move from the current ten-
dency to treat target events as independent, to techniques that
can model dependencies both within event streams and across
related events.

Finally, a promising area for further work is speaker-
dependent modeling. Recent work in speaker recognition, al-
beit a different task, provides evidence that individuals differ
not only in frame-level acoustics, but also in habitual lexical
and prosodic patterns [34, 23]. Since some of these patternsare
related to the types of features used in modeling the four phe-
nomena discussed here, it is likely that some sort of style-based
adaptation can improve performance in these areas. To take an
example of speaker differences: people vary not only quantita-
tively but also qualitatively in disfluency production [38,17]. A
distinction between “repeaters” (people who tend to produce
more repetitions than deletions or false starts) and “deleter-
s” (people who show the opposite pattern) was found in [38].
Deleters were furthermore faster speakers than repeaters,sug-
gesting that the groups may employ different speaking strate-
gies (with deleters sometimes getting ahead of their thoughts
and having to start anew). Such differences are relevant to tech-
nology applications because repetitions are much easier tohan-
dle in automatic processing than are deletions.

4. Conclusions

This overview described four challenge areas for the automatic
modeling of spontaneous speech. In each area, speakers convey
useful information on multiple levels that is often not modeled
in current speech technology. Greater attention to these chal-
lenges, as well as increased scientific understanding of natural
speaking behavior, should offer long-term benefits for the de-
velopment of intelligent spoken language applications.
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