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Spontaneous speech recognition using a statistical coarticulatory
model for the vocal-tract-resonance dynamics
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A statistical coarticulatory model is presented for spontaneous speech recognition, where knowledge
of the dynamic, target-directed behavior in the vocal tract resonance is incorporated into the model
design, training, and in likelihood computation. The principal advantage of the new model over the
conventional HMM is the use of a compact, internal structure that parsimoniously represents
long-span context dependence in the observable domain of speech acoustics without using
additional, context-dependent model parameters. The new model is formulated mathematically as a
constrained, nonstationary, and nonlinear dynamic system, for which a version of the generalized
EM algorithm is developed and implemented for automatically learning the compact set of model
parameters. A series of experiments for speech recognition and model synthesis using spontaneous
speech data from the Switchboard corpus are reported. The promise of the new model is
demonstrated by showing its consistently superior performance over a state-of-the-art benchmark
HMM system under controlled experimental conditions. Experiments on model synthesis and
analysis shed insight into the mechanism underlying such superiority in terms of the target-directed
behavior and of the long-span context-dependence property, both inherent in the designed structure
of the new dynamic model of speech. ©2000 Acoustical Society of America.
@S0001-4966~00!02911-8#

PACS numbers: 43.72.2p @DOS#

I. INTRODUCTION

Speech recognition technology has achieved significant
success using complex models with their parameters auto-
matically trained from large amounts of data.1 The success
based on such an approach, however, has not been extended
to spontaneous speech, which exhibits a much greater degree
of variability than the less natural speech style for which the
current technology has been successful. For the Switchboard
spontaneous speech recognition task, even with use of hun-
dreds of hours of speech as training data, the state-of-the-art,
hidden Markov model~HMM !-based recognizers still pro-
duce more than one-third of errors in the recognized words.2

In order to capture the overwhelming variability in sponta-
neous, conversational speech, it appears necessary to explore
some underlying structure in the speech patterns. The funda-
mental nature of the current acoustic modeling strategy used
in the current technology is such that it explores only the
surface-level observation data and not their internal structure
or generative mechanisms. Because the variability in sponta-
neous speech is continuously scaled~rather than discretely
scaled!, an infinite amount of surface-level data would be
required, at least in theory, to completely cover such vari-
ability without using structural information.

The research reported in this article represents our recent
efforts in developing structural models for dynamic patterns
of spontaneous speech. The goal of this research is to over-
come the inadequacy of the current speech recognition tech-

nology in accounting for the acoustic variability in spontane-
ous speech, which has been based on ever-expanding the
myriad Gaussian mixture components and HMM states in a
largely unstructured manner.~This has a small number of
exceptions; e.g., Ref. 3.! A particular model we have devel-
oped for this purpose describes the long-term~utterance-
length! context-dependent or coarticulatory effects in spon-
taneous speech in the domain of partially hidden vocal-tract-
resonance~VTR!. The VTR domain is internal to the domain
of surface acoustic observation~such as Mel-frequency cep-
stral coefficients or MFCCs!. This coarticulation modeling is
accomplished via two separate but related mechanisms. First,
the mechanism of duration-dependentphonetic reductional-
lows the VTR variables and the associated surface acoustic
variables to be modified automatically according to the vary-
ing speech rate and hence the duration of the speech units
~e.g., phones!. This modification is physically established ac-
cording to the structured dynamics assigned to the VTR vari-
ables in the model. Second, the ‘‘continuity’’ mechanism at
the utterance level employed in the model constrain the VTR
variables so that they flow smoothly from one segmental unit
to another. Since this continuity constraint is global~i.e.,
temporally across an entire utterance!, long-span coarticula-
tion is accomplished without the need to use explicit context-
dependent units such as triphones.~Use of triphone units is a
main factor contributing to the success of current speech rec-
ognition technology for read-style speech, but at the expense
of requiring unreasonable amounts of training data for the
recognizers’ very large number of free parameters. This as-
pect of the weakness is completely eliminated by the coar-
ticulatory model described in this article.! As a result, the
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number of free parameters for the recognizer and the amount
of data required for training the recognizer are drastically
reduced compared with the conventional HMM-based
speech recognizers

The organization of this article is as follows. In Sec. II,
a detailed description of our new VTR-based statistical coar-
ticulatory model will be provided. The learning algorithm we
have developed for training the model parameters and a scor-
ing algorithm will be presented in Sec. III. A series of ex-
periments conducted for analysis, synthesis, and recognition
of Switchboard spontaneous speech using the new coarticu-
latory model will be reported in Sec. IV. These will include
detailed examinations of the model behavior in fitting the
Switchboard data and of the quality of the spontaneous
speech artificially generated from the model. They also in-
clude some small-scaleN-best rescoring experiments used to
diagnose the cause and nature of the recognition errors, as
well as some large-scaleN-best rescoring experiments,
which provide the performance figures of the new recog-
nizer.

II. A STATISTICAL COARTICULATORY MODEL

In this section, we provide a detailed account of the new
speech model we have developed, including the motivation
for the model development, the mathematical formulation of
the model, and comparisons of the new model with other
types of speech models used in the past.

A. Background, motivation, and model overview

The statistical coarticulatory model presented in this ar-
ticle is a drastic departure from the conventional HMM-
based approach to speech recognition. In the conventional
approach, the variability in observed speech acoustics is ac-
counted for by a large number of Gaussian distributions,
each of which may be indexed by a discrete ‘‘context’’ fac-
tor. The discrete nature of encoding the contextual~or coar-
ticulatory! effect on speech variability leads to explosive
growth of free parameters in the recognizers, and when the
true source of the variability originates from causes of a con-
tinuous nature~such as in spontaneous speech!, this approach
necessarily breaks down. In contrast, the new approach we
have developed focuses directly on the continuous nature of
speech coarticulation and speech variability in spontaneous
speech. In particular, the phonetic reduction phenomenon is
explicitly modeled by a statistical dynamic system in the
domain of the VTR, which is internal to, or hidden from, the
observable speech acoustics. In this dynamic model, the sys-
tem matrix~encompassing the concept of time constants! is
structured and constrained to ensure the asymptotic behavior
in the VTR dynamics within each speech segment.@In the
work reported in this article, we take speech segments as
phones defined in the HMM systems on Switchboard tasks as
used in the 1997 Workshop on Innovative Techniques for
Large Vocabulary Conversational Speech Recognition
~http://www.clsp.jhu.edu/ws97/ws97Igeneral.html!.# Across
speech segments in a speech utterance, a smoothness or con-
tinuity constraint is imposed on the VTR variables. The main
consequence of this constraint is that the interacting factors
of phonetic context, speaking rate, and segment duration at

any local temporal region are in combination exerting their
influences on the VTR variable values~and hence the acous-
tic observations as a noisy nonlinear functions of the VTR
values! anywhere in the utterance. This gives rise to the
property of long-term context dependence in the model with-
out requiring use of context dependent speech units.

Some background work, which leads to the development
of this particular version of the model~i.e., with use of VTRs
as the partially hidden dynamic states!, has been the exten-
sive studies of spontaneous speech spectrograms and of the
associated speech production mechanisms. The spectro-
graphic studies on spontaneous speech have highlighted the
critical roles of smooth, goal-directed formant transitions~in
vocalic segments, including vowels, glides, and liquids! in
carrying underlying phonetic information in the adjacent
consonantal and vocalic segments. The smoothness in for-
mant movements~for vocalic sounds! and in VTR move-
ments~for practically all speech sounds! reflects the dynamic
behavior of the articulatory structure in speech production.
The smoothness is not only confined within phonetic units
but also across them. This cross-unit smoothness or continu-
ity in the VTR domain becomes apparent after one learns to
identify, by extrapolation, the ‘‘hidden’’ VTRs associated
with most consonants, where the VTRs in spectrograms are
either masked or distorted by spectral zeros, wide formant
bandwidths, or by acoustic turbulences. The properties of the
dynamic behavior change in a systematic manner as a func-
tion of speaking style and speaking rate, and the contextual
variations of phonetic units are linked with the speaking style
and rate variations in a highly predictable way.

The VTRs are pole locations of the vocal tract config-
ured to produce speech sounds. They have acoustic corre-
lates of formants which are directly measurable for vocalic
sounds, but often are hidden or perturbed for consonantal
sounds due to the concurrent spectral zeros and turbulence
noises. Hence, formants and VTRs are related but distinct
concepts: the former is defined in the acoustic domain and
the latter is associated with the vocal-tract propertiesper se.
According to the goal-based speech production theory, ar-
ticulatory structure and the associated VTRs necessarily
manifest asymptotic behavior in their temporally smooth dy-
namics. This dynamic component of the overall speech
model for the goal-directed and temporally smooth proper-
ties of the VTRs is called the~continuous! ‘‘state’’ model.

Since the temporal dynamics in the VTR variables is
distorted, or hidden, in the observable acoustic signal, the
overall speech-generative model needs to account for the
physical, ‘‘quantal’’ nature of the distortion.4 This compo-
nent of the model is called the ‘‘observation’’ model. In the
current implementation of the model, the ‘‘observation’’
model for the distortion is constructed functionally by a
static nonlinear function, implemented by artificial neural
networks, mapping from the underlying VTRs to acoustic
observations~MFCCs in the current system!. Since the same
VTRs may produce drastically different MFCCs depending
on whether the VTR~s! are hidden by spectral zero~s! or
other factors, separate networks are used for distinct classes
of speech sounds where each class corresponds to similar
VTR-to-MFCC mappings.~For example, the effects of nasal
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coupling are represented by a neural network separate from
all other non-nasal speech sounds.! Note that this static non-
linear function is clearly separated from the smooth-dynamic
model describing the temporal asymptotic behavior for the
underlying, hidden VTR dynamic variables. This separation
makes it unnecessary, at least in principle, to extract for-
mants from the speech signal in implementing the recog-
nizer. But when formant information is made available with
reliability indicator, this information can be and has been
effectively used to initialize the model’s continuous ‘‘states’’
for the vocalic segments, and has been used in the overall
statistical structure~separate static nonlinear and dynamic
linear components! of the model to facilitate model param-
eter learning.~For example, to diagnose the accuracy of the
state-estimation algorithm, we examine the algorithm’s out-
put with reference to the formants extracted from vocalic
segments in the training data; see Sec. III.!

One key characteristic of this model is the elimination of
the need to enumerate contextual factors such as triphones.
The contextual variations are automatically built into the
goal-directed, globally smooth dynamic ‘‘state’’ equations
governing the VTR movements during speech utterances.
Moreover, the contextual variations are integrated into
speaking rate variations which are controlled by a small
number of shared dynamic model parameters. The sharing is
based on physical principles of speech production.

To provide an overview, we have proposed a new coar-
ticulatory speech model, which consists of two separate com-
ponents. They accommodate separate sources of speech vari-
ability. The first component has a smooth dynamic property,
and is linear but nonstationary. The nonstationarity is de-
scribed by left-to-right regimes corresponding to sequentially
organized phonological units such as context-independent
phones. Handling nonstationarity in this way is very close to
the conventional HMMs; but for each state~discrete as in the
HMM !, rather than having an i.i.d. process, the new model
has a phonetic-goal-directed linear dynamic process with the
physically meaningful entity of continuous state variables.
Equipped with the physical meaning of the state variables
~i.e., VTRs in the current version of the model!, variability
due to phonetic contexts and to speaking styles is naturally
represented in the model structure with duration-dependent
physical variables and with global temporal continuity of
these variables. This contrasts with the conventional HMM
approach where the variability is accounted for in a largely
unstructured manner by accumulating an ever-increasing
model size in terms of the number of Gaussian mixture com-
ponents.~The increase in the model size is blocked only by
use of decision-tree based methods, at the expense of sacri-
ficing modeling accuracy.! The second component, the ob-
servation model, is static and nonlinear. This lower-level
component in the speech generation chain handles other
types of variability including spectral tilts, formant band-
widths, relative formant magnitudes, frication spectra, and
voice source differences. The two components combined
form a nonstationary, nonlinear dynamic system whose
structure and properties are well understood in terms of the
general process of human speech production.

B. Mathematical formulation

The coarticulatory speech model with its overview pro-
vided in the preceding subsection has been formulated in
statistical and mathematical terms as a constrained and sim-
plified nonlinear dynamic system. This is a special version of
the general statistical hidden dynamic model described in
Refs. 5 and 6 using the EM implementation technique.@The
special structure of the model was also motivated by the
speech production model of Ref. 7 based on articulatory ges-
tural representations. While our model structure is much sim-
plified from that of Ref. 7, the new statistical formulation of
the model~rather than a deterministic model in Ref. 7! gives
its power for use in speech recognition that no previous de-
terministic model is capable of. Another novelty of our
model is its use of vocal tract resonances, rather than vocal
tract constrictions, as the dynamic, hidden state variable.
This makes it much easier to implement the model and the
related recognizer.#

The dynamic system model consists of two separate but
related components:~1! state equation and~2! observation
equation, which are described below.

1. State equation

A noisy, causal, and linear first-order ‘‘state’’ equation
is used to describe the three-dimensional~F1, F2, and F3!
VTR dynamics according to

Z~k11!5F jZ~k!1~ I 2F j !Tj1Wd~k!, j 51,2,...,JP ,
~1!

whereZ(k) is the three-dimensional ‘‘state’’ vector at dis-
crete time stepk, F j andTj are the system matrix and goal
~or target! vector associated with dynamic regimej which is
related to the initiation of dynamic patterns in phonej, and
JP is the total number of phones in a speech utterance.~See
a derivation of this discrete-time state equation from the
continuous-time system in Ref. 5. This is a first-order system
since its state has a time lag of one only in the system defi-
nition.! Both F j and Tj are a function of timek via their
dependence on dynamic regimej, but the time switching
points are not synchronous with the phone boundaries.
~Throughout this article, we define the phone boundary as
the time point when the phonetic feature of manner of articu-
lation switches from one phone to its next adjacent phone.
The dynamic regime often starts ahead of the phone bound-
ary in order to initiate the dynamic patterns of the new
phone. This is sometimes called ‘‘look-ahead’’ or anticipa-
tory coarticulation.! The time scale for evolution of dynamic
regimej is significantly larger than that for time framek. In
Eq. ~1!, Wd(k) is the discrete-time state noise, modeled by
an i.i.d., zero-mean, Gaussian process with covariance matrix
Q. @Diagonal covariance matrixQ has been used in the cur-
rent model, independent of phones~i.e., Q is tied across all
phones!.#

The special structure in the state equation, which is lin-
ear in the state vectorZ(k) but nonlinear with respect to its
parametersF j andTj , in Eq. ~1! gives rise to two significant
properties of the VTRs modeled by the state vectorZ(k).
The first property is local smoothness; i.e., the state vector
Z(k) is smooth within the dynamic regime associated with
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each phone. The second, attractor or saturation, property is
related to the target-directed, temporally asymptotic behavior
in Z(k). This target-directed behavior of the dynamics de-
scribed by Eq.~1! can be seen by settingk→`, which forces
the system to enter the local, asymptotic region whereZ(k
11)'Z(k). With the assumption of mild levels of noise
Wd(k), Eq. ~1! then directly gives the target-directed behav-
ior in Z(k): Z(k)→Tj .

An additional significant property of the state equation is
the left-to-right structure in Eq.~1! for j 51,2,...,JP and the
related global-smoothness characteristics. That is, the local
smoothness in state vectorZ(k) is extended across each pair
of adjacent dynamic regimes, makingZ(k) continuous or
smooth across an entire utterance. This continuity constraint
is implemented in the current model by forcing the state
vectorZ(k) at the end of dynamic regimej to be identical to
the initial state vector for dynamic regimej 11. That is, the
Kalman filter which implements optimal state estimation~see
details in Sec. III! for dynamic regimej 11 is initialized by
the Z(k) value computed at the end of dynamic regimej.

2. Observation equation

The observation equation in the dynamic system model
developed is nonlinear, noisy, and static, and is described by

O~k!5h~r !@Z~k!#1V~k!, ~2!

where the acoustic observationO(k) is MFCC measure-
ments computed from a conventional speech preprocessor,
and V(k) is the additive observation noise modeled by an
i.i.d., zero-mean, Gaussian process with covariance matrixR,
intended to capture residual errors in the nonlinear mapping
from Z(k) to O(k). ~Again, diagonal covariance matrixR
has been used in the current model independent of phones.!
The multivariate nonlinear mapping,h(r )@Z(k)#, is imple-
mented by multiple switching MLPs~multi-layer percep-
tions!, with each MLP associated with a distinct manner~r!
of articulation of a phone. A total of ten MLPs~i.e., r
51,2,...,10! are used in the experiments reported in this ar-
ticle.

The nonlinearity is necessary because the physical map-
ping from VTR frequencies@Z(k)# to MFCCs @O(k)# is
highly nonlinear in nature. The noise used in the model Eq.
~2! captures the effects of VTR bandwidths~i.e., formant
bandwidths for vocalic sounds! and relative VTR amplitudes
on the MFCC values. These effects are secondary to the
VTR frequencies but they nevertheless contribute to the vari-
ability of MFCCs. Such secondary effects are quantified by
the determinant of matrixR, which, in combination with the
relative size of the state noise covariance matrixQ, plays
important roles in determining relative amounts of state pre-
diction and state update in the state estimation procedure.

In implementing the nonlinear functionh@Z(k)# ~omit-
ting indexr for clarity henceforth! in Eq. ~2!, we used a MLP
network of three linear input units@Z(k) of F1, F2, and F3#,
of 100 nonlinear hidden units, and of 12 linear output units
@O(k) of MFCC1-12#. Denoting the MLP weights from in-
put to hidden units aswjl , and the MLP weights from hidden
to output units asWi j , we have

hi~Z!5(
j

Wi j •gj S (
l

wjl •Zl D , ~3!

wherei 51,2,...,12 is the index of output units~i.e., compo-
nent index of observation vectorOk!, j 51,2,...,100 is the
index of hidden units, andl 51,2,3 is the index of input
units. In Eq.~3!, the hidden units’ activation function is the
standard sigmoid function

g~x!5
1

11exp~2x!
~4!

with its derivative

g8~x!5g~x!„12g~x!…. ~5!

The Jacobian matrix for Eq.~3!, which will be needed
for the extended Kalman filter~EKF; see Sec. III A 3!, can be
computed in an analytical form:

Hz~Z![
d

dZ
h~Z!5@Hil ~Z!#5S ]h1

]Z1

]h1

]Z2

]h1

]Z3

]h2

]Z1

]h2

]Z2

]h2

]Z3

] ] ]

]h12

]Z1

]h12

]Z2

]h12

]Z3

D ~6!

where

Hil ~Z!5(
j

Wi j gF(
l

wjl g~Zl !GF12gS (
l

wjl g~Zl ! D Gwjl .

The use of the Jacobian above is motivated by the need to
linearize the observation equation so that the KF equations
can be applied.

C. Comparison with other models

The mathematical model described earlier in this section
can be viewed as a significant extension of the linear dy-
namic system model as a thus-far most general formulation
of stochastic segment models for speech described in Ref. 8
and 9. The extension is in the following six major aspects.
First, while maintaining linearity in the state equation, the
observation equation is extended to a nonlinear one with use
of physically motivated nonlinear functions. Second, special
structures are built into the state equation to ensure the
target-directed property. Third, a physically motivated ‘‘glo-
bal’’ continuity constraint is imposed on the state variable
across phone-correlated dynamic regimes, to provide the
long-span context-dependent modeling capability. This
makes the current model not just a ‘‘segment’’ model as
defined mathematically in Ref. 9, but a ‘‘supersegment’’
model where the correlation structure in the model extends
over an entire speech utterance. Fourth, the continuous state
variable is endowed with a physically meaningful entity in
the realistic speech process~i.e., VTRs!, which allows spe-
cial structures to be built into the state equation and which
has been instrumental in the model development~especially
in model initialization, learning, and diagnosis!. In contrast,
in the linear dynamic system model described in Refs. 8 and
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9, the continuous state variable was treated merely as a
smoothed version of the noisy acoustic observation. Fifth,
due to the introduction of nonlinearity in the observation
equation and of the structural constraints in the state equa-
tion, the model learning and scoring algorithms described in
Refs. 8 and 9 have been substantially extended. Finally, due
to the compact structure in the current model for speech
coarticulation and its elimination of explicit context-
dependent units such as triphones, very small amounts of
training data are needed for model parameter learning. In
contrast, the model described in Refs. 8 and 9 still requires as
much training data as the conventional HMM-based recog-
nizers.

Compared with other models of speech developed ear-
lier in our laboratory, the current model offers several sig-
nificant advantages. The articulatory-dynamic model and
task-dynamic model described in Refs. 10–12 all have the
dynamic state variables completely hidden~i.e., unobserv-
able!. In the case of articulatory-dynamic model, the state
variables are articulatory parameters, and in the case of the
task-dynamic model, the state variables are vocal tract con-
striction parameters. The current model uses VTRs as the
partially hidden state variables, which are observable for vo-
calic sounds. In addition to the smaller dimensionality in the
dynamic system state~three versus a dozen or so!, use of the
partially observable VTRs as the system state has been criti-
cally important in the model development~model learning
and diagnosis! and in the recognizer implementation. Fur-
ther, use of the learnable MLP architecture for the observa-
tion equation provides significant implementation advantages
over the earlier use of codebook methods. The acoustic-
dynamic models described in Refs. 13–15, on the other
hand, lack the physically meaningful internal dynamics,
which is capable of piecing together phones in an utterance.
Hence, despite the simplicity in the model development and
recognizer implementation, it still requires explicit context-
dependent units and therefore a large amount of training
data. It shares similar weaknesses to those in the model de-
scribed in Refs. 8 and 9.

The current model shares similar motivations and phi-
losophies of other work aiming at developing better, more
compact coarticulatory models than the HMM. The models
described in Refs. 16–19 have all used fully hidden internal
dynamics, similar to the models described in Refs. 10–12.
Some models explicitly use articulatory parameters as the
dynamic variable~e.g., Ref. 16!, others use more abstract,
automatically extracted variables for the purpose of model-
ing coarticulation~e.g., Refs. 17–19!. One main difference
between these and the model described in this article lies in
mathematical formulation of the models. The models de-
scribed in Refs. 16, 17, and 19 are largely deterministic,
where the outputs of the models need to be explicitly syn-
thesized and compared with the unknown speech in order to
reach recognition decision. In contrast, the statistical nature
of the current model permits likelihood-score computation
against the unknown speech~similar to the conventional
HMM formulation in this aspect! directly from the model
parameters where the model synthesis is only carried out
implicitly. In addition, the deterministic and statistical na-

tures render the models with different learning criteria and
hence different learning algorithms.

III. LEARNING AND LIKELIHOOD-SCORING
ALGORITHMS

In this section, we will describe the learning and
likelihood-scoring algorithms we have developed for the sta-
tistical coarticulatory model for fixed dynamic regimes~seg-
mentations!. These algorithms enable the training of the rec-
ognizer and the use of the recognizer for rescoringN-best
hypotheses.

A. Learning algorithm

The learning or parameter estimation method for the
new speech model is based on the generalized EM algorithm.
The EM algorithm is a two-step iterative scheme for maxi-
mum likelihood parameter estimation. Each iteration of the
algorithm involves two separate steps, called the expectation
step ~E-step! and the maximization step~M-step!, respec-
tively. A formal introduction of the EM algorithm appeared
in Ref. 20. Examples of using the EM algorithm in speech
recognition can be found in Refs. 8, 13, and 19. The algo-
rithm guarantees an increase~or strictly speaking, nonde-
crease! of the likelihood upon each iteration of the algorithm
and guarantees convergence of the iteration to a stationary
point for an exponential family. Use of local optimization,
rather than the global optimization, in the M step of the
algorithm gives rise to the generalized EM algorithm.

To derive the EM algorithm for the new model, we first
use the i.i.d. noise assumption forWd(k) and V(k) in Eqs.
~1! and ~2! so as to express the log-likelihood for acoustic
observation sequenceO5@O(1),O(2),...,O(N)# and hid-
den task-variable sequenceZ5@Z(1),Z(2),...,Z(N)# as

logL~Z,O,Q!

52
1

2 (
k50

N21

$ log uQu1@Z~k11!2FZ~k!2~ I 2F!T#8

3Q21@Z~k11!2FZ~k!2~ I 2F!T#%

2
1

2 (
k51

N

$ log uRu1@O~k!2h„Z~k!…#8R21

3@O~k!2h~Z~k!!#%1const,

where superscript8 denotes matrix transposition, and the
model parametersQ to be learned include those in the state
equation~1! and those in the MLP nonlinear mapping func-
tions Eq. ~2!: Q5$T,F,Wi j ,wjl ,i 51,2,...,I ; j 51,2,...,J; l
51,2,...,L%. ~To simplify the algorithm description without
loss of generality, estimation of additional model parameters
of covariance matricesQ, R for state and observation noises
will not be addressed in this article. Also, the dynamic-
regime index on parametersT, F and the phone-class index
on parametersWi j , wjl are dropped because supervised
learning is used. In the current model implementation,I
53, J5100,L512.!
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1. E-step

The E-step of the EM algorithm involves computation of
the following conditional expectation~together with a set of
related sufficient statistics needed to complete evaluation of
the conditional expectation!:

Q~Z,O,Q!5E$ logL~Z,O,Q!uO,Q%

52
N

2
log uQu2

N

2
log uRu

2
1

2 (
k50

N21

E@ek18 Q21ek1uO,Q#

2
1

2 (
k51

N

E@ek28 R21ek2uO,Q#,

where ek15Z(k11)2FZ(k)2(I 2F)T and ek25O(k)
2h(Z(k)), andE denotes conditional expectation on obser-
vation vectorsO.

This can be simplified, by substituting the optimal val-
ues of covariance matrix estimates, to

~7!

~For detailed derivation, see Ref. 21.! Note that the state-
equation’s parameters (F,T) are contained inQ1 only and
the MLP weight parameters (Wi j ,wjl ) in the observation
equation are contained inQ2 only. These two sets of param-
eters can then be optimized independently in the subsequent
M-step to be detailed in Sec. III A 2.

2. M-step

The M-step of the EM algorithm aims at optimizing the
Q function in Eq. ~7! with respect to model parametersQ
5$T,F,Wi j ,wjl %. For the model at hand, it seeks solutions
for

]Q1

]F
} (

k50

N21

EF ]

]F
$@Z~k11!2FZ~k!

2~ I 2F!T#2%UO,QG50, ~8!

]Q1

]T
} (

k50

N21

EF ]

]T
$@Z~k11!2FZ~k!
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Equation~8! is a third-order nonlinear algebraic equa-
tion ~in F andT!, of the following form after some algebraic
and matrix-calculus manipulation:

NFTT82FTA82FAT82NTT82TA8

1BT81FC2D50, ~12!

where
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Equation~9! is another third-order nonlinear algebraic
equation~in F andT! of the form

NF8FT2F8FA2NF8T2NFT1F8B

1FA1NT2B50. ~13!

The coefficients in Eqs.~12! and ~13!, A, B, C, andD,
constitute the sufficient statistics, which can be obtained by
the standard technique of EKF~see Sec. III A 3!.

Solutions to Eqs.~10! and~11! for finding (Wi j ,wjl ) to
maximizeQ2 in Eq. ~7! have to rely on approximation due to
the complexity in the nonlinear functionh(Z). The approxi-
mation involves first finding estimates of hidden variables
Z(k), Z(kuk), via the EKF algorithm. Given such estimates,
the conditional expectations in Eqs.~10! and ~11! are ap-
proximated to give

]Q2

]Wi j
}(

k51

N

@O~k!2h~Z~kuk!!#8
]h„Z~kuk!…

]Wi j
, ~14!

]Q2

]wjl
}(

k51

N

@O~k!2h~Z~kuk!!#8
]h„Z~kuk!…

]wjl
. ~15!

If the estimated state variable,Z(kuk), is treated as the
input to the MLP neural network defined in Eq.~3!, and the
observation,O(k), as the output of the MLP, then the gra-
dients expressed in Eqs.~14! and~15! are exactly the same as
those in the backpropagation algorithm.22 Therefore, the
backpropagation algorithm is used to provide the estimates
to Wi j and wjl parameters. The local-optimum property of
the backpropagation algorithm in this M-step makes the
learning algorithm described in this section a generalized
EM. The approximation used to obtain the gradients in Eqs.
~14! and ~15! makes the learning algorithm a pseudo-EM.
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3. Extended Kalman filter for finding sufficient
statistics

We have observed that in the E-step derivation of the
EM algorithm shown in this section, the objective functions
Q1 and Q2 in Eq. ~7! contain a set of conditional expecta-
tions as sufficient statistics. These conditional expectations,
A, B, C, andD in Eqs. ~12! and ~13!, need to be computed
during the M-step of the EM algorithm. The extended Kal-
man filter or EKF algorithm provides a solution to finding
these sufficient statistics.~We have also implemented an ex-
tended Kalman smoothing algorithm which is expected to
provide more accurate solutions. But in this work we have
empirically observed no practical differences from the EKF.
In this article we only describe the EKF method used.! Also,
as shown in Sec. III A 2, the EKF algorithm is also needed to
approximate the gradients in Eqs.~10! and ~11!, before the
M-step can be formulated as the backpropagation algorithm
and can be carried out straightforwardly.

The EKF algorithm gives an approximate minimum-
mean-square estimate to the state of a general nonlinear dy-
namic system. Our speech model discussed in Sec. II B uses
a special structure within the general class of the nonlinear
dynamic system models. Given such a structure, the EKF
algorithm developed is described here in a standard
predictor-corrector format.23,24

Denoting by Ẑ(kuk) the EKF state estimate and by
Ẑ(k11uk) the one-step EKF state prediction, the prediction
equation for the special structure of our model has the form

Ẑ~k11uk!5FẐ~kuk!1~ I 2F!T. ~16!

The physical interpretation of Eq.~16! applied to our speech
model is that the one-step EKF state predictor based on the
current EKF state estimate will always move towards the
target vectorT for a given system matrixF. Such desirable
dynamics comes directly from state equation~1!, and it is, in
fact, in exactly the same form as the noise-free model state
equation.

Denote byHz„Ẑ(k11uk)… the Jacobian matrix, as de-
fined in Eq. ~6!, at the point ofẐ(k11uk) for the MLP
observation equation in our speech model, and denote by
h„Ẑ(k11uk)… the MLP output for the inputẐ(k11uk). Then
the EKF corrector~or filter! equation applied to our speech
model is

Ẑ~k11uk11!5Ẑ~k11uk!1K~k11!

3$O~k11!2h„Ẑ~k11uk!…%, ~17!

where K(k11) is the filter gain computed recursively ac-
cording to

K~k11!5P~k11uk!Hz@ Ẑ~k11uk!#

3$Hz@ Ẑ~k11uk!#P~k11uk!Hz

3@ Ẑ~k11uk!#81R~k11!%21,

P~k11uk!5FP~kuk!F81Q~k!, ~18!

P~k11uk11!5$I 2K~k11!Hz

3@ Ẑ~k11uk!#%P~k11uk!.

In the above,P(k11uk) is the prediction error covariance
andP(k11uk11) is the filtering error covariance.

The physical interpretation of Eq.~17! as applied to our
speech model is that the amount of correction to the state
predictor obtained from Eq.~17! is directly proportional to
the accuracy with which the MLP is used to model the rela-
tionship between the stateZ(k) or VTRs and the observation
O(k) or MFCCs.@Correction is necessary because the pre-
dictor obtained from Eq.~16! is based solely on the system
dynamics discarding the actual observation. Use of the actual
observation will improve the accuracy of the state estima-
tion.# Such a matching error in the acoustic domain~called
innovation in estimation theory24! is magnified by the time-
varying filter gainK(k11), which is dependent on the bal-
ance of the covariances of the two noisesQ andR, and on the
local Jacobian matrix which measures the sensitivity of the
nonlinear functionh(Z) represented by the MLP.

In using the EM algorithm to learn the model param-
eters, we require that all the conditional expectations~suffi-
cient statistics! for the coefficientsA, B, C andD in Eq. ~13!
be reasonably accurately evaluated. This can be accom-
plished, once the EKF’s outputs become available, according
to

E@Z~k!uO#5Ẑ~kuN!'Ẑ~kuk!,

E@Z~k11!uO#5Ẑ~k11uN!'Ẑ~k11uk11!,

E@Z~k!Z~k!8uO#5P~kuN!1Ẑ~kuN!Ẑ~kuN!8

'P~kuk!1Ẑ~kuk!Ẑ~kuk!8,

E@Z~k11!Z~k!8uO#5P~k11,kuN!1Ẑ~k11uN!Ẑ~kuN!8

'P~k11,kuk11!

1Ẑ~k11uk11!Ẑ~kuk!8.

All the quantities on the right-hand sides of the above are
computed directly from the EKF recursion Eqs.~16!–~18!,
except for the quantityP(k11,kuk11), which is computed
separately according to

P~k11,kuk11!

5@ I 2K~k11!Hz„Ẑ~k11uk11!…#FP~kuk!.

It is noted that while the EM algorithm requires Kalman
smoothing which takes into account the complete acoustic
observation sequences, we found no practical differences
with the use of Kalman filtering taking account of only the
previous observations. In other words, we used the EKF to
approximate the corresponding smoothing algorithm in com-
puting all the sufficient statistics required by the EM algo-
rithm.

B. Likelihood-scoring algorithm for recognizer testing

In addition to the use of the EKF algorithm in the model
learning as discussed so far, it is also needed in the
likelihood-scoring algorithm~during the recognizer testing
phase! which we discuss now.

Using the basic estimation theory for dynamic systems
~cf. Theorem 25-1 in Ref. 24; see also in Ref. 8!, the log-
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likelihood scoring function for our speech model can be
computed from the approximate innovation sequence
Ō(kuk21) according to

logL~OuQ!52
1

2 (
k51

N

$ log uPŌŌ~kuk21!u1Ō~kuk21!8

3P
ŌŌ

21
~kuk21!Ō~kuk21!%1const, ~19!

where the approximate innovation sequence

Ō~kuk21!5O~k!2h„Ẑ~kuk21!…, k51,2,...,N

is computed from the EKF recursion, andPŌŌ is the cova-
riance matrix of the approximate innovation sequence:

PŌŌ~kuk21!5Hz„Ẑ~kuk21!…P~kuk21!

3Hz„Ẑ~kuk21!…81R,

which is also computed from the EKF recursion.
For a speech utterance which consists of a sequence of

phones with the dynamic regimes given, the log-likelihood
scoring functions for each phone in the sequence as defined
in Eq. ~19! are summed to give the total log-likelihood score
for the entire speech utterance.

IV. SPEECH RECOGNITION, SYNTHESIS, AND
ANALYSIS EXPERIMENTS

In this section, we will report a series of experiments
conducted for analysis, synthesis, and recognition of Switch-
board spontaneous speech using the statistical, VTR-based
coarticulatory model presented so far. After introducing the
experimental paradigm and the design parameters of the new
recognizer, we will first report a set of small-scaleN-best
rescoring speech recognition experiments, which permits
analysis of the model behavior by manipulating some hand-
tuned variables. We will then evaluate the performance of
the new recognizer in a set of large-scaleN-best rescoring
experiment, and compare the performance figures with the
conventional triphone HMM-based speech recognizer under
similar conditions. Finally, we will present some model-
synthesis results and give detailed examinations of the model
behavior in fitting the Switchboard data and of the quality of
the spontaneous speech artificially generated from the model.
Such analysis and synthesis experiments serve to explain
why the new coarticulatory model is doing the right job in
‘‘locking into’’ the correct transcription but at the same time
it can ‘‘break away’’ from partially correction transcriptions
due to contextual influences.

A. Experimental paradigm, HMM benchmark system,
and design parameters of the VTR recognizer

In all the experiments reported in this article, we used an
N-best list rescoring paradigm, according to the scoring al-
gorithm Eq.~19!, to evaluate the new recognizer based on
the VTR-based coarticulatory model on the Switchboard
spontaneous speech data. TheN-best list of word transcrip-
tion hypotheses and their phone-level segmentation~i.e.,
alignment! are obtained from a conventional triphone-based
HMM which also serves as the benchmark to gauge the rec-
ognizer performance improvement via use of the new speech

model. The reasons for using the limitedN-best rescoring
paradigm in the current experiments are mainly due to com-
putational ones.

The benchmark HMM system used in our experiments is
one of the best systems developed earlier@see http://
www.clsp.jhu.edu/ws97/ws97Igeneral.html!#, and it has been
described in some detail in Refs. 19 and 25. Briefly, the
system has word-internal triphones clustered by a decision
tree, with a bigram language model. The total number of the
parameters in this benchmark HMM system is approximately
3 276 000, which can be broken down to the product of~1!
39, which is the MFCC feature vector dimension;~2! 12,
which is the number of Gaussian mixtures for each HMM
state; ~3! 2, which includes Gaussian means and diagonal
covariance matrices in each mixture component; and~4!
3500, which is the total number of the distinct HMM states
clustered by the decision tree.

In contrast, the total number of parameters in the new
recognizer is considerably smaller. The total 15 252 param-
eters in the recognizer consists of those from target param-
eters 42335126, those from diagonal dynamic system ma-
trices 42335126, and those from MLP parameters 103100
3~1213!515 000. These numbers are elaborated later while
detailing several essential implementation aspects of the rec-
ognizer.

First, we choose a total of 42 distinct phonelike symbols,
including 8 context-dependent phones, each of which is in-
tended to be associated with a distinct three-dimensional~F1,
F2, and F3! vector-valued target (Tj ) in the VTR domain.
The phonelike symbol inventory and the VTR target values
used to initialize the model training discussed in Sec. III A
are based on the Klatt synthesizer setup.26 The values are
slightly adjusted by examining some spectrograms of the
Switchboard training data. Among the 42 phonelike symbols,
34 are context independent. The remaining eight are context
dependent because their target VTRs are affected by the an-
ticipatory tongue position associated with the following
phone.

The next set of model parameters is the elements in the
42 distinct diagonal dynamic system matrices (F j ). Before
the training, they are initialized based on the consideration
that the articulators responsible for producing different
phones have different intrinsic movement rates. This differ-
ence roughly translates to the difference in the VTR move-
ment rates across the varying phones. For example, the VTR
transitions for labial consonants~/b/, /m/, /p/! marked by
‘‘Lips’’ features are significant faster than those for alveolar
consonants~/d/, /t/, /n/! marked by ‘‘Tongue-Blade’’ fea-
tures. The VTR transitions for both labial and alveolar con-
sonants are faster than those for velar consonants~marked by
‘‘Tongue Dorsum’’ features! and those of vowels marked
also by the ‘‘Tongue Dorsum’’ features.~We found that after
the model training, the differences in the elements of the
system matrices are largely retained from the initialization
across the phone classes. However, their values have been
changed after the training.!

The final set of model parameters in the recognizer are
the MLP weights,Wi j andwjl , responsible for the VTR-to-
MFCC mapping. Unlike the target and system matrix param-
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eters which are phone dependent, we tie the MLPs approxi-
mately according to the distinct classes of manner of
articulation~and voicing!. Such tying reduces the MLP noise
resulting from otherwise too many independently trained
MLPs. On the other hand, by not tying all phones into one
single MLP, we also ensure effective discrimination of
phones using differential nonlinear mapping~from the
smoothed physical VTR state variables to the MFCCs! even
if the VTR targets are identical for different phones~a few
phones have nearly identical VTR targets!. The ten classes
resulting from the tying and used in the current recognizer
implementation are~1! aw, ay, ey, ow, oy, aa, ae, ah, ao, ax,
ih, iy, uh, uw, er, eh, el;~2! l, w, r, y; ~3! f, th, sh;~4! s, ch;
~5! v, dh, zh;~6! z, jh; ~7! p, t, k; ~8! b, d, g;~9! m, n, ng, en;
and ~10! sil, sp.

In the above tying scheme, all vowels are tied using one
MLP, because vowel distinction is based exclusively on dif-
ferent target values in the VTR domain. Here /s/ and /sh/ are
associated with separate MLPs, because their target VTR
values ~not observable in the acoustic domain because of
concurrent zeros and large VTR bandwidths! are similar to
each other@This can be seen in terms of their similar ways in
attracting the VTR~formant! transitions from the adjacent
phones.# Hence their distinction will be based mainly on the
different VTR-to-MFCC mappings. In this case, the acoustic
difference between these two phones in terms of the greater
amount of energy at lower frequency for /sh/ than for /s/ is
captured by different MLP weights~which are trained auto-
matically!, rather than by differential VTR target values
since the behavior of attracting adjacent phones’ VTR tran-
sitions is similar between /s/ and /sh/.

Now for each of the 10 distinct MLPs, we use 100~non-
linear! hidden units, 3~linear! input units, and 12~linear!
output units. This gives a total of 1031003~3112! MLP
weight parameters.

B. Experiments on small-scale N-best rescoring

In this set of experiments, we train the VTR-based
model with the design parameters outlined above using
speech data from a single male speaker in the Switchboard
data. A total of 30 min of the data are used which consist of
several telephone conversations. Due to the use of only a
single speaker, we avoid normalization problems for both the
VTR targets and for the MFCC observations.

We randomly selected 18 utterances~sentences! in one
conversation as the test data from the same speaker that are
disjoint from the training set. For these 18 utterances, an
N-best list withN55 is generated, together with the phone
alignments for each of the five-best hypotheses, by the
benchmark HMM system. We then add the reference~cor-
rect! hypothesis together with its phone alignments into this
list, making a total of six~‘‘ref 15’’ ! hypotheses to be res-
cored by the VTR recognizer.

Under the identical conditions set out above, we rescore
these 18 utterances using the following three recognizers
with the language model removed:~1! benchmark triphone
HMM; ~2! VTR model using automatically computed phone
alignments~which determine the VTR dynamic regimes for
each constituent phone! by the HMM for all the six hypoth-

eses; and~3! VTR model using manually determined ‘‘true’’
dynamic regimes for the reference hypothesis according to
spectrogram reading. A performance comparison of these
three recognizers is shown in Table I. Two performance
measures are used in this comparison. First, among the 18
test utterances we examine the percentage when the correct,
reference hypothesis scores higher than all the remaining five
hypotheses. Second, we directly compute the word error rate
~WER! using the standard NIST scoring software. The new,
VTR-based recognizers are consistently better than the
benchmark HMM, especially when the ‘‘true’’ dynamic re-
gimes are provided and in this case the performance is con-
siderably better.

We conduct a similar experiment to the above, using the
same recognizers trained from a single male but choosing a
separate male speaker’s ten utterances as the test data. Again,
as shown in Table II, the VTR-based recognizer with the
‘‘true’’ dynamic regimes gives significantly better perfor-
mance than the others.

These experiments demonstrate superior performance of
the VTR-based coarticulatory model, when exposed to the
reference transcriptions. They also highlight the importance
of providing the true or optimal dynamic regimes to the
model. Automatic searching for the optimal dynamic re-
gimes is a gigantic computational problem and has not been
addressed by the work reported in this article.

C. Experiments on large-scale N-best rescoring

In the large-scale experiments, we keep the same recog-
nizers trained from a single male speaker but significantly
increase the size of the test set. All the male speakers from
the WS’97 DevTest are selected, resulting in a total of 23
male speakers comprising 24 conversation sides~each side
has a distinct speaker!, 1241 utterances~sentences!, 9970
words, and 50 min of speech as the test data. Because of the
large test set and because of lack of an efficient method to
automate the optimization of the VTR-model dynamic re-
gimes, we report in this section only the performance com-
parison between the benchmark HMM recognizer and the
VTR recognizer with dynamic regimes suboptimally derived
from the HMM phone alignments. In Table III, we provide
the performance comparison for the ‘‘ref15’’ mode, and for

TABLE I. Performance comparison of three recognizers for 18 utterances
with the same speaker in training and testing~ref15!.

Benchmark
HMM

VTR
~HMM align!

VTR
~true align!

% Reference-at-top 37.0% 38.8% 50.0%
Average word error rate 39.2% 30.4% 22.8%

TABLE II. Performance comparison of three recognizers for ten utterances
with separate speakers in training and testing~ref15!.

Benchmark
HMM

VTR
~HMM align!

VTR
~true align!

% Reference-at-top 30.0% 40.0% 50.0%
Average word error rate 27.0% 25.7% 9.2%
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the additional ‘‘ref1100’’ mode where theN-best list con-
tains 100 hypotheses. In Table III, we also add the
‘‘Chance’’ performance which is used to calibrate the recog-
nizers’ performance. The chance WER is computed by en-
semble averaging the WERs obtained by having a recognizer
randomly choosing one hypothesis from the six possible
ones~for the ref15 mode orN55! or from the 101 possible
ones ~for the ref1100 mode orN5100!. For both theN
55 andN5100 cases, the VTR recognizer performs signifi-
cantly better than the benchmark HMM recognizer, which is
slightly better than the chance performance.

More detailed results of the above experiment for the
VTR recognizer are shown in Table IV, where the average
WER is shown as a function ofN in the N-best list.

We also conduct the same experiment as shown in Table
III except no reference transcription is added into theN-best
list. The results are shown in Table V, withN55 and N
5100 in theN-best list, respectively. In the both cases, the
VTR recognizer performs nearly the same as the chance,
both slightly worse than the benchmark HMM recognizer.
This contrasts sharply with the superior performance of the
VTR recognizer when it is exposed to the reference tran-
scription shown in Tables I–III. A reasonable explanation is
that the long-span context-dependence property of the VTR
model naturally endows the model with the capability to
‘‘lock-in’’ to the correct transcription and it at the same time
increases the tendency for the model to ‘‘break-away’’ from
partially correct transcriptions due to the influence of wrong
contexts. Since nearly all the hypotheses in theN-best list
contain a large proportion of incorrect words, they affect the
matching of the model to the remaining correct words in the
hypotheses through the context-dependence mechanism
much stronger than the conventional triphone HMM.~Pro-
fessor Fred Jelinek pointed out to us that similar effects have
been found in language modeling using long-span depen-
dency language models.27!

D. Experiments on model synthesis and analysis

The experiments described in this section are devoted to
investigating and demonstrating some intrinsic mechanisms
responsible for the VTR-based, coarticulatory model’s abil-
ity in matching the characteristics of the spontaneous speech
patterns. Since this new speech model uses physical param-
eters of speech as its underlying hidden state, it permits the

analysis of experimental results with physical insight and
understanding.~The conventional HMM would have a hard
time of doing this because of its lack of physical structure in
the model.! To pursue this analysis, we introduce the meth-
odology of ‘‘model synthesis.’’

Model synthesis refers to the process of generating an
observation sequence,Ô(1),Ô(2),...,Ô(N), artificially
from the modelconditioned ona fixed sequence of observa-
tion data, O(1),O(2),...,O(N), and on its transcription.
When the model used is the current VTR model, we pursue
the model-synthesis procedure as follows. First, given the
fixed sequence of observation MFCC data,O(1),
O(2),...,O(N), we apply the EKF algorithm to obtain the
predicted VTR state sequence:

Ẑ~1u0!,Ẑ~2u1!,...,Ẑ~kuk21!,...,Ẑ~NuN21!.

The parameters in the VTR model used in the EKF algorithm
are consistent with the phonelike transcription for the given
MFCC data. The dynamic regime for each phonelike unit is
fixed in advance, and in moving from one dynamic regime to
the next, the continuity constraint is imposed on the VTR
state while applying the EKF algorithm. Second, using the
predicted VTR state sequence, we generate the MFCC se-
quence according to the nonlinear mapping:

Ô~k!5h„Ẑ~kuk21!…, k51,2,...,N. ~20!

While using the MLPs to synthesize the MFCC sequence
according to Eq.~20!, one of the ten MLPs is selected at each
time frame depending on the given alignment of the phone-
like units.

The result of the VTR model synthesis applied to a
Switchboard test utterance ‘‘And that’s mostly flat,’’ which is
transcribed as sil, /ae/, /n/, /d/, /dh/, /ae/, /t/, /s/, /m/, /ow/, /s/,
/t/, /l/, /f/, /l/, /ae/, /t/, sil, is shown in Fig. 1. It shows the
speech waveform with phone segmentation~top!, the data
MFCC sequence converted and then displayed in a Mel-
scaled spectrogram format~middle!, and the VTR model-
synthesized MFCC sequence displayed also in the Mel-
scaled spectrogram format~bottom!. The three-dimensional
predicted VTR vector by the EKF algorithm,Ẑ(1u0),
Ẑ(2u1),...,Ẑ(kuk21),...,Ẑ(NuN21), is superimposed on
the model-synthesized Mel-scaled spectrogram. The VTRs
give a reasonably good match to the spectral peaks derived
from the MFCC sequence during all vocalic segments in the

TABLE III. Performance comparison of two recognizers for a total of 1241
test utterances when the recognizers are exposed to the reference transcrip-
tion ~ref15 and ref1100!.

Benchmark
HMM

VTR
~HMM align! Chance

Average WER~ref15! 44.8% 32.3% 45.0%
Average WER~ref1100! 56.1% 50.2% 59.6%

TABLE IV. VTR recognizer’s average WER% as a function ofN in the N-best list (ref1N).

N 1 2 3 4 7 10 20 30 40 50 60 70 80 90
WER% 20.5 26.3 29.3 31.2 34.5 36.1 40.6 43.3 44.6 46.4 47.7 48.5 49.5 50.1

TABLE V. Performance comparison of two recognizers for a total of 1241
utterances when the recognizers are not exposed to the reference transcrip-
tion ~5-best and 100-best!.

Benchmark
HMM

VTR
~HMM align! Chance

Average WER~5-best! 52.6% 51.8% 54.0%
Average WER~100-best! 58.9% 58.2% 60.2%
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utterance. Comparing the data MFCCs and the model-
synthesized MFCCs, both in the same spectrogram format,
we observe a high degree of match across the entire utter-
ance. In particular, most of the observable VTR transitions
~those associated with the vocalic segments shown as the
spectral prominences! in the data are faithfully synthesized.
Use of ‘‘correct’’ target vectors~i.e., consistent with the tran-
scription! is responsible for directing the VTR transitions to
and from correct directions across the entire utterance. Then
use of such accurate VTRs as inputs to the MLPs naturally
generates the MFCCs also accurately matched to the data
MFCCs. This makes the likelihood of observation high ac-
cording to the scoring algorithm of Eq.~19!.

In contrast, for most of the incorrect transcriptions in the
N-best hypotheses, applying the same model synthesis pro-
cedure results in the VTR transitions moving to and from
wrong directions. This makes the likelihoods low according
to the scoring of Eq.~19!. Such disparate likelihoods ac-
counts for the VTR recognizer’s success when exposed to
reference transcriptions as demonstrated earlier. In this
analysis based on model synthesis, we clearly see that it is
the model’s target-directed structure which is responsible for
moving the hidden VTRs towards favorable~unfavorable!
directions for the correct~incorrect! transcription. This
serves as the basis for successfully discriminating the correct
from the incorrect transcriptions.

V. SUMMARY AND CONCLUSIONS

The spontaneous speech process is a combination of
cognitive~linguistic or phonological! and physical~phonetic!
subprocesses. The new statistical coarticulatory model pre-
sented in this article focuses on the physical aspect of the
spontaneous speech process, where a main novelty is the
introduction of the VTR as the internal, structured model
state~continuous valued! for representing phonetic reduction
and target undershoot in human production of spontaneous
speech. The continuity constraint imposed on the VTR state
across speech units as implemented in the model is physi-
cally motivated, and it enables phonetic information to flow
from one unit to another with no use of additional, context-
dependent model parameters. Such continuity is not valid in
the acoustic domain because of the nonlinear, ‘‘quantal’’ na-
ture of the distortion in the peripheral speech production
process,4 and in order for the model to ultimately score on
the acoustic domain, we explicitly represent the nonlinear
distortion as a model component integrated with the VTR
dynamic component. With the complex model structure for-
mulated mathematically as a constrained, nonstationary, and
nonlinear dynamic system, a version of the generalized EM
algorithm has been developed and implemented for auto-
matically learning the compact set of model parameters.

We have shown that in the new VTR model described in

FIG. 1. VTR model synthesis results for spontaneous speech utterance ‘‘And that’s mostly flat’’ using the correct transcription.
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this article the number of model parameters to be estimated
is reduced by incorporating the internal structure of the
speech production process. This provides the possibility of
increased recognizer stability and robustness since it restricts
the admissible solutions of the speech recognition problem to
those that result only from the possible outcomes of the VTR
model. This advantage, however, crucially depends on the
capability of the model in explaining the observed acoustic
data. In Sec. IV D on model synthesis, we have demonstrated
some essential properties of the VTR model in generating the
acoustic data. It is our future work to further improve the
accuracy~i.e., explanation power! of the VTR model and
investigate how the recognizer performance can be enhanced
as a result of the improved explanation power on the ob-
served acoustic data.

The new speech model can be viewed as structural de-
composition of observed acoustic signals into the dynamic
system state~VTR! and the mapping between the VTR~in-
ternal! variables and the acoustic~external! variables. It is
possible that when these two structures compensate each
other, the convergence of the parameter estimation could be
affected. This is so because different combinations of the two
components could result in the same observed information
used for the parameter estimation. However, the model syn-
thesis results shown in Sec. IV D have convinced us that
such undesirable compensation is unlikely to have occurred,
because the VTR target parameters estimated from the
acoustic data have been shown to largely conform to the
physical reality.

We have carried out a series of experiments for speech
recognition, model synthesis, and analysis using the recog-
nizer built from the new speech model and using the spon-
taneous speech data from the Switchboard corpus. The prom-
ise of the new recognizer is demonstrated by showing its
consistently superior performance over a state-of-the-art
benchmark HMM system under similar experimental condi-
tions, especially when exposed to the reference transcription.
Experiments on model synthesis and analysis shed powerful
insight into the mechanism underlying such superiority in
terms of the VTR target-directed behavior and of the long-
span context-dependence property, both ensured by the
model construct.

While studying the VTR model’s~desirable! tendency of
automatically ‘‘locking in’’ to the correct transcription, we
have also observed and analyzed its opposite~undesirable!
tendency of ‘‘breaking away’’ from the locally correct
phones by the action of incorrect transcriptions located a
distance away. Both of these tendencies are enabled by the
inherent long-span context-dependence property of the VTR
model. The undesirable, ‘‘break-away’’ tendency, which ac-
counts for the results shown in Table V, can be eliminated if
we move on to some more realistic evaluation paradigms
than the currentN-best rescoring. Most of the transcriptions
in the N-best lists used in this work contain more than 30%
word errors, artificially accentuating the ‘‘break-away’’ ef-
fect. One new evaluation paradigm we are currently pursuing
is rescoring on a word lattice rather than on anN-best list.
With a sufficiently large lattice, the word errors contained in
the lattice is becoming diminishingly small. This provides

the opportunity to completely eliminate the negative effect of
‘‘break away’’ ~due to an error a distance away! if cares are
taken to avoid early introduction of errors during the lattice
search.

A related research effort we are currently also pursuing
is motivated by the experiments reported in Sec. IV B
~Tables I and II!, which underscore the critical role of using
true dynamic regimes of the VTR model in speech recogni-
tion performance. Algorithms are currently under develop-
ment which will be capable of joint optimization of dynamic
regimes and of the regime-bound acoustic match scores.
These algorithms will also be extended to training, enabling
the automatic learning of all model parameters without use
of heuristically supplied dynamic regimes in the training
data.

Our further efforts will include a number approaches to
improving the overall quality of the speech model and sub-
sequently speech recognition performance. These approaches
will include interfacing the VTR model to a feature-based
phonological model,6 use of clusters of target vectors to rep-
resent multiple-speaker variability in the VTR target, nor-
malization of speakers in both acoustic and VTR target do-
mains, on-line adaptation and time-varying modeling of state
and observation ‘‘noise’’ variances, Bayesian learning of
system matrices to allow effective speaking rate and style
adaptation, and discriminative training of the model param-
eters.
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