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A statistical coarticulatory model is presented for spontaneous speech recognition, where knowledge
of the dynamic, target-directed behavior in the vocal tract resonance is incorporated into the model
design, training, and in likelihood computation. The principal advantage of the new model over the
conventional HMM is the use of a compact, internal structure that parsimoniously represents
long-span context dependence in the observable domain of speech acoustics without using
additional, context-dependent model parameters. The new model is formulated mathematically as a
constrained, nonstationary, and nonlinear dynamic system, for which a version of the generalized
EM algorithm is developed and implemented for automatically learning the compact set of model
parameters. A series of experiments for speech recognition and model synthesis using spontaneous
speech data from the Switchboard corpus are reported. The promise of the new model is
demonstrated by showing its consistently superior performance over a state-of-the-art benchmark
HMM system under controlled experimental conditions. Experiments on model synthesis and
analysis shed insight into the mechanism underlying such superiority in terms of the target-directed
behavior and of the long-span context-dependence property, both inherent in the designed structure
of the new dynamic model of speech. @00 Acoustical Society of America.
[S0001-496600)02911-9

PACS numbers: 43.72p [DOS]

I. INTRODUCTION nology in accounting for the acoustic variability in spontane-
ous speech, which has been based on ever-expanding the
Speech recognition technology has achieved significantnyriad Gaussian mixture components and HMM states in a
success using complex models with their parameters autgargely unstructured manne(This has a small number of
matically trained from large amounts of datdZhe success exceptions; e.g., Ref. BA particular model we have devel-
based on such an approach, however, has not been extendssed for this purpose describes the long-tefutterance-
to spontaneous speech, which exhibits a much greater degrigghgth context-dependent or coarticulatory effects in spon-
of variability than the less natural speech style for which thetaneous speech in the domain of partially hidden vocal-tract-
current technology has been successful. For the Switchboardsonanc€VTR). The VTR domain is internal to the domain
spontaneous speech recognition task, even with use of hunf surface acoustic observatigsuch as Mel-frequency cep-
dreds of hours of speech as training data, the state-of-the-astral coefficients or MFCQsThis coarticulation modeling is
hidden Markov mode(HMM)-based recognizers still pro- accomplished via two separate but related mechanisms. First,
duce more than one-third of errors in the recognized wbérds.the mechanism of duration-dependehbnetic reductioral-
In order to capture the overwhelming variability in sponta-lows the VTR variables and the associated surface acoustic
neous, conversational speech, it appears necessary to expletfriables to be modified automatically according to the vary-
some underlying structure in the speech patterns. The fund@g speech rate and hence the duration of the speech units
mental nature of the current acoustic modeling strategy useg.g., phones This modification is physically established ac-
in the current technology is such that it explores only thecording to the structured dynamics assigned to the VTR vari-
surface-level observation data and not their internal structurables in the model. Second, thedntinuity’ mechanism at
or generative mechanisms. Because the variability in spontahe utterance level employed in the model constrain the VTR
neous speech is continuously scaleather than discretely variables so that they flow smoothly from one segmental unit
scaled, an infinite amount of surface-level data would beto another. Since this continuity constraint is gloligé.,
required, at least in theory, to completely cover such varitemporally across an entire utterahdeng-span coarticula-
ability without using structural information. tion is accomplished without the need to use explicit context-
The research reported in this article represents our recemlependent units such as triphonésse of triphone units is a
efforts in developing structural models for dynamic patternsmain factor contributing to the success of current speech rec-
of spontaneous speech. The goal of this research is to ovesgnition technology for read-style speech, but at the expense
come the inadequacy of the current speech recognition teclof requiring unreasonable amounts of training data for the
recognizers’ very large number of free parameters. This as-
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number of free parameters for the recognizer and the amouminy local temporal region are in combination exerting their
of data required for training the recognizer are drasticallyinfluences on the VTR variable valuénd hence the acous-
reduced compared with the conventional HMM-basedtic observations as a noisy nonlinear functions of the VTR
speech recognizers valueg anywhere in the utterance. This gives rise to the
The organization of this article is as follows. In Sec. Il, property of long-term context dependence in the model with-
a detailed description of our new VTR-based statistical coareut requiring use of context dependent speech units.
ticulatory model will be provided. The learning algorithm we Some background work, which leads to the development
have developed for training the model parameters and a scowf this particular version of the modéle., with use of VTRs
ing algorithm will be presented in Sec. Ill. A series of ex- as the partially hidden dynamic statebas been the exten-
periments conducted for analysis, synthesis, and recognitiogive studies of spontaneous speech spectrograms and of the
of Switchboard spontaneous speech using the new coarticassociated speech production mechanisms. The spectro-
latory model will be reported in Sec. IV. These will include graphic studies on spontaneous speech have highlighted the
detailed examinations of the model behavior in fitting thecritical roles of smooth, goal-directed formant transitigims
Switchboard data and of the quality of the spontaneousocalic segments, including vowels, glides, and liquiits
speech artificially generated from the model. They also incarrying underlying phonetic information in the adjacent
clude some small-scal-best rescoring experiments used to consonantal and vocalic segments. The smoothness in for-
diagnose the cause and nature of the recognition errors, asant movementsfor vocalic soundsand in VTR move-
well as some large-scal®\-best rescoring experiments, ments(for practically all speech soundeeflects the dynamic
which provide the performance figures of the new recoghehavior of the articulatory structure in speech production.

nizer. The smoothness is not only confined within phonetic units
but also across them. This cross-unit smoothness or continu-
Il. A STATISTICAL COARTICULATORY MODEL ity in the VTR domain becomes apparent after one learns to

In this section, we provide a detailed account of the newdentify, by extrapolation, the “hidden” VTRs associated
speech model we have developed, including the motivatiof/ith most consonants, where the VTRs in spectrograms are
for the model development, the mathematical formulation oftither masked or distorted by spectral zeros, wide formant

the model, and comparisons of the new model with othefandwidths, or by acoustic turbulences. The properties of the
types of speech models used in the past. dynamic behavior change in a systematic manner as a func-

tion of speaking style and speaking rate, and the contextual

A. Background, motivation, and model overview variations of phonetic units are linked with the speaking style
The statistical coarticulatory model presented in this ar2nd rate variations in a highly predictable way.

ticle is a drastic departure from the conventional HMM-  The VTRs are pole locations of the vocal tract config-
based approach to speech recognition. In the convention&red to produce speech sounds. They have acoustic corre-
approach, the variability in observed speech acoustics is adates of formants which are directly measurable for vocalic
counted for by a large number of Gaussian distributionssounds, but often are hidden or perturbed for consonantal
each of which may be indexed by a discrete “context” fac-sounds due to the concurrent spectral zeros and turbulence
tor. The discrete nature of encoding the contextoalcoar-  noises. Hence, formants and VTRs are related but distinct
ticulatory) effect on speech variability leads to explosive concepts: the former is defined in the acoustic domain and
growth of free parameters in the recognizers, and when tht#he latter is associated with the vocal-tract propeniesse
true source of the variability originates from causes of a conAccording to the goal-based speech production theory, ar-
tinuous naturgsuch as in spontaneous speethis approach ticulatory structure and the associated VTRs necessarily
necessarily breaks down. In contrast, the new approach waanifest asymptotic behavior in their temporally smooth dy-
have developed focuses directly on the continuous nature gfamics. This dynamic component of the overall speech
speech coarticulation and speech variability in spontaneousodel for the goal-directed and temporally smooth proper-
speech. In particular, the phonetic reduction phenomenon iges of the VTRs is called thé&ontinuous “state” model.
explicity modeled by a statistical dynamic system in the Since the temporal dynamics in the VTR variables is
domain of the VTR, which is internal to, or hidden from, the distorted, or hidden, in the observable acoustic signal, the
observable speech acoustics. In this dynamic model, the sysverall speech-generative model needs to account for the
tem matrix(encompassing the concept of time constaigts physical, “quantal” nature of the distortichThis compo-
structured and constrained to ensure the asymptotic behavioent of the model is called the “observation” model. In the
in the VTR dynamics within each speech segméint.the  current implementation of the model, the “observation”
work reported in this article, we take speech segments asodel for the distortion is constructed functionally by a
phones defined in the HMM systems on Switchboard tasks astatic nonlinear function, implemented by artificial neural
used in the 1997 Workshop on Innovative Techniques fonetworks, mapping from the underlying VTRs to acoustic
Large Vocabulary Conversational Speech RecognitiorobservationdMFCCs in the current systemSince the same
(http://www.clsp.jhu.edu/ws97/wsQyeneral.html] Across VTRs may produce drastically different MFCCs depending
speech segments in a speech utterance, a smoothness or con-whether the VTES) are hidden by spectral z&sy or
tinuity constraint is imposed on the VTR variables. The mainother factors, separate networks are used for distinct classes
consequence of this constraint is that the interacting factorsf speech sounds where each class corresponds to similar
of phonetic context, speaking rate, and segment duration &TR-to-MFCC mappings(For example, the effects of nasal
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coupling are represented by a neural network separate fro. Mathematical formulation

gll other no'n-nf';\sal speech soundsote that this static non- . The coarticulatory speech model with its overview pro-
linear functlo.n _|s clearly separated from the smooth-dynamlq,ided in the preceding subsection has been formulated in
model describing the temporal asymptotic behavior for theaistical and mathematical terms as a constrained and sim-
underlying, hidden VTR dynamic variables. This separationjified nonlinear dynamic system. This is a special version of
makes it unnecessary, at least in principle, to extract foryhe general statistical hidden dynamic model described in
mants from the speech signal in implementing the recogrefs. 5 and 6 using the EM implementation techniqiiéie
nizer. But when formant information is made available with special structure of the model was also motivated by the
I’ellablllty indicator, th|S infOI’mation can be and haS beenspeech production mode| Of Ref 7 based on articu'atory ges_
effectively used to initialize the model's continuous “states” yral representations. While our model structure is much sim-
for the vocalic segments, and has been used in the overailified from that of Ref. 7, the new statistical formulation of
statistical structurgseparate static nonlinear and dynamicthe model(rather than a deterministic model in Ref.gives
linear componensof the model to facilitate model param- its power for use in speech recognition that no previous de-
eter learning(For example, to diagnose the accuracy of theterministic model is capable of. Another novelty of our
state-estimation algorithm, we examine the algorithm’s outmodel is its use of vocal tract resonances, rather than vocal
put with reference to the formants extracted from vocalictract constrictions, as the dynamic, hidden state variable.
segments in the training data; see Sec) lll. This makes it much easier to implement the model and the
One key characteristic of this model is the elimination ofrelated recognize}.
the need to enumerate contextual factors such as triphones. The dynamic system model consists of two separate but
The contextual variations are automatically built into therelated componentgl) state equation an¢2) observation
goal-directed, globally smooth dynamic “state” equations equation, which are described below.
governing the VTR movements during speech utterances. )
Moreover, the contextual variations are integrated intol- State equation
speaking rate variations which are controlled by a small A noisy, causal, and linear first-order “state” equation
number of shared dynamic model parameters. The sharing is used to describe the three-dimensio(fal, F2, and FB

based on physical principles of speech production. VTR dynamics according to

To provide an overview, we have proposed a new coar-= i N .
. X . +1)= +(1— + =
ticulatory speech model, which consists of two separate comg(k D=@12(0+(1 = @HTHH+Wq(k), - j=1.2...Jp, 1)

ponents. They accommodate separate sources of speech vari- ] ) ) .
ability. The first component has a smooth dynamic propertyVhereZ(k) is the three-dimensional “state” vector at dis-
and is linear but nonstationary. The nonstationarity is deS'€te time stefx, &) and T/ are the system matrix and goal
scribed by left-to-right regimes corresponding to sequentiall)fOr targe} vector associated with dynamic regimahich is

organized phonological units such as context-independeﬁ?lated to the initiation of dynamic patterns in phgnend

phones. Handling nonstationarity in this way is very close to‘]P is the total number of phones in a speech uttera(@ee

the conventional HMMs: but for each statéiscrete as in the a derivation of this discrete-time state equation from the

HMM), rather than having an i.i.d. process, the new modefontinuous-time system in Ref. 5. This is a first-order system

has a phonetic-goal-directed linear dynamic process with thance tASIHESRas a time lag of one only in the system defi-

. . . : ) fition.) Both ®/ and T' are a function of timek via their
physically meaningful entity of continuous state variables

Equipped with the physical meaning of the state variables(,jepenoIence on dynamic regimebut the time switching

. . ) S oints are not synchronous with the phone boundaries.
(ie., VRS in .the current version of th? mo)jel'ar|.ab|l|ty (pThroughout this grticle, we define the pphone boundary as
due to phonetic contexts and to speaking styles is natural%e time point when the phonetic feature of manner of articu-
represented in the model structure with duration-dependerllétion switches from one phone to its next adjacent phone.
physical variables and with global temporal continuity of The dynamic regime often starts ahead of the phone bound-
these variables. This contrasts with the conventional HMMary in order to initiate the dynamic patterns of the new

approach where the variability is accounted for in a Iargelyphone_ This is sometimes called “look-ahead” or anticipa-

unstructured manner by accumulating an ever-increasingyry coarticulation. The time scale for evolution of dynamic
model size in terms of the number of Gaussian mixture cOMregimej is significantly larger than that for time frame In
ponents(The increase in the model size is blocked only bYEq. (1), Wy(K) is the discrete-time state noise, modeled by
use of decision-tree based methods, at the expense of sacgh j.i.d., zero-mean, Gaussian process with covariance matrix
ficing modeling accuracy.The second component, the ob- Q. [Diagonal covariance matri® has been used in the cur-
servation model, is static and nonlinear. This lower-levelrent model, independent of phoné=., Q is tied across all
component in the speech generation chain handles oth@hones.]

types of variability including spectral tilts, formant band-  The special structure in the state equation, which is lin-
widths, relative formant magnitudes, frication spectra, ancear in the state vecta(k) but nonlinear with respect to its
voice source differences. The two components combineg@arametersb! andT!, in Eq.(1) gives rise to two significant
form a nonstationary, nonlinear dynamic system whoseroperties of the VTRs modeled by the state ved(k).
structure and properties are well understood in terms of th&he first property is local smoothness; i.e., the state vector
general process of human speech production. Z(k) is smooth within the dynamic regime associated with
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each phone. The second, attractor or saturation, property is

related to the target-directed, temporally asymptotic behavior hi(2)=2 W 'gj(El Wj|'Z|>, )

in Z(k). This target-directed behavior of the dynamics de- .

scribed by Eq(1) can be seen by settikg—, which forces wherei=1,2,...,12 is the index of output unise., compo-
the system to enter the local, asymptotic region whgfle ~ nent index of observation vect®,), j=1,2,...,100 is the
+1)~Z(k). With the assumption of mild levels of noise index of hidden units, and=1,2,3 is the index of input
Wy(K), Eg. (1) then directly gives the target-directed behav-units. In Eq.(3), the hidden units’ activation function is the

ior in Z(k): Z(k)—T. standard sigmoid function
An additional significant property of the state equation is 1
the left-to-right structure in Eql) for j=1,2,...Jp and the g(x)= TTexp—x) (4)
related global-smoothness characteristics. That is, the local
smoothness in state vecta(k) is extended across each pair with its derivative
of adjacent dynamic regimes, makint(k) continuous or 9’ (0=g(x)(1—g(x)). )

smooth across an entire utterance. This continuity constraint
is implemented in the current model by forcing the state ~ The Jacobian matrix for Eq3), which will be needed
vectorZ(k) at the end of dynamic reginjeto be identical to ~ for the extended Kalman filtdEKF; see Sec. [IIAB can be
the initial state vector for dynamic reginje- 1. That is, the computed in an analytical form:
Kalman filter which implements optimal state estimatisae oh.  oh. oh

e ; o e kAl 1 1 1
details in Sec. Il for dynamic regimg + 1 is initialized by —_ == =
the Z(k) value computed at the end of dynamic regine 92y 0Zp IZ3

dh,  dhy,  dhy

d J— JE— J—
H(Z)=-—=h(Z)=[H;(2)]=| 941 92y dZ3 6
2. Observation equation A2) dz (2)=1H(2)] : : : ©
The ob.:servatllon equation in the d)_/namlc _system_model dhy, dhy, dhg,
developed is nonlinear, noisy, and static, and is described by

O(k)=h"[Z(k)]+V(K), )

where the acoustic observatidd(k) is MFCC measure-
ments computed from a conventional speech preprocessqy, (z)= >, Wijg[E w;g(Z) 1_g<2 leg(zl)Hle )
and V(k) is the additive observation noise modeled by an ] [ [

i.i.d., zero-mean, Gaussian process with covariance matriX The use of the Jacobian above is motivated by the need to

intended to capture residual errors in the nonlinear mappingnearize the observation equation so that the KF equations
from Z(k) to O(k). (Again, diagonal covariance matriR g pe applied.

has been used in the current model independent of phones.
The multivariate nonlinear mapping\("[Z(k)], is imple-
mented by multiple switching MLP$multi-layer percep-
tions), with each MLP associated with a distinct maner The mathematical model described earlier in this section
of articulation of a phone. A total of ten MLP§.e., r can be viewed as a significant extension of the linear dy-
=1,2,...,10 are used in the experiments reported in this arnamic system model as a thus-far most general formulation
ticle. of stochastic segment models for speech described in Ref. 8
The nonlinearity is necessary because the physical ma@and 9. The extension is in the following six major aspects.
ping from VTR frequenciegZ(k)] to MFCCs[O(k)] is  First, while maintaining linearity in the state equation, the
highly nonlinear in nature. The noise used in the model Egobservation equation is extended to a nonlinear one with use
(2) captures the effects of VTR bandwidtlise., formant  of physically motivated nonlinear functions. Second, special
bandwidths for vocalic soungiand relative VTR amplitudes structures are built into the state equation to ensure the
on the MFCC values. These effects are secondary to th&rget-directed property. Third, a physically motivated “glo-
VTR frequencies but they nevertheless contribute to the varibal” continuity constraint is imposed on the state variable
ability of MFCCs. Such secondary effects are quantified byacross phone-correlated dynamic regimes, to provide the
the determinant of matriR, which, in combination with the long-span context-dependent modeling capability. This
relative size of the state noise covariance ma@ixplays makes the current model not just a “segment” model as
important roles in determining relative amounts of state predefined mathematically in Ref. 9, but a “supersegment”
diction and state update in the state estimation procedure. model where the correlation structure in the model extends
In implementing the nonlinear function Z(k)] (omit-  over an entire speech utterance. Fourth, the continuous state
ting indexr for clarity henceforthin Eq. (2), we used a MLP  variable is endowed with a physically meaningful entity in
network of three linear input unif{Z(k) of F1, F2, and F§  the realistic speech procefs., VTRS, which allows spe-
of 100 nonlinear hidden units, and of 12 linear output unitscial structures to be built into the state equation and which
[O(k) of MFCC1-12. Denoting the MLP weights from in- has been instrumental in the model developniespecially
put to hidden units as;, , and the MLP weights from hidden in model initialization, learning, and diagnosisn contrast,
to output units asV;; , we have in the linear dynamic system model described in Refs. 8 and

9Z, 9Z, dZs

where

C. Comparison with other models
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9, the continuous state variable was treated merely as tres render the models with different learning criteria and
smoothed version of the noisy acoustic observation. Fifthhence different learning algorithms.

due to the introduction of nonlinearity in the observation

equation and of the structural constraints in the state equa-

tion, the model learning and scorir}g algorithms degcribed iq”_ LEARNING AND LIKELIHOOD-SCORING

Refs. 8 and 9 have been substantially extended. Finally, dug| soriTHMS

to the compact structure in the current model for speech

coarticulation and its elimination of explicit context- In this section, we will describe the learning and
dependent units such as triphones, very small amounts dikelihood-scoring algorithms we have developed for the sta-
training data are needed for model parameter learning. ltistical coarticulatory model for fixed dynamic regimegg-
contrast, the model described in Refs. 8 and 9 still requires amentations These algorithms enable the training of the rec-
much training data as the conventional HMM-based recogegnizer and the use of the recognizer for rescofibest
nizers. hypotheses.

' Qompared with other models of speech developed eary Learning algorithm
lier in our laboratory, the current model offers several sig-

nificant advantages. The articulatory-dynamic model and The learning or parameter estimation method for the
task-dynamic model described in Refs. 10-12 all have th&@ew speech model is based on the generalized EM algorithm.
dynamic state variables completely hiddére., unobserv- The EM algorithm is a two-step iterative scheme for maxi-
ablg. In the case of articulatory-dynamic model, the statemum likelihood parameter estimation. Each iteration of the
variables are articulatory parameters, and in the case of thlgorithm involves two separate steps, called the expectation
task-dynamic model, the state variables are vocal tract cortep (E-step and the maximization stefM-step, respec-
striction parameters. The current model uses VTRs as thévely. A formal introduction of the EM algorithm appeared
partially hidden state variables, which are observable for voin Ref. 20. Examples of using the EM algorithm in speech
calic sounds. In addition to the smaller dimensionality in therecognition can be found in Refs. 8, 13, and 19. The algo-
dynamic system statéhree versus a dozen or)sase of the  fithm guarantees an increaser strictly speaking, nonde-
partially observable VTRs as the system state has been critt"easé of the likelihood upon each iteration of the algorithm
cally important in the model developmefrodel learning and guarantees convergence of the iteration to a stationary
and diagnosisand in the recognizer implementation. Fur- Point for an exponential family. Use of local optimization,
ther, use of the learnable MLP architecture for the observat@ther than the global optimization, in the M step of the
tion equation provides significant implementation advantageg&!gorithm gives rise to the generalized EM algorithm.

over the earlier use of codebook methods. The acoustic- 10 derive the EM algorithm for the new model, we first
dynamic models described in Refs. 13-15, on the othefSe the i.i.d. noise assumption fd/y(k) andV(k) in Egs.
hand, lack the physically meaningful internal dynamics,(}) and(2) so as to express the log-likelihood for acoustic
which is capable of piecing together phones in an utteranc@Pservation sequend®=[0(1),0(2),....0(N)] and hid-
Hence, despite the simplicity in the model development andl€n task-variable sequenze=[Z(1),2(2),...Z(N)] as
recognizer implementation, it still requires explicit context-

dependent units and therefore a large amount of training9L(Z,0,0)

data. It shares similar weaknesses to those in the model de- N-1

scribed in Refs. 8 and 9. =—= > {log|Q|+[Z(k+1)—DZ(k)—(I—D)T]’
The current model shares similar motivations and phi- 2i=0

losophies of other work aiming at developing better, more XQ YZ(k+1)—dZ(K)—(I— D) T}

compact coarticulatory models than the HMM. The models

described in Refs. 16—19 have all used fully hidden internal 1 XN

dynamics, similar to the models described in Refs. 10-12.  — Egl {log|R[+[O(k)~h(Z(k)]'R™*

Some models explicitly use articulatory parameters as the

dynamic variable(e.g., Ref. 1§ others use more abstract, X[O(k)—h(Z(k))]}+ const,

automatically extracted variables for the purpose of model-

ing coarticulation(e.g., Refs. 17—19 One main difference where superscript denotes matrix transposition, and the
between these and the model described in this article lies imodel parameter® to be learned include those in the state
mathematical formulation of the models. The models de-equation(1) and those in the MLP nonlinear mapping func-
scribed in Refs. 16, 17, and 19 are largely deterministictions Eq. (2): O={T,® W;;,w;,i=12,..;j=1.2,..J;!
where the outputs of the models need to be explicitly syn=1,2,...L}. (To simplify the algorithm description without
thesized and compared with the unknown speech in order tlmss of generality, estimation of additional model parameters
reach recognition decision. In contrast, the statistical naturef covariance matrice®, R for state and observation noises
of the current model permits likelihood-score computationwill not be addressed in this article. Also, the dynamic-
against the unknown speedBimilar to the conventional regime index on parametes ® and the phone-class index
HMM formulation in this aspegtdirectly from the model on parametersW;;, w; are dropped because supervised
parameters where the model synthesis is only carried odearning is used. In the current model implementation,
implicitly. In addition, the deterministic and statistical na- =3, J=100,L=12)
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1. E-step 9Q, N 9

<< _ _ 2 _
The E-step of the EM algorithm involves computation of IW;; “k; E[&Wij {[O00) =h(z (k) I} O,@} 0,

the following conditional expectatiotiogether with a set of (10

related sufficient statistics needed to complete evaluation of N

the conditional expectation [ 2

—{[O(k)—h(Z(k 0,0 |=0. (11

aW” =2, E| = —{[0(k) —~h(Z(k) ]} (11

Q(Z,0,0)=E{logL(Z,0,0)|0,0}
N N Equation(8) is a third-order nonlinear algebraic equa-
=—~log|Q|- = log|R| tion (in ® andT), of the following form after some algebraic

2 2 and matrix-calculus manipulation:

- ;o NOTT —dTA —PAT —NTT —TA'
fg E[eQ 'e/0,0]

2
+BT' +®C—-D=0, (12
N
P Z E[ej,R 'e,,|0,0], where
- N-1 N-1
where e, =2Z(k+1)—®Z(K)=(I-®)T and eu=0(K) A=> E[Z2(K|0,0], B=2 E[Z(k+1)0,0],
—h(Z(k)), andE denotes conditional expectation on obser- k=0 k=0
vation vectorsO. N-1

This can be simplified, by substituting the optimal val- C= 2 E[Z(k)Z(k)'|0,0],
ues of covariance matrix estimates, to

N—-1

N—-1
1 _ ‘ o |
N E E[€k1€k1|0 @]‘ D k§=:o E[Z( +1)Z( ) |O,®]

N
0(Z,0,0)= ——log(

.

Equation(9) is another third-order nonlinear algebraic

QL(Z’O’CD’T) equation(in ® andT) of the form
N
N 1 ' '
_Ebg( Nz Elenel,|0, @1‘ tconst.  NO®'OT—O'PA-NO'T-NOT+P'B
N -~ +®A+NT-B=0. (13
02(Z.0. W, w)p) (7)

The coefficients in Eq9.12) and (13), A, B, C, andD,
constitute the sufficient statistics, which can be obtained by
the standard technique of EKBee Sec. Il A3

Solutions to Egs(10) and(11) for finding (Wj; ,w;) to
maximizeQ, in Eq. (7) have to rely on approximation due to
the complexity in the nonlinear functidm(Z). The approxi-

®ation involves first finding estimates of hidden variables
Z(k), Z(k|k), via the EKF algorithm. Given such estimates,
the conditional expectations in Eg€l0) and (11) are ap-
proximated to give

(For detailed derivation, see Ref. 2Note that the state-
equation’s parametersi(,T) are contained irQ,; only and
the MLP weight parametersW(;; ,w;) in the observation
equation are contained @@, only. These two sets of param-
eters can then be optimized independently in the subsequ
M-step to be detailed in Sec. IlI1A2.

2. M-step N
, : o Q2 , h(Z(Kk))
The M-step of the EM algorithm aims at optimizing the W, 2 [O(k)—h(Z(k|k))] W (14)
Q function in Eq.(7) with respect to model parametets k=1 Wij
f;jT ®,W;; ,w; }. For the model at hand, it seeks solutions é’Qz EN: oto—nzeh @ (K[K) a5
aWJ P [O(k) —h(Z(k]k))] wy,
&Q N—1
! > E[ {[Z(k+1)—PZ(k) If the estimated state variabl&(k|k), is treated as the
k=0

input to the MLP neural network defined in E®), and the
observationO(k), as the output of the MLP, then the gra-
O,@} =0, (8) dients expressed in Eqd4) and(15) are exactly the same as
those in the backpropagation algoritimTherefore, the
backpropagation algorithm is used to provide the estimates
2 E[ {[Z(k+1)—DZ(k) to W;; andw;, parameters. The local-optimum property of
k=0 the backpropagation algorithm in this M-step makes the
learning algorithm described in this section a generalized
o,@} =0, 9 EM. The approximation used to obtain the gradients in Egs.
(14) and(15) makes the learning algorithm a pseudo-EM.

—-(1-9)T1%

—(1-®)T]}
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3. Extended Kalman filter for finding sufficient In the above,P(k+1|k) is the prediction error covariance
statistics andP(k+1|k+1) is the filtering error covariance.

We have observed that in the E-step derivation of the  1he Physical interpretation of EGL7) as applied to our

EM algorithm shown in this section, the objective functions SP€€Ch model is that the amount of correction to the state
Q, andQ, in Eq. (7) contain a set of conditional expecta- predictor obtained from Eq17) is directly proportional to

tions as sufficient statistics. These conditional expectationd® accuracy with which the MLP is used to model the rela-
A B, C, andD in Egs.(12) and (13), need to be computed tionship between the stal{k) or VTRs and the observation
during the M-step of the EM algorithm. The extended Kal- (k) or MFCCs.[Correction is necessary because the pre-
man filter or EKF algorithm provides a solution to finding dictor obtained from Eq(16) is based solely on the system

these sufficient statisticéWe have also implemented an ex- dynamics discarding the actual observation. Use of the actual

tended Kalman smoothing algorithm which is expected tgbservation will improve the accuracy of the state estima-

provide more accurate solutions. But in this work we havelion-] Such a matching error%jn the acoustic dométalied
empirically observed no practical differences from the EKF.Innovation in estimation theo % is magnified by the time-

In this article we only describe the EKF method ugadso, ~ varing filter gainK(k+1), which is dependent on the bal-
as shown in Sec. Il A 2, the EKF algorithm is also needed tg?¢€ Of the covariances of the two noigeandR, and on the
approximate the gradients in Eq40) and (11), before the local Jacobian matrix which measures the sensitivity of the

M-step can be formulated as the backpropagation algorithionlinear functiorh(Z) represented by the MLP.
and can be carried out straightforwardly. In using the EM algorithm to learn the model param-

The EKF algorithm gives an approximate minimum- eters, we require that all the conditional expectaticsfi-

mean-square estimate to the state of a general nonlinear d§i€nt statisticsfor the coefficients, B, C andD in Eq. (13)
namic system. Our speech model discussed in Sec. Il B us&§ reasonably accurr':ltely evaluated. This can be accom-
a special structure within the general class of the nonlineap!ished, once the EKF’s outputs become available, according
dynamic system models. Given such a structure, the EKHEO
algorithm  developed is 2<1escribed here in a standargt[z(k)|0]=2Z(k|N)~Z(k|k),
predictor-corrector forméat: ~ ~
_ Denoting by Z(k|k) the EKF state estimate and by E[Z(k+1)|O]=Z(k+1[N)~Z(k+1|k+1),
Z(k+1|k) the one-step EKF state prediction, the prediction AT z z ,
equation for the special structure of our model has the formE[Z(k)Z(k) |01=P(kIN)+Z(kIN)Z(K|N)

~P(klk) +Z(k|k)Z(k[Kk)",

Z(k+1|k) =D Z(K|K) + (1 —P)T. (16)

The physical interpretation of E¢16) applied to our speech E[Z(k+1)Z(k)"|O]=P(k+1kIN)+Z(k+1|N)Z(k|[N)’
model is that the one-step EKF state predictor based on the .

) . ~P(k+1klk+1)
current EKF state estimate will always move towards the A A
target vectorT for a given system matri®. Such desirable +Z(k+1]k+1)Z(k|k)".

dynamics comes directly from state equati@h and it is, in

fact, in exactly the same form as the noise-free model staté‘" the quan_tities on the right-hand Sid?s of the above are
equation computed directly from the EKF recursion Eq46)—(18),

Denote byHZ(i(k+1|k)) the Jacobian matrix, as de- except for the quantity?(k+ 1,k|k+1), which is computed

fined in Eq.(6), at the point ofZ(k+1|k) for the MLP separately according to
observation equation in our speech model, and denote b(k+1Kk/k+1)
h(Z(k+ 1/k)) the MLP output for the inpuZ(k+ 1|k). Then _ -
the EKF corrector(or filter) equation applied to our speech =l =Kkt DHZ(k+ 1]k+ 1) 1P P(k[k).
model is It is noted that while the EM algorithm requires Kalman
~ - smoothing which takes into account the complete acoustic
Z(k+1k+1)=2(k+1[k)+K(k+1) observation sequences, we found no practical differences
><{O(k+1)—h(2(k+1|k))}, (17) with the use of Kalman filtering taking account of only the
previous observations. In other words, we used the EKF to
whereK(k+1) is the filter gain computed recursively ac- approximate the corresponding smoothing algorithm in com-

cording to puting all the sufficient statistics required by the EM algo-
K(k+1)=P(k+1|K)H,[Z(k+1[K)] rithm.
X{HLZ(k+1[K)]P(k+1[k)H, B. Likelihood-scoring algorithm for recognizer testing
X[Z(k+ 1/k)]"+R(k+1)} 71, In addition to the use of the EKF algorithm in the model
, learning as discussed so far, it is also needed in the
P(k+1]k)=®P(k[k)®"+Q(k), (18 Jikelihood-scoring algorithm(during the recognizer testing
P(k+1|k+1)={—K(k+1)H, phase yvhlch we dliscussf now. .
R Using the basic estimation theory for dynamic systems
X[Z(k+1|k)]}P(k+1]k). (cf. Theorem 25-1 in Ref. 24; see also in Ref, the log-
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likelihood scoring function for our speech model can bemodel. The reasons for using the limitédbest rescoring
computed from the approximate innovation sequenceparadigm in the current experiments are mainly due to com-

O(k|k—1) according to putational ones.
N The benchmark HMM system used in our experiments is
logL(0|®)=— E E {log|Pgg(k|k—1)| +6(k|k—1)’ one of the best systems developed earlisee http:/
2= www.clsp.jhu.edu/ws97/ws9deneral.html], and it has been

1 — described in some detail in Refs. 19 and 25. Briefly, the
X Poolklk=1)O(k|[k—1)}+const, (19 system has word-internal triphones clustered by a decision
tree, with a bigram language model. The total number of the
_ . parameters in this benchmark HMM system is approximately
O(klk—1)=0(k)—h(zZ(klk—1)), k=1,2,..N 3276 000, which can be broken down to the productiof
39, which is the MFCC feature vector dimensid@) 12,
which is the number of Gaussian mixtures for each HMM
R state; (3) 2, which includes Gaussian means and diagonal
Poo(klk—1)=H(Z(klk—1))P(k|k—1) covariance matrices in each mixture component; &
A , 3500, which is the total number of the distinct HMM states
XH(Z(Klk=1))'+R, clustered by the decision tree.
which is also computed from the EKF recursion. In contrast, the total number of parameters in the new
For a speech utterance which consists of a sequence oécognizer is considerably smaller. The total 15252 param-
phones with the dynamic regimes given, the log-likelihoodeters in the recognizer consists of those from target param-
scoring functions for each phone in the sequence as definexters 4X3=126, those from diagonal dynamic system ma-
in Eqg. (19) are summed to give the total log-likelihood score trices 42x3=126, and those from MLP parametersXiT00

where the approximate innovation sequence

is computed from the EKF recursion, aRgg is the cova-
riance matrix of the approximate innovation sequence:

for the entire speech utterance. X(12+3)=15000. These numbers are elaborated later while
detailing several essential implementation aspects of the rec-

IV. SPEECH RECOGNITION, SYNTHESIS, AND ognizer.

ANALYSIS EXPERIMENTS First, we choose a total of 42 distinct phonelike symbols,

In this section, we will report a series of experiments!"cluding 8 context-dependent phones, each of which is in-
conducted for analysis, synthesis, and recognition of Switcht€nded to be associated with a distinct three-dimensiéiial

board spontaneous speech using the statistical, VTR-bas&d: @nd F3 vector-valued targetT) in the VTR domain.

coarticulatory model presented so far. After introducing thel & Phonelike symbol inventory and the VTR target values
ed to initialize the model training discussed in Sec. Il A

experimental paradigm and the design parameters of the ne? ' S
recognizer, we will first report a set of small-scalebest &€ based on the Klatt synthesizer setuhe values are

rescoring speech recognition experiments, which permitSlightly adjusted by examining some spectrograms of the
analysis of the model behavior by manipulating some handSWitchboard training data. Among the 42 phonelike symbols,
tuned variables. We will then evaluate the performance of4 @ré context independent. The remaining eight are context
the new recognizer in a set of large-schlébest rescoring d_e_pendent because th_e_lr target V'_I'Rs are_affected by th_e an-
experiment, and compare the performance figures with thECipatory tongue position associated with the following
conventional triphone HMM-based speech recognizer undgPhone. _ _
similar conditions. Finally, we will present some model-  The next set of model parameters is the elements in the
synthesis results and give detailed examinations of the modéi distinct diagonal dynamic system matricds'). Before
behavior in fitting the Switchboard data and of the quality ofthe training, they are initialized based on the consideration
the spontaneous speech artificially generated from the moddhat the articulators responsible for producing different
Such analysis and synthesis experiments serve to exmaphones have different intrinsic movement rates. This differ-
why the new coarticulatory model is doing the right job in €nce roughly translates to the difference in the VTR move-
“locking into” the correct transcription but at the same time Ment rates across the varying phones. For example, the VTR

it can “break away” from partially correction transcriptions transitions for labial consonantgb/, /m/, /p) marked by
due to contextual influences. “Lips” features are significant faster than those for alveolar
consonantg/d/, /t/, In) marked by “Tongue-Blade” fea-
tures. The VTR transitions for both labial and alveolar con-
sonants are faster than those for velar consoramsked by

In all the experiments reported in this article, we used arf'Tongue Dorsum” features and those of vowels marked
N-best list rescoring paradigm, according to the scoring alalso by the “Tongue Dorsum” feature8/Ve found that after
gorithm Eq.(19), to evaluate the new recognizer based onthe model training, the differences in the elements of the
the VTR-based coarticulatory model on the Switchboardsystem matrices are largely retained from the initialization
spontaneous speech data. Tibest list of word transcrip- across the phone classes. However, their values have been
tion hypotheses and their phone-level segmentatie®, changed after the training.
alignmenj are obtained from a conventional triphone-based  The final set of model parameters in the recognizer are
HMM which also serves as the benchmark to gauge the redhe MLP weightsW;; andw;, , responsible for the VTR-to-

j
ognizer performance improvement via use of the new speechlFCC mapping. Unlike the target and system matrix param-

A. Experimental paradigm, HMM benchmark system,
and design parameters of the VTR recognizer

8 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000 L. Deng and J. Ma: Spontaneous speech recognition 8



eters which are phone dependent, we tie the MLPs approxﬂiABLE |. Performance comparison of three recognizers for 18 utterances
mately according to the distinct classes of manner ofVith the same speaker in training and testingf+5).

articulation(and voicing. Such tying reduces the MLP noise Benchmark VTR VTR
resulting from otherwise too many independently trained HMM (HMM align)  (true align
MLPIS' 323‘6 othe{ hand, by notfftylng alldp hqne; nto on:% Reference-at-top 37.0% 38.8% 50.0%
single ’, we also ensure e ective |spr|m|nat|on of Average word error rate 39 20 30.4% 22.8%
phones using differential nonlinear mappingom the

smoothed physical VTR state variables to the MFC&8gen

if the VTR targets are ide_ntical for different phongs few eses; and3) VTR model using manually determined “true”
phones have nearly identical VTR target§he ten classes gynamic regimes for the reference hypothesis according to
_resultlng from the tying and used in the current recognizegpectrogram reading. A performance comparison of these
implementation arél) aw, ay, ey, ow, oy, aa, ae, ah, a0, ax, three recognizers is shown in Table I. Two performance
ih, iy, uh, uw, er, eh, eli2) I, w, 1, y; (3) f, th, sh;(4) s, ch;  measures are used in this comparison. First, among the 18
(5) v, dh, zhi(6) z, jh; (7) p, t, k; (8) b, d, g;(9) M, n, ng, en;  test utterances we examine the percentage when the correct,
and(10) sil, sp. . . reference hypothesis scores higher than all the remaining five
In the above tying scheme, all vowels are tied using ong,ypotheses. Second, we directly compute the word error rate
MLP, because vowel distinction is based exclusively on dif-(WER) using the standard NIST scoring software. The new,
ferent target values in the VTR domain. Here /s/ and /sh/ ar¢/Tr-pased recognizers are consistently better than the
associated with separate MLPs, because their target VTBanchmark HMM, especially when the “true” dynamic re-

values (not observable in the acoustic domain because ofjimes are provided and in this case the performance is con-
concurrent zeros and large VTR bandwidtlase similar to siderably better.

each othefThis can be seen in terms of their similar ways in We conduct a similar experiment to the above, using the
attracting the VTR(forman) transitions from the adjacent same recognizers trained from a single male but choosing a
phones| Hence their distinction will be based mainly on the geparate male speaker’s ten utterances as the test data. Again,
different VTR-to-MFCC mappings. In this case, the acousticays shown in Table II, the VTR-based recognizer with the
difference between these two phones in terms of the greateg, e dynamic regimes gives significantly better perfor-
amount of energy at lower frequency for /sh/ than for /s/ iSjance than the others.
captured by different MLP weightsvhich are trained auto- These experiments demonstrate superior performance of
matically), rather than by differential VTR target values he vTR-based coarticulatory model, when exposed to the
since the behavior of attracting adjacent phones’ VTR tranieference transcriptions. They also highlight the importance
sitions is similar between /s/ and /sh/. of providing the true or optimal dynamic regimes to the
Now for each of the 10 distinct MLPs, we use 10@n-  model. Automatic searching for the optimal dynamic re-

linear) hidqen ur.1its,.3(|inea|j input units, and 12linean gimes is a gigantic computational problem and has not been
output units. This gives a total of ¥A00X(3+12 MLP  ,gdressed by the work reported in this article.
weight parameters.

B. Experiments on small-scale  N-best rescoring C. Experiments on large-scale  N-best rescoring

In this set of experiments, we train the VTR-based [N the large-scale experiments, we keep the same recog-
model with the design parameters outlined above usingiZers trained .from a single male speaker but significantly
speech data from a single male speaker in the Switchboafgcrease the size of the test set. All the _malg speakers from
data. A total of 30 min of the data are used which consist of"® WS'97 DevTest are selected, resulting in a total of 23
several telephone conversations. Due to the use of only Hale speakers comprising 24 conversation sigesh side

single speaker, we avoid normalization problems for both thé@s @ distinct speaker1241 utterancessentences 9970
VTR targets and for the MFCC observations. words, and 50 min of speech as the test data. Because of the

We randomly selected 18 utterandeentencesin one large test set and because of lack of an efficient method to
conversation as the test data from the same speaker that gtdtomate the optimization of the VTR-model dynamic re-
disjoint from the training set. For these 18 utterances, aiMes, we report in this section only the performance com-
N-best list withN=5 is generated, together with the phone Parison between the benchmark HMM recognizer and the
alignments for each of the five-best hypotheses, by th&/ TR recognizer with dynamic regimes suboptimally derived
benchmark HMM system. We then add the refere(ums- from the HMM phone alignments. In Table Ill, we provide
rech hypothesis together with its phone alignments into thisthe performance comparison for the “re§” mode, and for
list, making a total of six“ref +5") hypotheses to be res-

cored by the VTR recognizer. TABLE Il. Performance comparison of three recognizers for ten utterances
Under the identical conditions set out above, we rescord/th separate speakers in training and testre+5).

th.ese 18 utterances using the following three rgcognizers Benchmark VTR VTR

with the language model remove() benchmark triphone HMM (HMM align)  (true align

HMM, (2 VTR model using automatically computgd phone% Reference-at-top 30.0% 20.0% 50.0%

alignments(which determine the VTR dynamic regimes for yerage word error rate 27.0% 25 79 9.2%

each constituent phohey the HMM for all the six hypoth-
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TABLE lIl. Performance comparison of two recognizers for a total of 1241 TABLE V. Performance comparison of two recognizers for a total of 1241
test utterances when the recognizers are exposed to the reference transcrigterances when the recognizers are not exposed to the reference transcrip-

tion (ref+5 and ref-100). tion (5-best and 100-best
Benchmark VTR Benchmark VTR
HMM (HMM align) Chance HMM (HMM align) Chance
Average WER(ref+5) 44.8% 32.3% 45.0% Average WER(5-bes} 52.6% 51.8% 54.0%
Average WER(ref+100 56.1% 50.2% 59.6% Average WER(100-besk 58.9% 58.2% 60.2%

the additional “ref-100" mode where theN-best list con-  gnaiysis of experimental results with physical insight and

tains 100 hypotheses. In Table Ill, we also add theyngerstanding(The conventional HMM would have a hard

“Chance” performance which is used to calibrate the recog+ime of doing this because of its lack of physical structure in

nizers’ performance. The chance WER is computed by enge mode)) To pursue this analysis, we introduce the meth-
semble averaging the WERs obtained by having a recognizefyology of “model synthesis.”

randomly choosing one hypothesis from the six possible
ones(for the ref+5 mode oN=5) or from the 101 possible observation sequence0(1),0(2)....0(N), artificially

ones (for the ref+100 mode orN=100).. For both theN ... from the modelkonditioned ora fixed sequence of observa-
=5 andN=100 cases, the VTR recognizer performs S'Qn'f"tion data, 0(1),0(2),....0(N), and on its transcription.

cz_intly better than the benchmark HMM recognizer, which iS\Nhen the model used is the current VTR model, we pursue
slightly better t_han the chance Rerigfmance. . the model-synthesis procedure as follows. First, given the
More detailed results of the above experiment for thefixed sequence of observation MFCC dat@(1)

VIR r_ecognizer are ShOW.” in Table v, wherg the averageO(Z),...,O(N), we apply the EKF algorithm to obtain the
WER is shown as a function & in the N-best list. predicted VTR state sequence:

We also conduct the same experiment as shown in Table A R .
[l except no reference transcription is added into khbest Z(1]0),Z(2|1),...,Z(k|]k—=1),....Z(N|N—1).

list. The results are shown in Table V, witi=5 andN . . .
=100 in theN-best list, respectively. In the both cases, theThe parameters in the VTR model used in the EKF algorithm

VTR recognizer performs nearly the same as the chanc&'® consistent with the phonelike transcription for the given
both slightly worse than the benchmark HMM recognizer MFCC data. The dynamic regime for each phonelike unit is

This contrasts sharply with the superior performance of thé'xed in advance, and in moving from one dynamic regime to

VTR recognizer when it is exposed to the reference tranEhe next, the continuity constraint is imposed on the VTR

scription shown in Tables IIIl. A reasonable explanation isState while applying the EKF algorithm. Second, using the

that the long-span context-dependence property of the VTIQrEd'Cted VTR'state sequence, we gengrate the MFCC se-
model naturally endows the model with the capability toauence according to the nonlinear mapping:

“lock-in” to the correct transcription and it at the same time O(k)=h(Z(klk—1)), k=1,2,..N. (20)
increases the tendency for the model to “break-away” from

partially correct transcriptions due to the influence of wrongWhile using the MLPs to synthesize the MFCC sequence
contexts. Since nearly all the hypotheses in Mibest list —according to Eq(20), one of the ten MLPs is selected at each
contain a large proportion of incorrect words, they affect thelime frame depending on the given alignment of the phone-
matching of the model to the remaining correct words in thelike units.

hypotheses through the context-dependence mechanism The result of the VTR model synthesis applied to a
much stronger than the conventional triphone HM(Rro- Switchboard test utteranceAhd that's mostly flat which is
fessor Fred Jelinek pointed out to us that similar effects hav&anscribed as sil, /ae/, /n/, /d/, /dhl, fael, It/, Is/, Im/, owl/, Is/,

been found in language modeling using long-span deper!/, /Il /fl, I/, lael, /t/, sil, is shown in Fig. 1. It shows the
dency language modetd, speech waveform with phone segmentatitop), the data

MFCC sequence converted and then displayed in a Mel-
) . . scaled spectrogram formémiddle), and the VTR model-
D. Experiments on model synthesis and analysis synthesized MFCC sequence displayed also in the Mel-
The experiments described in this section are devoted tgcaled spectrogram formépottom. The three-dimensional
investigating and demonstrating some intrinsic mechanismpredicted VTR vector by the EKF algorithmZ(1[0),
responsible for the VTR-based, coarticulatory model's abil-Z(2|1),... Z(k|lk—1),...Z(N|[N—=1), is superimposed on
ity in matching the characteristics of the spontaneous speedhe model-synthesized Mel-scaled spectrogram. The VTRs
patterns. Since this new speech model uses physical paramive a reasonably good match to the spectral peaks derived
eters of speech as its underlying hidden state, it permits thieom the MFCC sequence during all vocalic segments in the

Model synthesis refers to the process of generating an

TABLE IV. VTR recognizer’'s average WER% as a functionMin the N-best list (ref-N).

N 1 2 3 4 7 10 20 30 40 50 60 70 80 90
WER% 205 26.3 293 312 345 36.1 40.6 433 446 464 47.7 485 495 50.1
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FIG. 1. VTR model synthesis results for spontaneous speech utterdmm that's mostly flatusing the correct transcription.

utterance. Comparing the data MFCCs and the modelV. SUMMARY AND CONCLUSIONS
synthesized MFCCs, both in the same spectrogram format,
we observe a high degree of match across the entire utter- The spontaneous speech process is a combination of
ance. In particular, most of the observable VTR transitionscognitive(linguistic or phonologicaland physicalphonetig
(those associated with the vocalic segments shown as ttaubprocesses. The new statistical coarticulatory model pre-
spectral prominencgsn the data are faithfully synthesized. sented in this article focuses on the physical aspect of the
Use of “correct” target vectorsi.e., consistent with the tran- spontaneous speech process, where a main novelty is the
scription is responsible for directing the VTR transitions to introduction of the VTR as the internal, structured model
and from correct directions across the entire utterance. Thestate(continuous valuedfor representing phonetic reduction
use of such accurate VTRs as inputs to the MLPs naturalland target undershoot in human production of spontaneous
generates the MFCCs also accurately matched to the daspeech. The continuity constraint imposed on the VTR state
MFCCs. This makes the likelihood of observation high ac-across speech units as implemented in the model is physi-
cording to the scoring algorithm of E¢L9). cally motivated, and it enables phonetic information to flow
In contrast, for most of the incorrect transcriptions in thefrom one unit to another with no use of additional, context-
N-best hypotheses, applying the same model synthesis pradependent model parameters. Such continuity is not valid in
cedure results in the VTR transitions moving to and fromthe acoustic domain because of the nonlinear, “quantal” na-
wrong directions. This makes the likelihoods low accordingture of the distortion in the peripheral speech production
to the scoring of Eq(19). Such disparate likelihoods ac- proces$, and in order for the model to ultimately score on
counts for the VTR recognizer’'s success when exposed tthe acoustic domain, we explicitly represent the nonlinear
reference transcriptions as demonstrated earlier. In thidistortion as a model component integrated with the VTR
analysis based on model synthesis, we clearly see that it dynamic component. With the complex model structure for-
the model’s target-directed structure which is responsible fomulated mathematically as a constrained, nonstationary, and
moving the hidden VTRs towards favorablenfavorable¢  nonlinear dynamic system, a version of the generalized EM
directions for the correct(iincorrecy transcription. This algorithm has been developed and implemented for auto-
serves as the basis for successfully discriminating the correchatically learning the compact set of model parameters.
from the incorrect transcriptions. We have shown that in the new VTR model described in
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this article the number of model parameters to be estimatethe opportunity to completely eliminate the negative effect of
is reduced by incorporating the internal structure of the‘break away” (due to an error a distance awaf/cares are
speech production process. This provides the possibility ofaken to avoid early introduction of errors during the lattice
increased recognizer stability and robustness since it restriceearch.

the admissible solutions of the speech recognition problemto A related research effort we are currently also pursuing
those that result only from the possible outcomes of the VTRs motivated by the experiments reported in Sec. IVB
model. This advantage, however, crucially depends on théTables | and I), which underscore the critical role of using
capability of the model in explaining the observed acoustidrue dynamic regimes of the VTR model in speech recogni-
data. In Sec. IV D on model synthesis, we have demonstrateiion performance. Algorithms are currently under develop-
some essential properties of the VTR model in generating thenent which will be capable of joint optimization of dynamic
acoustic data. It is our future work to further improve theregimes and of the regime-bound acoustic match scores.
accuracy(i.e., explanation powgrof the VTR model and These algorithms will also be extended to training, enabling
investigate how the recognizer performance can be enhancéde automatic learning of all model parameters without use
as a result of the improved explanation power on the obof heuristically supplied dynamic regimes in the training
served acoustic data. data.

The new speech model can be viewed as structural de- Our further efforts will include a number approaches to
composition of observed acoustic signals into the dynamiémproving the overall quality of the speech model and sub-
system statéVTR) and the mapping between the VTR-  sequently speech recognition performance. These approaches
terna) variables and the acoustiexterna) variables. It is ~ Will include interfacing the VTR model to a feature-based
possible that when these two structures compensate eadhonological modef,use of clusters of target vectors to rep-
other, the convergence of the parameter estimation could b@sent multiple-speaker variability in the VTR target, nor-
affected. This is so because different combinations of the twéhalization of speakers in both acoustic and VTR target do-
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such undesirable compensation is unlikely to have occurredtdaptation, and discriminative training of the model param-
because the VTR target parameters estimated from th@ters.
acoustic data have been shown to largely conform to the
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