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S p o n tan eo u s  S y m m e try  B reak in g  an d  D ecoherence  in S u p e rc o n d u c to rs

Jasper van Wezel and Jeroen van den Brink
Institute-Lorentz fo r  Theoretical Physics, Universiteit Leiden,

P. O. Box 9506, 2300 RA  Leiden, The Netherlands 
(Dated: February 1, 2008)

We show th a t superconductors have a th in  spectrum  associated w ith spontaneous symm etry 
breaking similar to  th a t of antiferromagnets, while still being in full agreement w ith E litzur’s th e
orem, which forbids the spontaneous breaking of local (gauge) symmetries. This th in  spectrum  in 
the superconductors consists of in-gap states th a t are associated w ith the spontaneous breaking of a 
global phase symmetry. In qubits based on mesoscopic superconducting devices, the presence of the 
th in  spectrum  implies a maximum coherence tim e which is proportional to  the number of Cooper 
pairs in the device. Here we present the detailed calculations leading up to  these results and discuss 
the relation between spontaneous sym m etry breaking in superconductors and the Meissner effect, 
the Anderson-Higgs mechanism and the Josephson effect. W hereas for the Meissner effect a sym
m etry breaking of the phase of the superconductor is not required, it is essential for the Josephson 
effect.

I. IN T R O D U C T IO N

Recently we have shown tha t spontaneous symmetry 
breaking imposes a fundamental limit to the time tha t a 
large spin system can stay quantum  coherent. This co
herence timescale is t spon ^  2n N h /  (kBT ), given in terms 
of the number of microscopic degrees of freedom N , tem
perature T  and the constants of Planck (h) and Boltz
mann (kB ) .1>2>3>4>5>6>7 The timescale t spon is expected to 
be a universal timescale associated with all forms of spon
taneous symmetry breaking, since it does not depend on 
any of the model parameters th a t were needed to derive 
it. In this paper we will show in detail how superconduct
ing systems spontaneously break their phase symmetry 
and th a t they have a thin spectrum associated with th is .7 
The thin spectrum subtly influences the dynamics of the 
superconductor when it is used as a qubit. The resulting 
maximum coherence time is again given by the universal 
expression t spon.

It has been proven already three decades ago by Elitzur 
tha t local (gauge) symmetries cannot be broken sponta
neously without invoking an explicitly asymmetric gauge 
fix.8 Also, it has been argued recently tha t because the lo
cal gauge symmetry in superconductors cannot be broken 
spontaneously, the order should be of a purely topological 
nature, and tha t the low energy properties of the super
conducting state are determined solely by its topological 
s tructure .9 At first sight then, the claim th a t a supercon
ductor possesses states related to spontaneous symmetry 
breaking tha t are at very low energy and within the su
perconducting energy gap, might come as a surprise.

However, it is well known tha t the superconducting 
ground state is characterized by a definite phase and a 
corresponding uncertainty in the number of Cooper pairs. 
For a piece of superconducting material the realization of 
one specific phase is but one choice out of a manifold of 
equivalent possibilities. Its phase having just one spe
cific value therefore has to come about by spontaneous 
symmetry breaking. This symmetry breaking in the ther
modynamic limit requires the existence of a so called thin

spectrum of total phase states whose energies all collapse 
onto the groundstate energy in the thermodynamic limit. 
Such a spontaneous symmetry breaking is not at variance 
with Elitzur's theorem because the symmetry tha t is bro
ken in a superconductor is a global U(1) phase symmetry. 
The resulting superconducting state is still manifestly in
variant under local gauge transformations.

To clearly illustrate these points we will first discuss 
the superconducting state of an array of Josephson junc
tions. In this array the non-commutativity of num
ber and phase variables straightforwardly gives rise to 
spontaneous symmetry breaking and to a thin spectrum. 
Symmetry breaking in this superconductor turns out to 
be exactly analogous to the case of quantum  crystals or 
magnetic systems.2 After th a t we will switch to a mi
croscopic strong coupling model of superconductivity in 
which the role of gauge symmetry can be more clearly 
discussed. We will then use this model to describe a 
Cooper-pair box qubit and show tha t the presence of the 
thin spectrum leads to a maximum coherence time tspon 
of the qubit, which is of the order of milliseconds. Finally 
we will show how the description of the thin spectrum can 
also be incorporated into the familiar BCS description of 
superconductivity, and comment on the application to 
different types of qubits.

II. JO SE PH SO N  JU N C T IO N  ARR A Y

It is well known tha t an array of superconducting is
lands coupled together by Josephson junctions can un
dergo a (quantum) phase transition from an insulating 
state to a superconducting s ta te .10,11,12’13’14’15 The de
scription of a superconductor as an array of Josephson 
junctions is particularly useful to us here because it nat
urally focuses the attention on the the conjugate variables 
number and phase. The Hamiltonian for the Josephson
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junction array is given by

H JJ E
j,S

Ei
-^~nj -  E j  cos (Oj -  Oj+s) (1)

Here Oj represents the phase of the superconducting or
derparameter of superconducting island j , while n j  gives 
the number of Cooper pairs above average, and 5 con
nects neighboring sites. The charge or number operator 
n j =  - i ( d / d O j ) is the variable conjugate to the phase, 
and can be written in terms of the voltage V and the ca
pacitance C of the Josephson junctions as n j =  (C/2e) Vj. 
The coupling constants are the charging energy Ei and 
the Josephson coupling energy E J , which are chosen to 
lie well within the superconducting regime.

The phase O in this description can be thought 
of as the phase of the Ginzburg-Landau wavefunc- 
tion for the superconducting island, or equivalently as 
the phase describing the perfectly ordered BCS state
|O> =  n fc (lu k | +  K |  ei0c \ c - k)  |vac>.16 This phase is 
not measurable as such, but a difference in phase 
across a Josephson junction causes a supercurrent J  =  
J c  sin (Oj — Oj+s), and therefore phase differences are 
measurable. The condition of measurability implies the 
gauge independence of these quantities, because a gauge 
transformation by definition cannot alter the outcome of 
any experiment. The total phase is both unmeasurable 
and a gauge dependent quantity.

The thin spectrum of the Josephson junction array 
consists of the infinite wavelength part of the Hamilto
nian E q.(1), because exactly at k =  0 the Bogoliubov 
transformation tha t would diagonalize the Hamiltonian 
turns out to be singular.2 This zero wavenumber part of 
H JJ which describes the collective behavior of the sys
tem as a whole, is given by

H JJ
k=0

E cc 2
2N

(2 )

where N  is the total number of superconducting islands, 
and n tot = j  n j  is the charge of the total network of 
Josephson junctions. To see how the array can sponta
neously break its total phase symmetry we should add 
a symmetry breaking field to the collective Hamiltonian. 
We cannot simply add a term  which involves the bare 
total phase Otot, because tha t total phase is not a gauge 
independent, measurable quantity. Instead we can look 
at the difference of phase between the Josephson junc
tion array and some given reference superconductor. In 
the end we will let the strength of the symmetry breaking 
field go to zero, or equivalently move the reference super
conductor away to infinity. The Hamiltonian including 
the symmetry breaking field thus becomes

JJ
h s b

E
7 ^ n tot -  & COS tot -  6ref) ■ (3)

For small values of AOtot =  Otot — Oref  we can expand 
the cosine to quadratic order and then the Hamiltonian

reduces to a harmonic oscillator with well known solu
tions in terms of Hermite polynomials, in exact analogy 
to the case of spontaneous symmetry breaking in quan
tum  crystals and antiferromagnets. Using these Hermite 
polynomials, it is easy to show tha t indeed the Josephson 
junction array can spontaneously break the rotational 
symmetry of its total phase by looking at its fluctuations 
in the limit of disappearing symmetry breaking field and 
infinite number of superconducting islands:

f 2 =
1

V n b

lim lim f 2
N B^ 0
lim lim f  ^  0 .
B^ 0  N (4)

Clearly the fluctuations in the total phase disappear in 
the thermodynamic limit even if only an infinitesimal 
symmetry breaking field is present.

The symmetry broken state tha t is formed in tha t limit 
has a well defined total phase, and must thus be in a su
perposition of many different total number states. These 
total number states were precisely the eigenstates of the 
collective Hamiltonian Eq.(2), which we identified as be
ing the thin spectrum of the Josephson junction array. 
The symmetry broken Hamiltonian also has a tower of 
low lying states tha t form a sort of dual thin spectrum 
which consists of all the total phase states necessary to 
build a state with a fixed total number of Cooper pairs. 
Notice th a t the thin spectrum states must be observable 
states, because the description of the collective dynamics 
in Hamiltonian E q.(3) is still manifestly gauge invariant. 
This also implies tha t the symmetry breaking which we 
have just described is not the breaking of a local gauge 
symmetry. Only the U(1) symmetry of the global to
tal phase is spontaneously broken, and even then only in 
the sense tha t its fluctuations disappear in the thermo
dynamic limit, so tha t its value relative to tha t of some 
other, external superconductor will be fixed.

The fact tha t we needed to introduce an external su
perconductor as a deus ex machina to fix the phase of 
our Josephson junction array should come as no surprise. 
The situation is in fact precisely analogous to tha t of 
breaking the translational symmetry of a crystal. In that 
case one can only assign a definite value to the position of 
the symmetry-broken crystal by measuring the distance 
of its center of mass to some external reference point 
(which in tha t case can the observer himself). The posi
tion of the entire system of crystal and observer together 
is still completely arbitrary (or at least unmeasurable for 
the observer), even in the symmetry-broken state.

III. LOCAL PA IR IN G  SU PE R C O N D U C T O R

From the previous section it is clear tha t tha t the non
commutativity of number and phase naturally gives rise 
to the presence of a thin spectrum in a superconducting
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system. Now we will examine how the superconducting 
orderparameter comes about by spontaneous symmetry 
breaking in the first place and how this is related to gauge 
symmetry. This relation was not visible in the context 
of a Josephson junction array, because there we started 
out with islands th a t were postulated to be in a super
conducting state. That way we could describe the whole 
system with an effective Hamiltonian th a t only consisted 
of observables related to the macroscopic properties of 
the superconducting state.

For a more general description of superconductivity 
we start out with a microscopic Hamiltonian for a single 
superconductor tha t incorporates the effects of the gauge 
field. The simplest such model is the extensively studied 
local pairing, negative-U Hubbard model17,18

H
3,ö,<7

( tS 4  + S,7 cj,7 +  ( j  )* c] ,7 cj  + S,7)

— |U ̂  n j,î n j,l- 
j

(5)

The z  projection of the pseudospin measures the local 
electron density, while the x y  components provide the dy
namics of the Cooper pairs. Adding a chemical potential 
U th a t determines the overall electron density and thus 
explicitly breaks the electron-hole symmetry, we find the 
effective Hamiltonian

j,s

+  j E
j,s

Q Z  Q Z

j  j+s 4 — h E s-  + l . (9)

Here J  is defined to be 2t2/|U |, and h =  |U| — 2u deter
mines the overall electron density. Away from half filling 
the global SU(2) symmetry of the Hamiltonian is man
ifestly broken, and what remains is the U(1) symmetry 
tha t describes rotations around the z-axis. It is the spon
taneous breaking of this global U(1) symmetry tha t will 
yield the superconducting state.

Here cj  creates an electron on site j  , 5 connects neigh
boring sites and n j  counts the number of electrons. The 
reason to consider this local pairing model rather than for 
example the BCS model for superconductivity is the fact 
tha t this model is explicitly gauge invariant, while the 
BCS model is not. From the symmetry point of view, 
the models are the same: there is no phase transition 
in going from weak to strong coupling superconductivity, 
only a cross-over. If we parametrize the hopping in terms 
of a uniform amplitude and a bond dependent phase as 
tS =  te J^ i , then minimal coupling allows us to identify 
the phase of the hopping param eter with the electromag
netic vector potential integrated along the bond under 
consideration, so tha t ^ j  =  ^  J ^ +S A 0(t)dt.  Thus the 
Hamiltonian is invariant under the gauge transformation

ct —>■ e*»<= ̂  e t, 
A (j) ^  A ( j ) +  V f (j),

which immediately implies

Vj + j- [/0-+ <*)-ƒ0-)]-

(6)

(7)

We focus on the strong coupling limit where U ^  t, 
so tha t we only need to consider the physics of the lower 
Hubbard sector. On each site there will thus be either 
a pair of electrons or no electrons at all. Single elec
tron excitations are only virtually allowed and give rise 
to pair-pair interactions. The effective low energy Hamil
tonian is given by a second order perturbation expansion 
in the hopping and can be written in terms of pseudospin 
operators tha t are defined by

SZ

=  c c =  cj , îcj,4
1

=  2 (nJ.T + nJ-i -  !) ' (8)

IV. M EISSN ER  EFFEC T A N D  
A N D E R SO N -H IG G S M EC H A N ISM

Before we discuss the actual spontaneous symmetry 
breaking and the thin spectrum associated with it, we 
will show tha t already on the semi-classical level, the 
model E q .(9) can be seen to expel magnetic field lines 
from its ground state and to give propagating electro
magnetic modes in its bulk a finite effective mass (the 
Meissner effect and Anderson-Higgs mechanism).

To find a semiclassical description for the groundstate 
of the S = 1 / 2  pseudospin Hamiltonian H ef f , we intro
duce generalized coherent states of the form

| ̂ class > n . 4>j
1 2 sin

+ e ‘ c c cj , îcj,4 |vac> . (10)

In this expression the angles $j  and Oj are the Euler 
angles which describe the classical vectors tha t replace 
the quantum  spins in the classical state. To find the 
semiclassical groundstate energy we need to minimize 
the expectation value of H ef f  in the generalized coher
ent state with respect to the orientations of the classical 
spin-vectors. It is easy to check tha t the classical energy 
can be minimized by first fixing the azimuthal angles Oj 
uniformly throughout the system, after which the energy 
up to a constant is given by

E dass — J p E c o s ( 2Vj +  $j — $j+s) , (11)
j,s

where p is a constant set by the optimized value of O. In 
this expression the global SU(2) rotational symmetry has 
already been broken explicitly by the effect of the field h

e

Oj
2
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(which fixed the azimuthal angles). W hat is left is the in
plane U(1) rotational symmetry of the polar angles ÿ j . 
The classical state with lowest energy links the values 
of these polar angles to the bond variables Vj - These 
variables are in turn  connected to the electromagnetic 
vector potential. One finds tha t the condition for the 
angles ÿ j  tha t minimizes the energy is

As =
J 2e

he tpj+S — +  7T (12)

where Aj is the average value of the vector potential 
along the bond. At distances much larger than the lattice 
spacing a this expression becomes

n c
A(r)  =  - V < M r) . (13)

The classical groundstate is thus a state in which the 
electromagnetic potential is proportional to the gradient 
of the scalar field ÿ, which of course immediately im
plies tha t the rotation of A  will vanish, and thus that 
the condensate does not allow any magnetic field to pen
etrate its bulk - a  clear indication tha t the semiclassical 
groundstate is indeed a superconducting state.

For a full description of the Meissner effect, however, 
it is not enough to show tha t the semiclassical ground 
state does not contain a magnetic field. One also needs 
to demonstrate tha t the superconducting classical state 
will also actively expel externally applied electromagnetic 
fields; i.e. th a t the electromagnetic excitations in the 
system are gapped and massive. To do so we add an 
external electromagnetic field to the semiclassical energy 
density:

E,class
JP (  2ea ~s

= -T7 }_s COS ~T7A 3 +  ^3 -  4>j+&
j,S

+  I ( V x  A )2 +  i ( A (14)

This expression can be simplified by introducing a new 
vector field A '  =  A  — Vÿ. Because the newly defined field 
A ' is formally equivalent to a gauge-deformed version 
of the electromagnetic field A, we can be sure tha t the 
electromagnetic energy E 2 +  B 2 looks the same in terms 
of A '  as it did in terms of A. If we take the continuum 
limit and expand the cosine to second order, we thus find

E class ~  J '  (A ')2 +  | ( V x  A ' f  +  ± ( À ' ) (15)
2

Note tha t both expressions for the energy given above 
are fully gauge invariant. Using the Hamilton equations 
it can immediately be checked th a t the latter expression 
for the classical energy yields only massive propagating 
modes in terms of the field A '. Due to this Anderson- 
Higgs mechanism, the physical excitations of the system 
-which are combined modes of the electromagnetic field 
and phase degree of freedom- have a finite energy gap. 
This prevents an external electromagnetic field to pene
tra te  the bulk of the superconductor.

V . TH IN  SPE C T R U M

We have seen in the previous section tha t the sem- 
icalssical groundstate of the tight binding negative-U 
Hubbard model displays the Meissner effect and gen
erates a mass for the electromagnetic modes via the 
Anderson-Higgs mechanism. In fact in th a t semiclassical 
description the question as to whether the global U(1) 
symmetry was broken or not never arose. We thus con
clude th a t the Meissner effect and Anderson-Higgs mech
anism occurs regardless of whether the superconductor 
has a well-defined total phase .20,21,22 The situation is 
similar to tha t in antiferromagnets, where long range an
tiferromagnetic correlations exist both in the symmetric 
singlet ground state and in the symmetry broken Neel 
state.

To see the effects of spontaneous symmetry breaking 
in the negative-U  Hubbard model we need to describe 
the formation of the symmetry broken ground state in 
a more analytical manner by studying the exact eigen
states of the collective part of the Hamiltonian without 
resorting to semi-classics, just as we did for the Josephson 
junction array. The difficulty in such a global description 
will be to correctly account for the gauge field, which can 
fluctuate locally. To circumvent this problem we intro
duce transformed pseudospins, analogous to what is done 
in the weak coupling theory18,19

j  =  e -2 ^  j Sj+

SZ. (16)

The summation in the exponent is over some path con
necting position j  to some origin j  =  0. For simplicity 
we will assume the applied external magnetic field to be 
zero from here on. Notice tha t the individual transformed 
pseudospin operators of equation E q.(16) are not gauge 
invariant. Their purpose is to transform the local gauge 
transformations of the actual pseudospins S into a global 
transformation of the new pseudospins a:

(j+ e- 2 iY.],=0\ ^ ,  + fz { fU '+ s )-fU '))\e2 if - j{ j)s +

e s<=

aZ -  ajj.
’aj  = e a j

(17)

A gauge transformation therefore corresponds to a ro
tation along the z-axis of all pseudospins by the same 
angle. It is this global character of the gauge transfor
mations on the transformed pseudospins tha t allows us 
to switch to  a description of just the collective behavior 
of the system without invoking any specific gauge choice. 
In terms of the transformed pseudospins the effective low 
energy Hamiltonian E q.(9) becomes

Heef f J
j,S

’j+S — h j (18)

The param eter J  is positive because the electron pairs re
pel each other. This Hamiltonian therefore describes an

a

jaj

2

j
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FIG. 1: A schematic one-dimensional representation of the 
classically realized sta te  of the tight binding superconductor. 
The arrows are a classical cartoon for the transform ed pseu
dospins a .

antiferromagnetic interaction between neighboring pseu
dospins, and an overall, uniform magnetic field. The clas
sical state th a t we expect to find in terms of the pseu
dospins a  is therefore a canted antiferromagnet. That 
is, an antiferromagnet in which all spins are uniformly 
canted out of the z =  0 plane, but in which the xy-  
projections still form an antiferromagnetic pattern (see 
figure 1) . As we noticed before, the canting of the spins 
which breaks the full SU(2) symmetry down to U(1) is 
done explicitly by the field h, while the breaking of the in
plane U(1) symmetry into an antiferromagnetic structure 
will have to be realized through spontaneous symmetry 
breaking.

The thin spectrum of the Hamiltonian H ef f  consists 
of the states necessary to construct the symmetry bro
ken classical state. These thin spectrum states describe 
the dynamics of the superconductor as a whole, and as 
before they can be found at the singular points of the Bo- 
goliubov transformation tha t diagonalizes the quadratic 
part of the Hamiltonian.2 In the antiferromagnet both 
the point k =  0 and the point k =  n are singular. The 
resulting collective part of the Hamiltonian is given by

IT -  4 Jti-coll — ~ J ÿ a A  ' a B  ~  h a . (19)

where aA,B denotes all spins on the A , B sublattice and 
atot is the combination of all spins on the entire lattice. 
The modes tha t form the thin spectrum are not affected 
by the Anderson-Higgs mechanism th a t we discussed be
fore because they are zero-wavelength, global excitations 
which only affect the system as a whole. The coupling 
of the phase degrees of freedom and the electromagnetic 
field in the Anderson-Higgs description exists only at fi
nite wavelength, as can be easily seen in equation Eq.(14) 
because a global transformation ÿ  — ÿ  +  Sÿ  for all i 
leaves the coupling of the phase to the electromagnetic 
field invariant. The Hamiltonian H coii therefore captures 
all the relevant collective, low energy behavior of the 
model.

The collective Hamiltonian Eq.(19) is just a Lieb Mat- 
tis model in a uniform magnetic field,2,23,24,25 and the 
eigenstates are readily identified as the states labeled by 
the quantum numbers a A , a B, atot and ajot. The differ
ence between this collective model and the one describing 
the spontaneous symmetry breaking in antiferromagnets 
is the field h, which reduces the symmetry from SU(2) 
to U(1). The ground state has maximum total spin on

SC gap

H----1-

Thin Spectrum

0 1/L
\— I— I-

FIG. 2: Schematic representation of the dispersion relation of 
the low-energy, low-momentum states of a finite size super
conductor: the states at finite k are gapped, while the th in  
spectrum  states at k =  0 lie within the gap.

both the A  and B  sublattice, and has a total spin tha t is 
equal to its z-projection of ajot =  atot =  ( h N ) / ( 4 J ). Ex
citations of the quantum numbers aA and a B are gapped 
with an energy J  from the groundstate, because of the 
infinitely long range of the interactions in H coii. We will 
henceforth set these quantum numbers to their maximum 
value and only consider the low energy excitations which 
describe the behavior of the entire system as a whole. We 
can relabel the eigenstates by introducing

tot
tot

=  a  +  n  
=  a  +  n — y. (20)

Here a  is the groundstate value for the z-projection of the 
pseudospin: a  =  ( h N ) / ( 4 J ). In terms of the quantum 
numbers n  and y , the effective Schrödinger’s equation 
for the excitations of the Lieb-Mattis Hamiltonian H coii 
becomes

H coii \n , y > =  { e ^oh
2J

+ hy  + — n 2 ) \ n , y) .  (21)

From this equation it is clear th a t the excitations labeled 
by n  will play the role of the thin spectrum for the tight 
binding superconductor. It can be easily checked that 
indeed the contribution of these states to the partition 
function vanishes in the thermodynamic limit. The exci
tation labeled by y on the other hand is a collective exci
tation tha t changes the z-projections of all pseudospins 
and costs an energy proportional to the chemical poten
tial to excite. This is, in other words, the quantum num
ber tha t determines the average total number of Cooper 
pairs in the superconductor.

VI. B R E A K IN G  TH E SYM M ETRY

To study the spontaneous symmetry breaking of H coii 
we will have to introduce a symmetry breaking field, 
which we will send to zero again at the end of the calcula
tion. In analogy to the symmetry breaking term  tha t we 
used in the Josephson junction array, we will again intro
duce a second external superconductor which is weakly 
coupled to the first, and let the coupling tend to zero:

h SJ i =  H coii +  T  (£ + a A +  E + a B +  H .a) +  H ext (22)

j
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Here S a ,B denotes the pseudospin operators in the exter
nal superconductor and Hext describes its dynamics. For 
simplicity we assume tha t both the Hamiltonian Hcoii 
and Hext are given by the collective model of equa
tion E q.(19). Notice th a t the coupling Hamiltonian is 
still completely invariant under local gauge transforma
tions which act on the pseudospins a a ,b  as well as on 
S a ,B . The symmetry tha t is broken in equation E q.(22) 
is the U(1) phase symmetry tha t rotates all pseudospins 
a, but keeps the pseudospins S  fixed: the phase differ
ence between the superconductors can acquire a finite 
expectation value in the symmetry broken state, without 
violating Elitzur's theorem.

To explicitly see the influence of the external supercon
ductor, we would liketo use the total phase of the system 
Hext as a reference point for measuring the phase of Hcoii. 
To do so, we need to temporarily abandon the manifest 
gauge invariance of our description, and assume tha t the 
total-phase symmetry of Hext has already been broken. 
This allows Hext to generate a symmetry breaking field 
for the a-pseudospins subsystem. Using for this (mean) 
field the expectation values (SA> =  — (SB > =  N s /2  and 
(SA> =  (SB> =  0, the effective Hamiltonian for the orig
inal superconductor reduces to

t t S B  =  
coll A tb  — hajot — B  (aA — a B ) , (23)

with B  =  T N s, and N^ the number of pseudospins in 
the external superconductor. Notice tha t the symmetry 
breaking term  in this Hamiltonian is not gauge invari
ant. As a gauge transformation corresponds to a uni
form rotation of all spins on the entire lattice around the 
z axis, any explicit choice for the direction of B  along a 
particular axis in the x y -plane is connected by a gauge 
transformation to any other directions in the plane. By 
fixing the total phase of the external superconductor to 
lie along the x-axis in equation E q.(23), we have thus 
implemented a specific gauge choice, and we will have 
to check afterward if the conclusions based on calcula
tions in this particular gauge fix are robust under gauge 
transformations.

The m atrix elements of the symmetry breaking field 
in the basis \n, y> can be computed by performing a sum 
over Clebsh-Gordon coefficients.2 In the limit (n, y) ^  
(a, N ), the Hamiltonian can be written in terms of its 
m atrix elements as

h Sob, -  J 2 \ n , y> Ecoll + hy + (n, y \

— \n ±  1,y> j f ( y ) (n, y \ (24)

where f ( y )  =  (2 — \ J ( y ) 2 — o 2. If we write 
the eigenfunctions of this equation as \ x, y > =  

^  (n, x) \n, y> and take the continuum limit, then 
Schrödinger’s equation reduces to the well known har-

monic oscillator equation,

1 d 2 1 
-  (n ,x )  + -Lü2n 2^  (n , x)

2 o n 2 2
v ^  (n, x ) , (25)

with J 2 8J and v ■hy TheB N f ( y )  ^  B f ( y )
wavefunctions ^  are the eigenfunctions of the harmonic 
oscillator, which can be written explicitly in terms of Her- 
mite polynomials. The corresponding eigenvalues obey 
v  =  (x + 1/ 2) j ,  and thus we find the energies of the sym
m etry broken collective Hamiltonian E q.(23) to be given 
by

E  (x ,y )  =  E0 ,u + h y -  ^ B N g (y )

+  x (26)

where g(y) =  ( l — 21-) \J  1 — ( j j ) 2- The term  oc B N  
in this expression shows tha t the symmetry of the sys
tem will be spontaneously broken: even if only an in
finitesimally small symmetry breaking field is present, 
the pseudospins can gain an infinite amount of energy 
in the limit of N  — to  by aligning with tha t field. In 
the thermodynamic limit the alignment will thus happen 
spontaneously and the resulting symmetry broken state 
is exactly the expected canted antiferromagnet.

VII. G A U G E VOLUM E

Having found the the eigenfunctions of the collective 
symmetry broken Hamiltonian, the question arises what 
these states represent, and even if they are truly physi
cal states. As mentioned before, the symmetry breaking 
field in the collective Hamiltonian E q.(23) acts as an im
plicit gauge fix. It is not a priori clear whether or not 
this (non-physical) gauge fixing introduced any extra un
physical states in the spectrum. If we define the gauge 
volume of a certain state to be the collection of all states 
tha t are connected to it by a gauge transformation, then 
making a specific gauge choice in the Hamiltonian can 
in principle lead to the erroneous identification of states 
within the same gauge volume as seperate physical states. 
The question is thus whether the excited states of H cSoBii 
tha t we found are part of its ground state gauge volume 
or not.

The ground state of the collective Hamiltonian is an 
ordered antiferromagnet in terms of pseudospins, and we 
have seen tha t it corresponds to a superconducting state 
of Cooper pairs. The excitations labeled by x  in the 
pseudospin picture must involve the superposition of col
lective excitations with wavenumbers k  =  0 and k  =  n. 
However as mentioned before, the gauge volume of this 
system is made up of global uniform rotations of the en
tire pseudospin lattice around the z-axis. Proving that 
these excitations are not within the gauge volume of the 
groundstate wavefunction, therefore amounts to showing
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FIG. 3: The overlap between the th in  spectrum  sta te  \x) and 
the ro tated  groundstate R  (0) \ 0), as a function of the angle 
of rotation 0, for different values of x. To make this graph we 
used the values J  =  10, B  =  h =  1 and N  =  100.

tha t the excited states cannot be written as only a global 
rotation of the groundstate. Using the explicit formulas 
for the eigenfunctions of H Sb it is easy to check tha t in
deed the overlap between the state \x =  X ) and the state 
\x =  0), rotated over an angle 0 , is one if and only if both 
X  and 0 are zero (see figure 3). This proves tha t indeed 
the excited state cannot be written only as a global rota
tion of the groundstate, and thus tha t the excited state 
is not within the ground s ta te’s gauge volume.34

VIII. JO SEPH SO N  EFFECT

We have seen tha t an infinitesimally weak coupling be
tween the local pairing superconductor and a second ex
ternal superconductor gives rise to spontaneous symme
try  breaking of the total phase difference between the two 
superconductors. In this section we show tha t this sym
m etry breaking is an essential prerequisite for the obser
vation of the Josephson effect. This effect is well-known 
to rely on the existence of a phase difference between 
two superconductors, in which case a finite (but weak) 
coupling between the two systems causes a supercurrent 
between them .26,27,28

To study the Josephson effect in the local pairing 
model for superconductivity, we will follow the approach 
of Anderson by treating the hopping term  in equa
tion E q.(22) as a small perturbation and computing the 
change in energy due to i t .28 By taking the derivative of 
the the first order correction to the energy with respect 
to the vector potential we can then directly obtain the 
supercurrent.

First we construct the state in which there are no ex

citations y in either superconductor, and in which the 
thin spectrum state of both superconductors is \ x  =  0) , 
which we denote as \0) =  \0,0)s  \0, 0)CT. Now we rotate 
the phase of the S-superconductor by an angle 0 and 
get the state \0) =  R  (0) \0), where R  rotates the state 
\0,0)s  over an angle 0 around the z-axis. The fist order 
correction to the energy is

A E 1 = T  <0\ (S + a -  +  S + a -  ) \0) +  H.c.
N a N j ;

T  ^ co s (9)

£ * (  n ' +  1, 0 ) * ( n  — 1, 0 ) ^  (n', 0 ) ^  (n, 0 )

A E  cos (0) (27)

The summation over the Hermite polynomial wavefunc- 
tions ^  (n, x) can easily be evaluated numerically and is 
of order unity. In the last line the energy change A E  
is implicitly defined. The expression above for the en
ergy difference in terms of the phases of the transformed 
pseudospins a  and S is gauge invariant, because a gauge 
transformation rotates all pseudospins simultaneously, 
and leaves the phase difference 0 invariant. As we wish 
to determine the derivative of A E 1 with respect to the 
vector potential, we need to go back to the formulation 
of the problem in terms of the original S pseudospins. By 
inspection of E q.(27) it is clear th a t the gauge-dependent 
expression for the energy change will be

A E 1 A E
~ Y c  f A ' dl

(28)

where 0 describes the phase difference in terms of the 
original pseudospins, and the integration runs over a line 
connecting the two superconductors. We can now di
rectly find the supercurrent by taking the derivative of 
the total energy with respect to the vector potential. Do
ing so and then transforming back to the pseudospins a  
and S yields

<J )
Ö <H) 2eA E

6A h
sin (0) , (29)

which is precisely the expected Josephson current.28 No
tice tha t the occurrence of the Josephson effect is a direct 
consequence of the phase symmetry breaking. Starting 
from a symmetric, total-number ground state for the su
perconductors, the first order correction to the energy 
induced by the hopping term  vanishes, so th a t there is 
no Josephson current in tha t case.

This observation raises the question what happens in 
practice when we try  to bring two isolated pieces of su
perconductor closer together and allow them  to weakly 
couple. Assuming th a t the superconductors were so well 
isolated tha t their initial states were total number states, 
the first influence of the coupling will be to break the 
phase symmetry and cause the superconductors to ac
quire a well-defined phase difference. If two supercon
ductors approach each other from infinity the actual
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value of the phase difference 0 will be zero -due to the 
energy gain E q.(27)-  and no Josephson current of the 
type Eq.(29) is present. However, a finite phase differ
ence between the two pieces of superconductor can be 
induced by first applying a voltage difference between 
the two systems and then letting them approach. In the 
Hamiltonian the voltage bias can be introduced into the 
hopping term  by the Peierls construction:

T  (eie S + a -  +  eie S + a B +  H c ) (30)

where 0 depends on the applied voltage. This form of the 
coupling term  causes the symmetry to be broken such the 
phase difference between the superconductors is 0. If the 
bias is switch off again, a Josephson current as in E q.(29) 
is induced.

IX. DEC O H ER EN C E

We would now like to apply the results of the previ
ous sections to the description of quantum  coherence. In 
analogy to the result for antiferromagnets,1 we expect 
the existence of the unobservable thin spectrum to give 
rise a maximum coherence time t spon «  N h /k ß T .

Let us define a qubit made of the eigenstates of the 
collective part of the local pairing superconductor. If 
tem perature is sufficiently low (i.e. kß T  ^  J ,h )  then 
we can use the states y =  0 and y =  1 as the compu
tational states of such a qubit. These states correspond 
to states with a different number of Cooper pairs, and 
qubits of this type have been made experimentally in the 
form of Cooper-pair boxes.29,30,31 In these Cooper-pair 
boxes a superconducting island can be brought into a su
perposition of having N  and N  +  1 Cooper-pairs present. 
Superpositions of this type can reach coherence times of 
up to 500 ns .32,33

In our local pairing description of the qubit, the initial 
state of the system must be a thermal mixture of thin 
spectrum states. After all, controlling these states ex
perimentally is practically impossible. The initial state 
should then be brought into some superposition of the 
computational states y =  0 and y =  1, so tha t it can be 
used in a quantum  computation. Because we know all 
eigenstates and eigenvalues of the Hamiltonian exactly, 
we can then explicitly follow the time evolution of the 
superposition .2 The complete process is thus described 
by the time dependent density matrix

1
Pt< o =

Pt>0 è -ßE(x,0) [\x, 0) <x, 0 \ +  \x, 1) <x, 1 \

where Z  is the partition function at t  < 0. The thin 
spectrum states labeled with x cannot be observed or 
controlled experimentally, and they should therefore be 
traced out of the final density matrix. The remaining 
reduced density m atrix then shows the coherence of only 
the superposition of y states. The disappearance of the 
off-diagonal matrix element of the reduced density matrix 
serves as a measure of the resulting coherence time, and 
it can easily be checked tha t this coherence time is given 
by

t spon =
2nh
kß T  2

(32)

Here a  signifies, as before, the average number of Cooper 
pairs on the superconducting island in the groundstate. 
This coherence time is the maximum coherence time of a 
superconducting island, which is limited by the existence 
of a thin spectrum in the superconductor. Just as in the 
cases of crystals and antiferromagnets, the details of the 
model (e.g. J  or h ) do not enter into the expression for 
the maximum coherence time, which thus looks like a 
universal timescale.1,2

Filling in the values for the constants h and kß  and 
taking a  ~  106 and T  ~  40 mK ,31 we find a maximum 
coherence time for the experimentally realized Cooper 
pair boxes of ~  0.5 ms. Clearly this timescale set by the 
presence of the thin spectrum states which are associated 
with the spontaneous symmetry breaking, is much larger 
than the timescale th a t is the current limit to coherence 
of the Cooper-pair boxes due to other environmental fac
tors. However, it is well possible th a t the limit set by the 
thin states will come within the experimental reach in 
the near future, either because the isolation from exter
nal sources of decoherence will be developed further, or 
because the size of the Cooper-pair box itself is reduced 
even more.

X. B C S S U P E R C O N D U C T O R

In the previous sections we have shown tha t the super
conductive groundstate is a state with a spontaneously 
broken U(1) symmetry. As a consequence the supercon
ductor must have a thin spectrum of states th a t describe 
the collective excitations on top of the ground state. In 
the case of a local pairing model for superconductivity 
we have found an explicit expression for these thin states 
and we have shown how they can cause decoherence if we 
try  to use a superconductive island as a qubit.

It could be argued tha t the local pairing model is some
what pathological, and not really representative for real- 
life superconductors, even though from the point of view 
of symmetry the model is equivalent to a weak coupling 
model (because there is no phase transition which sep
arates the two). We will therefore also work out the 
symmetry breaking and decoherence in a BCS descrip
tion, and show th a t although the details of the picture 
change, the underlying physics is exactly equivalent, and



in fact gives rise to the exact same conclusions regarding 
the thin spectrum and the timescale on which decoher
ence will set in. The draw-back of doing the calculation 
in a mean field BCS description is th a t it cannot be done 
in a manifestly gauge invariant way, so th a t the role of 
the vector potential is obscured.

After creating Cooper pairs, we arrive in the standard 
BCS theory at the effective Hamiltonian

ABCS =  ^  £k (CkCk +  C- k C-k C-k

- £  u
k=k'

CkC-k C-k ' Ck' (33)

Here we have adopted the convention to write (k, j) as 
k and (—k, j)  as — k . The dispersion of the bare Fermi- 
sea is characterized by Ck while U is the effective pairing 
interaction due to phonon exchange. U is non-zero and 
attractive only in a shell around the Fermi energy with a 
width of about the Debije energy. It is easy to see that 
extensivity of the model in fact requires U to be inversely 
proportional to the total number of electrons in the sys
tem. We will therefore redefine the pairing potential as 
U =  V / N , where N  denotes the total number of electrons 
in the k-space shell in which U is non-zero.

By writing down the Hamiltonian Eq.(33) we have as
sumed tha t there is no external magnetic field and we 
have fixed the gauge to ensure tha t the electromagnetic 
vector potential vanishes everywhere. Anderson showed 
th a t the BCS Hamiltonian in this form can be rewritten 
as a spin problem by introducing the pseudospins19

s +

1 — Ck Ck — CC- k C-k (34)

In the subspace without any quasiparticles (i.e. n k =  
n - k Vk), the Hamiltonian up to an overall constant be
comes

H b c s  =  _  tv +  • (35)
k k=k

Interpreted at face value, this Hamiltonian describes 
pseudo spins on a lattice which has position-label k . On 
this lattice, three different and independent regions can 
be identified. In the region k < kF — kD (where kF is the 
Fermi wavenumber and kD the Debije wavenumber) we 
know tha t the pairing potential vanishes and ck is neg
ative, so th a t all pseudospins in tha t region will point 
down, which corresponds to completely filled electronic 
states. In the region k > kF +  kD the pairing potential 
is zero as well, but here ck will be positive, causing all 
spins to point up, and all electronic states to be empty. 
In the shell of width kD around kF a more interesting sit
uation occurs. There V is nonzero (and approximately 
constant), while ck switches sign right at kF . The pseudo
spin structure tha t one would classically expect in that

FIG. 4: A schematic representation of the region of w idth kD 
around k F . The arrows represent the pseudospins S. Sponta
neous sym m etry breaking causes the projections of the pseu
dospins in the xy-plane to align.

region is th a t of a magnetic domain wall: the pseudospins 
point up at one end of the region, then continuously fall 
over until they reach the x y  plane exactly at kF , and then 
they continue on until they point down at the other end 
(see figure 4). Electronically th a t structure corresponds
to the BCS wavefunction Y lk (uk  +  vkc\ C-k) |vac).

The Hamiltonian H Bc s  however is invariant under ro
tations around the z-axis, and the exact groundstate will 
also obey this symmetry and have a completely delocal
ized projection of the pseudospins on the xy plane. To 
form a true domain wall, and thus the classical super
conducting state, this U(1) symmetry will have to be 
spontaneously broken.

Because the symmetry breaking will only have an ef
fect in the region around kF and because this region is 
fully decoupled from the other two regions of k-space, we 
will focus solely on tha t shell from now on, and define 
all sums over k to run from kF — kD to kF +  kD. The 
collective dynamics of the system will again be described 
by the singular points of the Bogoliubov transformation 
which diagonalizes the Hamiltonian. Because of the fer
romagnetic sign, the collective model in this case consists 
of only the k =  0 part of equation Eq.(35):

2
N '
V

'N

: SZ _  tot Stot
V ( N -  1) 

TV2

— AT [®£o£ * ®tot & tot & tot

r QX QX I qV qV ] 
[Stot Stot +  Stot Stot]

], (36)

where Stot =  Y lk S k and where in the last line we have 
neglected terms of order 1/N 2 and set etot =  0. The lat
ter can be thought of as a strong coupling approximation, 
in the sense tha t the Hamiltonian Eq.(36) will certainly 
be relevant in the region where etot ^  V . We will discuss 
different approximations for ctot at the end of this section. 
The eigenstates of the collective Hamiltonian are trivially 
found to be labeled by the total spin quantum number 
S  and its z-projection M , while the corresponding ener
gies are given by E coll (S, M ) =  — V /N  (S (S +  1) — M 2) . 
The thin spectrum in this case is labeled by M , and de
scribes states with different total electron densities. The 
total spin excitations labeled by S on the other hand, are 
gapped with an energy ~  V . To break the xy-symmetry 
of H coii we can add a symmetry breaking field —BSXot

9

C-k Ck

S kZ
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along for example the x-axis. After evaluating its matrix 
elements2 and taking the continuum limit, Schrödinger’s 
equation can once again be written as a harmonic oscil
lator equation

1 d 2 1
-  2 ö M 2 ^  (M, x ) =  v Ÿ  (M, x) ,(37)

with J 2 =  and v  =  1 +  . The sym
m etry broken wavefunctions |S, x) =  ^ (M , x) |S, M ) 
thus have energies

E{S , x ) = ~ S ( S + 1 ) ~ B S

+ (^x + ^ j V V B ^ .  (38)

In the ground state S will be maximal (i.e. N /2), and 
then the term  «  N B  in the energy signals spontaneous 
symmetry breaking: in the thermodynamic limit the sys
tem can gain an infinite amount of energy by aligning 
with an infinitesimally small symmetry breaking field. 
The collective excitations tha t make up the (dual) thin 
spectrum on top of the symmetry broken ground state are 
labeled by x. Their energies are slightly influenced by the 
remaining collective quantum  number S. If we make a 
superposition of total spin states and trace away the un
observable thin spectrum, then this small shift in the thin 
spectrum ’s energy levels will cause the decoherence of the 
visible reduced density matrix, in a manner completely 
analogous to the one described in equation E q.(31). The 
resulting maximum coherence time is given by

2nh
tspon =  t ^ N ,  (39)

kB T

where N  counts the number of states in the k space vol
ume of k D around kF , which is proportional to the num
ber of Cooper pairs in the superconducting condensate. 
So we find the same universal form for the expression of 
the coherence time set by spontaneous symmetry break
ing as in the case of the local pairing model for super
conductivity.

As mentioned before, the collective Hamilto
nian E q.(36) can be seen as a strong coupling limit, 
because we require etot to be much smaller than V . We 
can drive the system to a somewhat weaker coupling 
regime by reincluding an approximate form of ^  k ekS | 
into H coii. One possible choice for such a term  would be 
t (SZmiri — SZ ), which acts as a boundary condition, 
pulling the pseudospins down at the low k boundary 
and up at the other end. A second choice could be the 
inclusion of the term  t (SA — SB) where S a  consists of 
all spins with k < kF and SB denotes spins above the 
Fermi surface. In the latter case we should take care 
tha t t cannot be too great, for if it would dominate 
over V everywhere, then it would transform the domain 
wall structure of the superconducting state into a trivial 
Fermi-sphere structure again. It turns out tha t after

some elaborate algebra both of the above cases give 
the exact same form for the thin spectrum and the 
maximum coherence time as the “bare” model H coll did.

XI. CONCLUSIONS

In this paper we have shown th a t the non-commuting 
observables of number and phase in a superconductor 
give rise to spontaneous symmetry breaking and an asso
ciated thin spectrum. We have given explicit expressions 
for these thin spectrum states in an array of Joseph
son junctions, in a tight-binding, negative-U Hubbard 
model, and in the BCS model for superconductivity. Us
ing the negative-U Hubbard model we have commented 
on the relation between spontaneous symmetry breaking 
and its associated thin spectrum, and the Meissner ef
fect, the Anderson-Higgs mechanism and the occurrence 
of Josephson currents. For the occurrence of the Meissner 
effect the phase symmetry actually need not be broken, 
but for the Josephson effect it does. We have also given 
a description of a gedanken experiment in which the su
perconductor is to be used as a qubit, and we have shown 
tha t the presence of the thin spectrum states associated 
with spontaneous symmetry breaking will lead to deco
herence of the qubit within the time t spon =  2n ^ N /k BT , 
where N  counts the number of Cooper pairs involved. 
This result was obtained in the negative-U Hubbard 
model as well as the BCS model. The timescale t spon is 
universal in the sense tha t it does not depend on the un
derlying model parameters. Its form coincides precisely 
with tha t of the decoherence time induced by thin spec
trum  dynamics in antiferromagnets and quantum  crys
tals.

The maximum coherence time tha t we found here for 
superconducting devices should apply directly to experi
mental realizations of the so called Cooper pair box, and 
thus give a maximum coherence time of the order of mil
liseconds. The decoherence caused by the thin spectrum 
at the moment is much weaker than tha t caused by other 
sources, but it may well come within experimental reach 
in the near future. To apply the results of this paper to 
other types of superconducting qubits, such as for exam
ple superconducting flux qubits, one should adjust the 
models used here in order to also accommodate for the 
presence of an external magnetic flux and an associated 
supercurrent in the groundstate. Because of its universal 
nature it is expected tha t the decoherence time set by 
the thin spectrum in these cases also will be given by the 
timescale t spon =  2n ^ N /k BT .
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