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Abstract

Spontaneous conversation is optimized for human-human com
munication, but differs in some important ways from the type
of speech for which human language technology is often devel
oped. This overview describes four fundamental propedfes
spontaneous speech that present challenges for spokeratzag
applications because they violate assumptions oftenexppii
automatic processing technology.

1. Introduction

Most of the speech we produce and comprehend each day is
spontaneous. This “speech in the wild” requires no special
training, is remarkably efficient, imposes minimal cogrmti
load, and carries a wealth of information at multiple levels
Spontaneous conversation is optimized for human-human com
munication, but differs in some important ways from the type
of speech for which human language technology is often de-
veloped [33]. This overview describes four fundamentappro
erties of spontaneous speech that present problems foespok
language applications because they violate assumptides of
applied in automatic processing technology. While not nhean
to be exhaustive, the four properties are chosen becauge the
are either pervasive or important to spoken language applic
tions when they do occur, and because they represent difficul
and interesting challenges to speech science and engigeeri
Together they cover a range of phenomena—from lower-level
linguistic structure to higher-level phenomena.

2. Four Fundamental Challenges
2.1. Recovering hidden punctuation

In many formal written languages, punctuation is rendesed e
plicitly. But spoken language is a stream of words, with no
overt lexical marking of the punctuation itself. Insteatirgs-
ing is conveyed through other means, including prosody.[16]
Sentence boundaries and other types of punctuation arelusef
for many types of automatic downstream processing (includ-
ing parsing, information extraction, dialog act modelisgm-
marization, and translation), as well as for human reatabil
[40, 47, 18, 24, 22, 33, 21, 32]. These methods are typically
trained on text data, which contains punctuation. Modeling
sentence-level punctuation can also improve speech rémmgn
performance itself [44, 24].

Historically, speech recognition researchers have taiilt |
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risk of fragmenting words in the process. Speaker changes ar
also often available, especially if speakers are recordedifo
ferent channels. For some applications, if a speaker pexiuc
one sentence at a time (for example, to a dialog system) ihere
typically little problem. But for processing of natural a@msa-
tion, finding the sentence boundaries by machine is a clgalen
Pauses are neither necessary nor sufficient indicatorsmf se
tence boundaries. People often string together senterittes w
out pauses. And conversely, people pause (as during hesgat
or disfluencies) at locations other than sentence boursdarie

Computational models for finding sentence boundaries in
speech typically involve a combination of N-gram language
models (over words and boundary labels) and prosodic elassi
fiers [46, 40]. Knowledge sources are often combined using an
HMM framework. More recently, other model types have been
used successfully, such as maximum entropy models and con-
ditional random fields [31]. Prosodic models have used proba
bilistic classifiers such as decision trees or neural nétsy@and
can be improved by sampling and ensemble techniques [29].
Additional approaches and features are described in [4G]leV
initial research used hand-transcribed words as inputemer
cent work has studied the problems arising from imperfect re
ognizer hypotheses. In particular, work on strategies fmngi
multiple recognition hypotheses appears promising [14].

The tasks described above typically apply to offline pro-
cessing of speech intended for human listeners. But there is
an important application of punctuation detection for oali
human-computer dialog systems: “endpointing”, or detafmi
ing when a speaker has completed an utterance to a system. The
endpointing task has some relationship to turn-taking gécto
discussed further in Section 2.3), but is described heralser
it requires the same basic disambiguation between hesitati
and grammatical pauses that is involved in offline punotuati
work. Most current endpointers wait for a pause that is longe
than some predetermined duration threshold. But this agsum
tion that a pause signals the end of a speaker’s turn is giblat
when the speaker pauses while hesitatating. The challenge i
endpointing, as compared with offline sentence segmentatio
is that endpointing is an online task and must be accomglishe
using information onlybeforethe potential endpoint under con-
sideration.

An approach to reducing cutoffs during hesitation and also
for speeding responses after true utterance ends is dedanib
[9]. The approach models prosodic features occurring kefor
pauses. Not only do these features significantly reducegrem

guage models based on sentences as found in text and thenture cutoffs during hesitations, they also provide a remilé

tried to acoustically segmentthe speechinto senteneeHiks.
This is typically done by chopping at longer pauses and sgreak
changes. Pauses are relatively easy to detect and minih@ze t

reduction of up to 81% for the “average speaker waiting time”
for true utterance ends. Prosodic features such as intonati
add confidence to true ends even before a speaker pauses, thus
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Figure 1: Speaker Waiting Time (SWT) vs. False Alarm Rate (FAR)
for four endpointing systems, from [9]. Systems, orderedfworst to
best performance, are: baseline system (pause-only)dgggmodel
system, prosody system, combined prosody + language mystehs.

shortening the required pause threshold for a given falsenal
rate and speeding the overall interaction.

2.2. Coping with disfluencies

Disfluencies such as filled pauses, repetitions, repaicsfese
starts are frequentin natural conversation. Across marpoca

and languages, disfluencies occur at rates higher than 20ery
words, and can affect up to one third of utterances [38]. Al-
though disfluencies were once viewed as “errors”, a growing
literature on the topic has come to appreciate them as an inte
gral part of natural language and conversation. They rdftettt
cognitive aspects of language production and the managemen
of interaction [26, 38, 5].

Disfluencies are important to model in speech technology
because they cause problems for higher level natural layggua
processing, such as parsing, translation, informatioraetion,
and summarization; they also degrade transcript reathalfdr
humans [47, 11, 3, 21]. In some contexts, modeling disfluen-
cies can also improve speech recognition performance B4, 2
Most of the approachesto the natural language processiig pr
lems are based on training using large amounts of writtety tex
which typically does not contain disfluencies. One stratsgy
thus to detect and then remove (or “clean up”) the disfluencie
prior to further processing.

Detecting filled pauses can be nearly trivial for words such
as “um” in English, if recognition output is correct, but ifid
cult for cases like “uh” (homophonous with “a”), or for words
that can function either as a filler or nonfiller. A common ap-
proach to edit detection is to first detect the interruptiomp
of a disfluency using lexical and prosodic cues, and to then us
other cues to determine the extent of the excision regiorly Ea
work [15] assumed that the interruption point is known and fo
cused on identifying the reparandum and repair regionsd-Fin
ing the interruption point, however, is a nontrivial praflén
itself. Some words, such as filled pauses and editing temas, a
direct evidence, but in general these cues are ambiguous and
more powerful machine learning techniques must be used.

In [13], a statistical model is developed for the correspon-
dence between words in the reparandum and repair regions for
disfluency detection. More recently, a source-channel inode
has been used, together with a tree adjoining grammar [20] or
a statistical model to represent the possibility of a worthtpe
disfluent [17]. Transformation-based learning is anottetad
driven learning paradigm that has been applied to the pmoble
[41]. Finally, the same basic techniques employed for semte

Table 1:Percentage of overlappedspeech units in different coyfamra
words (in plainface) and “spurts” (stretches of speechdoatot con-
tain any pauses greater than 500 msec.; in italics). “MR"tinge are
discussions; “ROB” meetings are directed by a speaker whdymes
60% of all words, and tend toward individual reporting. “CH'Call-
Home (friends and family, real calls); “SWB” = Switchboasrtrangers
paid to discuss prescribed topics).

Meetings Phone convs.
Backchannels MR ROB CH SWB
Included
words 170 88 11.7 120
spurts 544 314 53.0 544
Excluded
words 141 56 7.9 7.8
spurts 464 21.0 388 389

boundary detection have also been applied to process disflue
cies [30].

2.3. Allowing for realistic turn-taking

Spontaneous speech has another dimension of difficultyufor a
tomatic processing when more than one speaker is involved. A
described in classic work on conversation analysis [36h-tu
taking involves intricate timing. In particular, speakdosnot
alternate sequentially in their contributions as oftengasged
by the written rendition of dialog. Rather, listeners pobjtne
end of a current speaker’s turn using syntax, semanticg; pra
matics, and prosody, and often begin speaking before the cur
rent talker is finished [36, 16, 4, 27].

Overlap is frequent not only in corpora like multiparty
meetings, but also in two-party phone conversations, assho
in Table 1 [39]. Overlap rates are high even when backchan-
nels (such as “uh-huh”) are removed from consideration. \Wha
is important is that overlap in two-party phone conversetis
not necessarily lower than in meetings. It is also intenggthat
familiarity with the other talker does not appear to afféet tate
of overlap, since there is no difference in overall ratesveen
the CallHome and Switchboard conversations.

Modeling realistic turn-taking has a fascinating applimat
to dialog system design; some researchers are developing co
versational systems that can mimic human turn-taking by pro
viding backchannelresponses, e.g., [10]. Overlap in taking
also introduces several problems for many current offline au
tomatic speech processing tasks. An obvious difficulty & th
acoustic modeling of simultaneous speakers on a singledeco
ing channel. Relatively little work has focused on this peob
to date, although source separation and auditory scengsimal
techniques may ultimately lead to solutions. In this paper w
focus on the impact of overlap for higher-level phenomena.

One area is language modeling. Conversational speech
recognition work has largely focused on the case in whiclheac
speaker is recorded on a separate channel, and the channel is
modeled separately as an independent stream of words. How-
ever, recent work has shown that conditioning word preaficti
across speakers leads to improvements [19]. The situagen b
comes complicated when, because of overlap, a given word is
immediately preceded by words from both the same and another
speaker. Further complications arise in multiparty megstin
when several other speakers could provide the precedindsvor
to condition on. Lack of strictly sequential turns also esis
problems for the automatic classification of dialog acts.rkVo
has shown that in telephone conversations, the dialog xbnte
(the preceding and following utterances, and who said them)
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Figure 2: Annoyance and frustration detection results for a tele-
phone dialog system, from [1]. Pro = prosody features (aata))
Sty = hyperarticulation-related features (hand-code@)p R repeti-
tion/correction feature (hand-coded). Human agreememnt the more
difficult task (Annoyed+Frustrated vs. Else).

can be an important source of information in disambiguating
dialog acts [43]. The models used for this purpose are tjlpica
sequential (e.g., HMMs), and it is not clear how to best gener
alize them to the case of overlapping speech.

Evenevaluatingspeech recognition in the face of simulta-
neous speech is not straightforward. NIST meeting reciognit
evaluations in the United States have until recently singxy
cluded regions of overlapping speech from word error sgorin
The method used is computationally demanding, since a sin-
gle hypothesized stream of words has to be aligned to meiltipl
reference streams [12].

2.4. Hearing more than words

A fourth challenge area is to “hear” a speaker’'s emotionatest
of being, through speech. Modeling emotion and user state
is particularly important for certain dialog system apations.
For example, in an automated assistance application, oanklwo
want to transfer an angry user to a human. Detecting affect
through speech obviously requires more than just words. De-
spite a growing literature in both linguistics and appliedds,
this area remains a challenge both because it is such an inher
ently difficult task, and because it is hard to obtain natenab-
tion data [25, 1, 7, 2, 37, 8, 35, 42, 6]. Most data comes from
acted speech, which is usually not a good predictor of natura
emotions, and any natural data that is collected has to be la-
beled for emotion, which is difficult for humansto do[1, 42, 6
Relatively few studies examine the detection of non-acited-e
tions in a realistic setting, using an automatic dialogetysand
automatic speech recognition output.

One exception is a large-scale study of natural emotion in
interaction with a telephone dialog system [1]. The study in

ter for the more extreme emotions. This is not surprising, bu
given the much smaller amount of training data for this task,
the effect is quite large. Second, machine performancenagai

a second-pass consensus labeling by multiple human labgler
similar to the agreement obtained over individual labelbta-
chine accuracy is about equal to human agreement when only
prosodic features are used, and it is even better than human
agreement when the additional features are included. Iinal

in this type of data, word information alone (other than tkhe o
casional expletive) is a rather poor predictor of emoticthate.

3. Future Directions

All four phenomena discussed would benefit from improved
basic features, as well as from better methods for integyati
knowledge from different feature types. For both lexicatlan
prosodic features, another challenge is robustness tockpee
recognition errors. To optimize downstream performancann
application (for example, to best use sentence boundanies f
parsing, or emotion recognition for a tutoring system),iit be
important to preserve multiple hypotheses or use soft ierds
And for work in multimodal recognition, improvements in all
four areas could come from integration of spoken and visual
information.

The first three phenomena could also benefit from the in-
corporation of longer-range information than is typicatiyr-
rently modeled. This applies to both language modeling (ethe
largely only N-grams are used) and prosodic modeling (where
longer-range features should offer more than local featumat
would also increase the complexity of the search). Another
challenge for these phenomenais to move from the current ten
dency to treat target events as independent, to technifaes t
can model dependencies both within event streams and across
related events.

Finally, a promising area for further work is speaker-
dependent modeling. Recent work in speaker recognitien, al
beit a different task, provides evidence that individuafeed
not only in frame-level acoustics, but also in habitual daxi
and prosodic patterns [34, 23]. Since some of these patieens
related to the types of features used in modeling the four phe
nomena discussed here, it is likely that some sort of stsket
adaptation can improve performance in these areas. To take a
example of speaker differences: people vary not only gteanti
tively but also qualitatively in disfluency production [387]. A
distinction between “repeaters” (people who tend to preduc
more repetitions than deletions or false starts) and “delet
s” (people who show the opposite pattern) was found in [38].
Deleters were furthermore faster speakers than repeategs,
gesting that the groups may employ different speakingestrat
gies (with deleters sometimes getting ahead of their thtsugh

vestigated both human-human and human-computer agreement @nd having to start anew). Such differences are relevaatto t

on detection of annoyance and frustration. Automatic dietec
was explored for both true and recognized words. In addition
to using features based on lexical and prosodic informa#gn
periments examined the effect of two other types of features
hypothesized to be important in this context: hyperarsitiah
(often used after recognition errors) and repeated attemipt
getting the same information (obviously correlated withsfr
tration). These last two feature types were hand-codedesin
the goal was to find out how the features interacted with auto-
matically extracted lexical and prosodic features. Resale
shown in Figure 2.

A number of points can be noted. First, performance is bet-

nology applications because repetitions are much easiento
dle in automatic processing than are deletions.

4. Conclusions

This overview described four challenge areas for the autioma
modeling of spontaneous speech. In each area, speakeeyconv
useful information on multiple levels that is often not mtmdk

in current speech technology. Greater attention to theak ch
lenges, as well as increased scientific understanding afadat
speaking behavior, should offer long-term benefits for tae d
velopment of intelligent spoken language applications.
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