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Abstract We extend the theory of self-organizing neural fields
in order to analyze the joint emergence of topography and
feature selectivity in primary visual cortex through spontane-
ous symmetry breaking. We first show how a binocular one-
dimensional topographic map can undergo a pattern forming
instability that breaks the underlying symmetry between left
and right eyes. This leads to the spatial segregation of eye
specific activity bumps consistent with the emergence of oc-
ular dominance columns. We then show how a 2-dimensional
isotropic topographic map can undergo a pattern forming
instability that breaks the underlying rotation symmetry. This
leads to the formation of elongated activity bumps consistent
with the emergence of orientation preference columns.A par-
ticularly interesting property of the latter symmetry breaking
mechanism is that the linear equations describing the growth
of the orientation columns exhibits a rotational shift-twist
symmetry, in which there is a coupling between orientation
and topography. Such coupling has been found in experimen-
tally generated orientation preference maps.

1 Introduction

One of the striking features of the visual system is that the
visual world is mapped on to the cortical surface in a topo-
graphic manner. This means that neighboring points in a vi-
sual image evoke activity in neighboring regions of visual
cortex. Superimposed upon this topographic map are addi-
tional maps reflecting the fact that neurons respond preferen-
tially to stimuli with particular features. Neurons in the retina,
lateral geniculate nucleus (LGN) of the thalamus, and pri-
mary visual cortex (V1) respond to light stimuli in restricted
regions of the visual field called their classical receptive fields
(RFs). Patterns of illumination outside the RF of a given
neuron cannot generate a response directly, although they
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can significantly modulate responses to stimuli within the
RF via long–range cortical interactions (Fitzpatrick 2000).
The RF is divided into distinct ON and OFF regions. In an
ON (OFF) region illumination that is higher (lower) than
the background light intensity enhances firing. The spatial
arrangement of these regions determines the selectivity of
the neuron to different stimuli. For example, one finds that
the RFs of most V1 cells are elongated so that the cells re-
spond preferentially to stimuli with certain preferred orien-
tations (Hubel and Wiesel 1962). The RFs of retinal ganglion
neurons and LGN neurons, on the other hand, are circularly
symmetric and hence these neurons do not exhibit any stim-
ulus orientation preference. Neurons in both the LGN and in-
put layers of V1 are also segregated according to whether or
not they respond preferentially to left-eye or right-eye stimuli
(ocular dominance) (Hubel and Wiesel 1977). Neurons in V1
with similar feature preferences tend to arrange themselves
in vertical columns so that to a first approximation the lay-
ered structure of cortex can be ignored (LeVay and Nelson
1991). The corresponding feature maps then describe the spa-
tial distribution of these columns as one moves tangentially
over the surface of cortex. In recent years much information
has accumulated regarding the two–dimensional distribution
of both orientation preference and ocular dominance columns
using optical imaging techniques (Blasdel and Salama 1986;
Bonhoeffer and Grinvald 1991). These experimental studies
indicate that there is an underlying periodicity in the micro-
structure of V1 with a period of approximately 1mm (in cats
and primates). The fundamental domain of this tiling of the
cortical plane is the hypercolumn, which contains two sets of
orientation preferences θ ∈ [0, π) per eye, organized around
a pair of orientation singularities or pinwheels (Obermayer
and Blasdel 1993).

It is generally accepted that the preference of cortical neu-
rons for particular stimulus features such as orientation and
ocular dominance arises primarily from the spatial arrange-
ment of convergent feedforward afferents from the LGN (or
from other layers of cortex). The experimental observation
that stimulus deprivation can modify ocular dominance col-
umns during a critical period of postnatal development in
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cats and primates provides strong evidence that the formation
of these columns is activity–dependent (Hubel et al. 1977;
LeVay et al. 1978; Stryker and Harris 1986). On the other
hand, since orientation and OD columns are already present
in newly born primates, and the segregation of OD columns
occurs as early as one week after LGN axons enter layer 4
of V1 in ferrets (Crowley and Katz 2000), it has been sug-
gested that activity–independent molecular cues could play
a major role in the initial formation of columns. However,
specific molecules have not yet been found. Moreover, it is
possible that spontaneous retinal waves (Wong et al. 1993) or
endogenous activity in the cortico-geniculate feedback loop
could support an activity–dependent mechanism in the early
stages of columnar development (Penn and Shatz 1999). A
much more likely role for molecular cues is in the initial
development of the topographic map, where geniculate ax-
ons are guided to targets in input layer 4 of V1 after reach-
ing the cortical subplate (Ghosh and Shatz 1992). However,
the resulting map is rather crude and some form of activity
appears to be necessary for the subsequent refinement of the
topographic map through the pruning of initially exuberant
axonal arborizations (Catalano and Shatz 1998).

A large number of models have been proposed that de-
scribe activity–dependent development as a self–organizing
Hebbian process (see the review of Swindale 1996). In the
case of correlation–based developmental models (Linsker
1986; Miller et al. 1989; Miller 1994; Erwin and Miller
1998), the statistical structure of input correlations provides
a mechanism for spontaneously breaking some underlying
symmetry of the neuronal receptive fields leading to the emer-
gence of feature selectivity. When such correlations are com-
bined with intracortical interactions, there is a simultaneous
breaking of translation symmetry across cortex leading to
the formation of a spatially periodic cortical feature map.
Correlation–based models are essentially linear, so that con-
siderable insight into the developmental process can be ob-
tained by solving an associated eigenvalue problem (Mackay
and Miller 1990; Miller and MacKay 1994; Wimbauer et al.
1998). One of the possible limitations of this class of model
is that a regular topographic map is assumed already to ex-
ist before feature–based columns begin to develop. In order
to model the joint development of topography and cortical
feature maps, it appears necessary to introduce some form
of nonlinear competition for activation (Willshaw and von
der Malsburg 1976; Kohonen 1982; Goodhill 1993; Piepen-
brock and Obermayer 1999), neurotrophic factors (Elliott and
Shadbolt 1999) or a combination of the two (Whitelaw and
Cowan 1981).

An alternative mathematical formulation of topographic
map formation has been developed byAmari using the theory
of self–organizing neural fields (Takeuchi and Amari 1979;
Amari 1980, 1983, 1989). The basic network model involves
a form of non–competitive Hebbian learning in the presence
of hard threshold, nonlinear firing rate functions. It is found
numerically that starting from a crude topographic map, the
system evolves to a more refined continuous map that is
dynamically stable. In the simpler one–dimensional case,

conditions for the existence and stability of such a map can
be derived analytically. Moreover, it can be shown that under
certain circumstances the continuous topographic map under-
goes a pattern forming instability that spontaneously breaks
continuous translation symmetry, and the map becomes par-
titioned into discretized blocks; it has been suggested that
these blocks could be a precursor for the columnar micro-
structure of cortex (Takeuchi and Amari 1979; Amari 1989).
Given that cortical columns tend to be associated with stim-
ulus features such as ocular dominance and orientation, this
raises the interesting question whether or not such features
could also emerge through the spontaneous symmetry break-
ing of self–organizing neural fields. Some recent numerical
studies support such a possibility (Woodbury et al. 2002;
Fellenz and Taylor 2002). In this paper, we explore this issue
from a mathematical perspective by extending Amari’s orig-
inal analysis to networks with distinct left–eye and right–eye
afferents and to two–dimensional networks. Throughout the
paper we emphasize the important role of symmetry.

2 Neural field theory

We begin by reviewing Amari’s neural field theory for topo-
graphic map formation (Takeuchi and Amari 1979; Amari
1980, 1983, 1989), and introduce the basic notation that will
be used throughout the paper. We also present an alternative
derivation of the linear stability conditions for one–dimen-
sional topographic maps, which is more easily extended to
networks with distinct left/right eye afferents (Sect. 3) and to
two–dimensional networks (Sect. 4).

2.1 Network model

A schematic diagram of the basic network model is shown in
Fig. 1. The lateral geniculate nucleus (LGN) and the primary

cortex

r1

r2

s(r2,r1)

r I LGN

u

w(r2,r2)

r1

r2

/
H(u)

/

/

Fig. 1 Basic network architecture illustrating how a localized input
I centered at position r in the LGN layer induces a corresponding
response u in the cortical layer. (The global inhibition is not shown)
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visual cortex are treated as two–dimensional continuous neu-
ral sheets. Let r1 = (x1, y1) ∈ �1 denote a point in the LGN
layer and r2 = (x2, y2) ∈ �2 a point in the cortical layer. The
strength of feedforward excitatory afferents connecting these
two points is denoted by s(r2, r1). Suppose, for the moment,
that these feedforward afferents are fixed and that there exists
presynaptic input activity I (r1|r) centered about the point
r in the LGN. This is supplemented by a global inhibitory
input I0 with associated feedforward synaptic density s0(r2)
(Takeuchi and Amari 1979; Amari 1980). The total weighted
input to a point r2 in cortex is then given by

v(r2|r) =
∫
�1

s(r2, r1)I (r1|r)dr1 − s0(r2)I0. (2.1)

Cortical neurons also receive synaptic inputs from recurrent
connections within the layer, which are taken to be homoge-
neous and isotropic. Thus, the synaptic density from neurons
at r′

2 to neurons at r2 is of the form w(|r2 − r′
2|) for some

prescribed function w. Given these two sources of input, the
activity u(r2, t |r) of neurons at r2 at time t in response to
a stimulus centered at r satisfies the neural field equation
(Takeuchi and Amari 1979; Amari 1980)

η
∂u

∂t
= −u(r2, t |r)+

∫
�2

w(|r2 − r′
2|)

H(u(r′
2, t |r))dr′

2 + v(r2|r)− h, (2.2)

where η is a membrane time constant, −h determines the
background level of activity in the absence of stimuli, and
H(u) denotes the output firing rate function, which is taken
to be a Heaviside function:H(u) = 1 if u > 0 andH(u) = 0
otherwise. It is assumed that each stimulus is presented to
the network for a sufficiently long time, so the activity u con-
verges to a stable equilibrium solution of the integral equation

u(r2|r) =
∫
�2

w(|r2 − r′
2|)H(u(r′

2|r))dr′
2

+v(r2|r)− h. (2.3)

Now suppose that modifications in the strength of the
feedforward afferents s, s0 occur on a much slower time scale
than both the relaxation time of the activity u and the time
interval over which each input is sampled. This adiabatic
condition implies that the equilibrium activity u is slaved to
the slowly changing synaptic weights s, s0. A Hebbian rule
is assumed for the dynamics of the feedforward connections
such that during the presentation of a single input centered
at r,

η
∂s

∂τ
= −s(r2, r1, τ )+ cH(u(r2, τ |r))I (r1|r) (2.4)

and

η
∂s0

∂τ
= −s0(r2, τ )+ ĉH(u(r2, τ |r))I0, (2.5)

where τ = εt for 0 < ε � 1 and c, ĉ are constants. Note
that there is a separation of time–scales in which u(r2, τ |r) =
limt→∞ u(r2, t, τ |r) is a stable equilibrium solution of Eqs.

2.2 and 2.1 with s = s(r2, r1, τ ), s0 = s0(r2, τ ) for fixed
slow time variable τ .

The final step in the formulation of neural field theory
is to assume that the the center r(τ ) of an input at time τ
is generated at random from some probability density ρ(r)
(Takeuchi and Amari 1979; Amari 1980). This implies that
Eqs. 2.4 and 2.5 become a set of stochastic differential equa-
tions. Given the above adiabatic condition, it is then possible
to take an ensemble average over the distribution of inputs to
obtain the deterministic equations

η
∂s

∂τ
=−s(r2, r1, τ )+ c

〈
H(u(r2, τ |r′))I (r1|r′)

〉
(2.6)

and

η
∂s0

∂τ
= −s0(r2, τ )+ ĉ

〈
H(u(r2, τ |r′))

〉
I0, (2.7)

where 〈 〉 denotes the ensemble average over r′. These aver-
aged equations involve the approximation that u depends on
〈s〉, 〈s0〉 rather than s, s0. For ease of notation, the averages
〈s〉, 〈s0〉 are then simply denoted by s, s0. The validity of such
an approximation has been established analytically elsewhere
(Geman 1979).

It is convenient to determine the slow variation in the
weighted input v induced by changes in the feeedforward
afferents for a fixed input centered at r. Differentiating Eq.
2.1 with respect to τ gives

η
∂v

∂τ
= η

∫
�1

∂s(r2, r1, τ )

∂τ
I (r1|r)dr1

−η∂s0
∂τ
(r2, τ )I0.

Using Eqs. 2.6 and 2.7, this reduces to

η
∂v

∂τ
= −v(r2, τ |r)

+
∫
�1

ρ(r′)g(r|r′)H(u(r2, τ |r′))dr′, (2.8)

where

g(r|r′) = c

∫
�1

I (r1|r)I (r1|r′)dr1 − ĉI 2
0 . (2.9)

Further simplification can be achieved by assuming that the
inputs are homogeneous and isotropic, I (r1|r) = I (|r1 −r|),
so that the input kernelg(r|r′) = g(|r−r′|). This is only valid
if we ignore boundary effects either by setting �1,2 = R2 or
by using periodic boundary conditions. For example, taking
the inputs to be Gaussians, I (|r|) = Ae−r2/2σ 2

, then Eq. 2.9
ensures that the input kernel g is also a Gaussian:

g(|r|) = cσ 2πA2e−r2/4σ 2 − ĉI 2
0 . (2.10)

If we also take ρ(r) to be a uniform distribution then we
obtain the homogeneous equations

u(r2, τ |r) =
∫
�2

w(|r2 − r′
2|)H(u(r′

2, τ |r))dr′
2

+v(r2, τ |r)− h (2.11)
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and

η
∂v

∂τ
= −v(r2, τ |r)

+
∫
�1

g(|r − r′|)H(u(r2, τ |r′))dr′. (2.12)

(Note that the normalization factor for the uniform distri-
bution can be absorbed into the coefficients c, ĉ). Equations
2.11 and 2.12 are the basic neural field equations for topo-
graphic map formation (Takeuchi and Amari 1979; Amari
1980). Rescaling the LGN and cortical coordinates appropri-
ately, that is, ignoring the effects of cortical magnification,
one can then look for homogeneous steady–state solutions of
the form u(r2|r) = U(|r2 − r|) and v(r2|r) = V (|r2 − r|),
where U is a unimodal function satisfying the fixed point
equation

U(|r2 − r|) =
∫
�2

w(|r2 − r′
2|)H(U(|r′

2 − r|))dr′
2

+
∫
�1

g(|r − r′|)
H(U(|r2 − r′|))dr′ − h, (2.13)

and

V (|r2 − r|) =
∫
�1

g(|r − r′|)H(U(|r2 − r′|))dr′. (2.14)

Such a solution represents a continuous topographic map in
which the center of LGN input activity at r ∈ �1 is mapped
to the center of cortical output activity at the corresponding
point r ∈ �2. We now discuss the existence and stability
of such solutions in the simpler one–dimensional case orig-
inally analyzed by Amari (Takeuchi and Amari 1979; Amari
1980, 1989).

2.2 One-dimensional topographic map

One–dimensional versions of Eqs. 2.11 and 2.12 take the
form

u(x2, τ |x) =
∫ ∞

−∞
w(x2 − x ′

2)H(u(x
′
2, τ |x))dx′

2

+v(x2, τ |x)− h (2.15)

and

η
∂v

∂τ
= −v(x2, τ |x)

+
∫ ∞

−∞
g(x − x ′)H(u(x2, τ |x ′))dx′ (2.16)

with

g(x − x ′) = c

∫ ∞

−∞
I (x1 − x)I (x1 − x ′)dx1 − ĉI 2

0 . (2.17)

We will assume that g(x) is a monotonically decreasing func-
tion of x. This will hold, for example, if the inputs I (x) are
Gaussians I (x) = Ae−x2/2σ 2

and hence

g(x) = cσ
√
πA2e−x2/4σ 2 − ĉI 2

0 . (2.18)

Let us consider an equilibrium solution of the form

u0(x2|x) = U(x2 − x), v0(x2|x) = V (x2 − x) (2.19)

withU,V satisfying the one–dimensional version of the fixed
point Eqs. 2.13 and 2.14:

U(x2 − x) =
∫ ∞

−∞
w(x2 − x ′

2)H(U(x
′
2 − x))dx′

2

+
∫ ∞

−∞
g(x − x ′)H(U(x2 − x ′))dx′ − h,

and

V (x2 − x) =
∫ ∞

−∞
g(x − x ′)H(U(x2 − x ′))dx′.

In particular, we seek a unimodal solution U with

U(x) > 0, |x| < a, U(x) = 0, |x| = a,

U(x) < 0, |x| > a, (2.20)

where 2a is the width of the excited region (activity bump)
in cortex. Then

U(x) = W(x + a)+W(x − a)+G(x + a)

+G(x − a)− h (2.21)

with

W(x) =
∫ x

0
w(x ′)dx′, G(x) =

∫ x

0
g(x ′)dx′. (2.22)

The corresponding width of the activity bump is determined
from the threshold conditions U(±a) = 0, which yields the
implicit equation

W(2a)+G(2a) = h. (2.23)

The stability of the bump with respect to fluctuations on the
fast time–scale t can be determined by linearizing the equa-
tion

η
∂U

∂t
= −U(x, t)+

∫ ∞

−∞
w(x − x ′)H(U(x ′, t))dx′

+
∫ ∞

−∞
g(x − x ′)H(U(x ′, t))dx′ − h, (2.24)

about the bump solution, and this leads to the stability con-
dition (Amari 1977)

W ′(2a)+G′(2a) ≡ w(2a)+ g(2a) < 0. (2.25)

As shown elsewhere (Amari 1977;Takeuchi andAmari 1979),
if w consists of short–range excitation and long–range inhi-
bition (the so–called Mexican hat profile) and g is a mono-
tonically decreasing function then there exists a unique stable
bump solution U for a range of threshold values h. We will
assume that this holds in the following analysis.
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Translation symmetry

The one–dimensional neural field Eqs. 2.15 and 2.16 are equi-
variant with respect to the product group T ×T of translations
acting on the space R × R according to

Ts,s ′(x2, x) = (x2 + s, x2 + s ′), Ts,s ′ ∈ T × T .
The corresponding group action on the neural fields u, v is

Ts,s ′(u(x2|x), v(x2|x)) = (u(x2 − s|x − s ′),
v(x2 − s|x − s ′)).

Equivariance means that if (u, v) is a solution of the neural
field equations then so is Ts,s ′(u, v). This is a more formal
way of expressing the fact that the homogeneous system has
an underlying translation symmetry. It is also important to
note that the homogeneous equilibrium solution u0(x2|x) =
U(x2 − x), v0(x2|x) = V (x2 − x) explicitly breaks the sym-
metry group from T × T → T with resulting group action

Ts(u0(x2|x), v0(x2|x)) = (u0(x2 − s|x − s),

v0(x2 − s|x − s)), Ts ∈ T
that is, Ts = Ts,s . We will show below that the homoge-
neous equilibrium solution can undergo a pattern forming
instability that spontaneously breaks the remaining transla-
tion symmetry.

2.3 Linear stability analysis

In order to investigate the stability of the topographic map
solution with respect to fluctuations on the slow time–scale
τ , we linearize Eqs. 2.15 and 2.16 by introducing small per-
turbations of the form

u(x2, τ |x) = U(x2 − x)+ p(x2, τ |x),
v(x2, τ |x) = V (x2 − x)+ q(x2, τ |x) (2.26)

and expanding to first order in p, q. This leads to the equa-
tions (on setting η = 1)

∂q

∂τ
= −q(x2, τ |x)

+
∫ ∞

−∞
g(x − x ′)H ′(U(x2 − x ′))p(x2, τ |x ′)dx ′

and

p(x2, τ |x) =
∫ ∞

−∞
w(x2 − x ′

2)H
′(U(x ′

2 − x))

×p(x ′
2, τ |x)dx′

2 + q(x2, τ |x).
Using the result

H ′(U(x)) = α−1 [δ(x − a)+ δ(x + a)] , (2.27)

where α = |U ′(±a)| and δ(x) is the Dirac delta function, we
obtain the pair of linear equations

∂q

∂τ
= −q(x2, τ |x)+ α−1 [g(x − x2 + a)

×p(x2, τ |x2 − a)

+g(x − x2 − a)p(x2, τ |x2 + a)] (2.28)

and

p(x2, τ |x) = q(x2, τ |x)
+α−1 [w(x2 − x + a)p(x − a, τ |x)
+w(x2 − x − a)p(x + a, τ |x)] .

(2.29)

Equations 2.28 and 2.29 involve nonlocal terms located at
the boundaries x2 = x± a of the unperturbed activity bump.
This indicates why it is possible to analyze the stability of
the topographic map by restricting attention to the effects
of perturbations at the boundaries of the activity bump as
originally formulated by Amari (Amari 1977; Takeuchi and
Amari 1979; Amari 1989). In particular, if u(x2, τ |x) = 0 at
x2 = x ± a +�±(x, τ ), then

0 = U(±a +�±(x, τ ))+ p(x ± a +�±(x, τ ), τ |x)
= U(±a)+ U ′(±a)�±(x, τ )+ p(x ± a, τ |x)

+O(�2)

that is,

�±(x, τ ) = ±α−1p(x ± a, τ |x)
since U(±a) = 0 and U ′(±a) = ∓α. Two particular exam-
ples of boundary perturbations are illustrated in Fig. 2: a
uniform expansion of the bump for which p(x + a, τ |x) =
p(x− a, τ |x) and a shift in the center of the bump for which
p(x + a, τ |x) = −p(x − a, τ |x). In this paper we choose
to work directly with the linear Eqs. 2.28 and 2.29, since
these are more simply extended to the case of two–dimen-
sional networks. Moreover, they take into account perturba-
tions outside the boundary domain of the bump. However, the
resulting stability conditions are equivalent to those derived
following the boundary approach of Amari (Takeuchi and
Amari 1979; Amari 1989): we show this explicitly in the
case of one–dimensional topographic maps. Note that a sim-
ilar approach to the one adopted here has previously been
used to study the stability of activity bumps in single–layer
networks with non–adapting synapses (Pinto and Ermentrout
2001; Folias and Bressloff 2004).

Defining

p±(x, τ ) = p(x ± a, τ |x),
q±(x, τ ) = q(x ± a, τ |x) (2.30)

and setting x2 = x±a in Eq. 2.29 gives the pair of equations

p+(x, τ ) = q+(x, τ )+ α−1[w(2a)p−(x, τ )
+w(0)p+(x, τ )], (2.31)

p−(x, τ ) = q−(x, τ )+ α−1[w(0)p−(x, τ )
+w(2a)p+(x, τ )]. (2.32)

Similarly, setting x2 = x ± a in Eq. 2.28 shows that

∂q+
∂τ

= −q+(x, τ )+ α−1
[
g(0)p+(x, τ )

+g(2a)p−(x + 2a, τ )
]
, (2.33)

∂q−
∂τ

= −q−(x, τ )+ α−1
[
g(2a)p+(x − 2a, τ )

+g(0)p−(x, τ )
]
. (2.34)
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Fig. 2 Perturbations p±(x) = p(x ± a|x) at the boundaries of a homogeneous bump solution centered about x2 = x and having width 2a. Only
the superthreshold part of the bump is shown. a Expansion of the bump such that p−(x) = p+(x). b Shift in the position of the bump such that
p−(x) = −p+(x)

We have used the fact thatw(x) and g(x) are even functions.
Equations 2.31–2.34 have eigensolutions of the form

p±(x, τ ) = eλτeikxP±(k),
q±(x, τ ) = eλτeikxQ±(k) (2.35)

with the eigenvalue λ and eigenvectors P = (P+, P−)T,
Q = (Q+,Q−)T determined from the matrix equations

λQ(k) = −Q(k)+ α−1G(k)P(k),
P(k) = Q(k)+ α−1WP(k), (2.36)

where

W =
(
w0 w2
w2 w0

)
, G(k) =

(
g0 g2e2ika

g2e−2ika g0

)
(2.37)

with w0 = w(0), w2 = w(2a), g0 = g(0), g2 = g(2a). It
follows that

(λ+ 1)Q(k) = M(k)Q(k), (2.38)

where

M(k) = G(k) [α1 − W]−1 (2.39)

= 1

�

(
(α − w0)g0 + w2g2e2ika (α − w0)g2e2ika + w2g0

(α − w0)g2e−2ika + w2g0 (α − w0)g0 + w2g2e−2ika

)

and

� = (α − w0)
2 − w2

2 . (2.40)

Thus

λ = λ±(k) ≡ −1 + µ±(k), (2.41)

where µ±(k) are the eigenvalues of the matrix M(k),

µ±(k) = 1

�

[
�(k)±

√
�(k)2 −�2(g2

0 − g2
2)

]
(2.42)

with

�(k) = (α − w0)g0 + w2g2 cos(2ka). (2.43)

Note that we can expressα in terms of the coefficientsg0,2, w0,2
by differentiating Eq. 2.21 with respect to x,

α ≡ |U ′(±a)| = g0 − g2 + w0 − w2. (2.44)

First consider the case w2 < 0. Eqs. 2.40 and 2.44 then
imply that

� = (α − w0 + w2)(α − w0 − w2)

= (g0 − g2)(g0 − g2 − 2w2) > 0,

since g(x) is a monotonically decreasing function with g0 >
g2, see Eq. 2.18. Define

�min = (α − w0)g0 − |w2g2|,
�max = (α − w0)g0 + |w2g2|
such that 0 < �min ≤ �(k) ≤ �max for all k. It follows from
Eqs. 2.42 to 2.44 that

�2
min −�2[g2

0 − g2
2]

= [|w2|g0 − (α − w0)|g2|]2 ≥ 0

and, hence, µ±(k) are real for all k. Combining this with the
inequality � > 0 shows that

λmax ≡ max
k
λ±(k) = −1 +�−1

[
�+

+
√
�2+ −�2[g2

0 − g2
2]

]

= −1 +�−1(g0 + |g2|)
×(α − w0 + |w2|)

= �−1(α − w0 + |w2|)(g2 + |g2|),
where we have used Eqs. 2.40 and 2.44. Finally, noting that
� > 0 and α − w0 + |w2| > 0, we obtain the following
stability conditions:

1. If g2 < 0 then λmax = λ+(0) = 0 and the topographic
map is stable

2. If g2 > 0 then λmax = λ+(π/2a) > 0 and the topo-
graphic map is unstable. Moreover the fastest growing
mode has a wavelength equal to 4a, which is twice the
width of an activity bump, and has vector components
P(π/2a) = (1,−1). That is, the (real–valued) excited
mode is of the form

p±(x) = ±� cos

(
π(x − x̄)

2a

)
,

where x̄ is an arbitrary shift, reflecting hidden translation
symmetry, and the amplitude � is arbitrary within the
linear approximation.
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Fig. 3 a Homogeneous topographic map for g(2a) < 0. b Spatially periodic topographic map for g(2a) > 0 with a block–like microstructure.
The shaded regions indicate where u(x2|x) > 0

Note that the existence of a zero eigenvalue, λ+(0) = 0,
reflects the underlying translation symmetry of the homoge-
neous solution under simultaneous shifts x → x +�, x2 →
x2 + �. In the above analysis we assumed that w2 < 0. If
w2 > 0 then we require g2 < 0 in order to satisfy the stability
condition 2.25. Since the maximum eigenvalue is positive for
w2 > 0 and g2 < 0,

λmax = −1 +�−1(g0 + |g2|)(α − w0 + w2)

= g0 − g2

g0 − g2 − 2w2
> 0,

it follows that the topographic map is unstable. Therefore,
g2 < 0 and w2 < 0 are necessary and sufficient conditions
for the stability of the one–dimensional topographic map,
as previously shown by Takeuchi and Amari (Takeuchi and
Amari 1979).

The above analysis establishes that the homogeneous equi-
librium solution u0(x2|x) = U(x2 − x) undergoes a pattern
forming instability as g2 changes from a negative to a posi-
tive value induced, for example, by a reduction in the back-
ground inhibition ĉI 2

0 or by an increase in the spread σ of the
Gaussian inputs, see Eq. 2.18. Such an instability spontane-
ously breaks continuous translation symmetry, leading to the
partitioning of the topographic map into discretized blocks
(Takeuchi and Amari 1979). This is illustrated schematically
in Fig. 3. The fact that the resulting pattern has a block–like
structure can be understood from the observation that the
dominant excited mode satisfies p+(x, τ ) = −p−(x, τ ) and
hence�+(x, τ ) = �−(x, τ ). Thus the instability generates a
leftward or rightward shift in an activity bump, depending on
the location of the centerx of its associated receptive field (see
Fig. 2). It has been suggested that the blocks could be a pre-
cursor for the columnar microstructure of cortex (Takeuchi
and Amari 1979; Amari 1989). As we mentioned in the intro-
duction, cortical columns tend to be associated with a variety
of stimulus features such as ocular dominance and orienta-
tion, which form spatially distributed feature maps that are
superimposed upon the underlying topographic map (Swin-
dale 1996). In the following sections we extend the stability
analysis of one–dimensional topographic maps in order to
investigate how such features could also emerge through the
spontaneous symmetry breaking of self–organizing neural

fields. First, in Sect. 3 we consider a one–dimensional net-
work consisting of separate left and right eye afferents from
the LGN. This introduces an additionalZ2 symmetry that can
be spontaneously broken, resulting in the spatial segregation
of eye specific activity bumps consistent with the emergence
of ocular dominance columns. Second, in Sect. 4 we consider
an isotropic two–dimensional network whose rotational sym-
metry can be spontaneously broken, leading to the formation
of elongated activity bumps consistent with the emergence
of orientation preference columns.

One final comment regarding Amari’s model of topo-
graphic map formation is in order before proceeding with our
analysis. This concerns the inclusion of feedforward inhibi-
tory synapses that can also undergo Hebbian learning. Such
inhibition is necessary in order to stabilize the smooth topo-
graphic map. However, as far as we are aware, there is no
conclusive experimental support for the existence of Heb-
bian–like inhibitory synapses. On the other hand, most devel-
opmental models involving the Hebbian–like modification of
excitatory synapses require additional constraints to ensure
that an appropriate form of competition between synapses
occurs and that a stable distribution of synaptic weights is
generated (Miller and MacKay 1994). The constraints typi-
cally limit the sum of synaptic strengths received by a cell,
or the mean activity of the cell. Although the constraints are
not usually biophysically realistic, they are motivated by the
idea that there exists some form of global intracellular sig-
nal controlling the synaptic weights. The modifiable inhib-
itory synaspses in Amari’s model play an analogous role to
these constraints. For example, in the binocular extension of
Amari’s model (see Sect. 3), feedforward inhibition ensures
that the topographic map is stable (unstable) with respect to
perturbations that are symmetric (anti-symmetric) under the
exchange of left/right eye inputs. This should be compared
with the use of subtractive normalization in correlation–based
Hebbian models (Miller and MacKay 1994).

3 Spontaneous symmetry breaking in a binocular one
dimensional network

Our first extension of the theory of self–organizing neural
fields is to consider a one–dimensional network with distinct
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left and right eye afferents. We derive conditions for the exis-
tence of a binocular topographic map, in which the response
to a stimulus is independent of whether it is presented to the
left or right eye. The resulting homogeneous solution is thus
symmetric with respect to a discrete Z2 left/right exchange
symmetry. We then generalize the linear stability analysis
presented in Sec. 2, and show how the binocular state can un-
dergo a pattern forming instability that spontaneously breaks
the underlying Z2 symmetry. This leads to the spatial seg-
regation of eye specific activity bumps consistent with the
emergence of ocular dominance columns.

3.1 Binocular equilibrium state

Consider a one–dimensional version of the network model
shown in Fig. 1, in which there are separate afferents from the
left and right eye denoted by sL(x2, x1, τ ) and sR(x2, x1, τ ),
respectively. The total input to cortical neurons at x2 now
becomes

v(x2|x, γ ) =
∫ ∞

−∞

[
sL(x2, x1)IL(x1|x, γ )dx1

+sR(x2, x1)IR(x1|x, γ )dx1
]

−s0(x2), (3.1)

where γ is an additional stimulus label that takes into account
differences in the statistical correlations between same eye
and opposite eye inputs. We have also set the inhibitory input
I0 = 1. For concreteness, we choose Gaussian inputs of the
form

IL(x1|x, γ ) = A(1 + γ )e−(x−x1)
2/2σ 2

,

IR(x1|x, γ ) = A(1 − γ )e−(x−x1)
2/2σ 2

, (3.2)

whereγ is taken to be a binary random variable with Prob(γ =
γ0) = Prob(γ = −γ0) = 1/2 for some constant γ0, 0 <
γ0 < 1. As in Sect. 2, the center of the input x is gener-
ated from a uniform random distribution. The derivation of
the neural field equations proceeds in a similar fashion to the
previous case, except now the Hebbian learning rules involve
ensemble averages with respect to the left/right eye label as
well:

η
∂sL

∂τ
= −sL(x2, x1, τ )

+c 〈
H(u(x2, τ |x ′, γ ′))IL(x1|x ′, γ ′)

〉
, (3.3)

η
∂sR

∂τ
= −sR(x2, x1, τ )

+c 〈
H(u(x2, τ |x ′, γ ′))IR(x1|x ′, γ ′)

〉
(3.4)

and

η
∂s0

∂τ
= −s0(x2, τ )+ ĉ

〈
H(u(x2, τ |x ′, γ ′))

〉
, (3.5)

where 〈 〉 denotes the ensemble average over x ′, γ ′, and

u(x2, τ |x, γ ) =
∫ ∞

−∞
w(x2 − x ′

2)H(u(x
′
2, τ |x, γ ))dx ′

2

+v(x2, τ |x, γ )− h. (3.6)

The corresponding equation for the weighted input v is ob-
tained by differentiating Eq. 3.1 with respect to τ and using
Eqs. 3.3–3.5:

η
∂v

∂τ
= −v(x2, τ |x, γ )

+
∑
γ ′=±γ0

∫ ∞

−∞
g(x, γ |x ′, γ ′)H(u(x2, τ |x ′, γ ′))dx ′

(3.7)

with

g(x, γ |x ′, γ ′) = [
1 + γ γ ′] ḡ(x − x ′)− ĉ (3.8)

and

ḡ(x) = 2cσ
√
πA2e−x2/4σ 2

. (3.9)

Consider an equilibrium solution of the form

u0(x2|x, γ ) = U(x2 − x, γ ),

v0(x2|x, γ ) = V (x2 − x, γ ). (3.10)

The corresponding fixed point equations are

U(x2 − x, γ ) =
∫ ∞

−∞
w(x2 − x ′

2)H(U(x
′
2 − x, γ ))dx ′

2

−ĉ
∑
γ ′

∫ ∞

−∞
H(U(x2 − x ′, γ ′))dx ′ − h

+
∑
γ ′
(1 + γ γ ′)

∫ ∞

−∞
ḡ(x − x ′)

×H(U(x2 − x ′, γ ′))dx ′ (3.11)

and

V (x2 − x, γ ) =
∑
γ ′

∫ ∞

−∞

[
(1 + γ γ ′)ḡ(x − x ′)

−c̄]H(U(x2 − x ′, γ ′))dx ′.

Taking U(x, γ ) to be an activity bump of width 2a(γ ) and
setting x2 = x ± a(γ ) then gives

W(2a(γ ))+
∑
γ ′
(1 + γ γ ′)Ḡ(2a(γ ′))

−2ĉ
∑
γ ′
a(γ ′) = h (3.12)

for γ = ±γ0. Defining a± = a(±γ0) we finally obtain the
pair of implicit equations

W(2a±)+ [
Ḡ(2a+)+ Ḡ(2a−)− 2ĉ(a+ + a−)

]
±γ 2

0

[
Ḡ(2a+)− Ḡ(2a−)

] = h, (3.13)

where W and Ḡ are defined as in Eq. 2.22 with g replaced
by ḡ. We define a homogeneous binocular state to be one for
which a+ = a− = a with a satisfying the reduced equation

W(2a)+ 2G(2a) = h (3.14)

andG(2a) = Ḡ(2a)−2ĉa. The associated activity bump will
be stable with respect to fluctuations on the fast time–scale t
provided that W ′(2a)+ 2G′(2a) < 0.
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Z2 symmetry

The one–dimensional neural field Eqs. 3.6 and 3.7 are not
only equivariant with respect to the product group of transla-
tions T ×T described at the end of Sect. 2.2, but also have an
additional Z2 symmetry. The latter group has elements ξ0, ξ1
where ξ0 is the identity element and ξ1 · ξ1 = ξ0:

ξ0.(u(x2|x, γ ), v(x2|x, γ )) = (u(x2|x, γ ), v(x2|x, γ )),
ξ1.(u(x2|x, γ ), v(x2|x, γ ))

= (u(x2|x,−γ ), v(x2|x,−γ )).
The homogeneous equilibrium solutionu0(x2|x, γ ) = U(x2−
x, γ ), v0(x2|x, γ ) = V (x2 − x, γ ) then explicitly breaks the
symmetry group from T ×T ×Z2 → T ×Z2. We will show
below that the homogeneous equilibrium solution can un-
dergo a pattern forming instability that spontaneously breaks
the remaining T × Z2 symmetry.

3.2 Linear stability analysis

Following along similar lines to Sect. 2.3, we linearize Eqs.
3.6 and 3.7 about the homogeneous binocular state by con-
sidering perturbations of the form

u(x2, τ |x, γ ) = U(x2 − x, γ )+ p(x2, τ |x, γ ),
v(x2, τ |x, γ ) = V (x2 − x, γ )+ q(x2, τ |x, γ ) (3.15)

Using the identity (2.27) and setting η = 1, this yield the
linear equations

∂q

∂τ
= −q(x2, τ |x, γ )− α−1ĉ

∑
γ ′

[
p(x2, τ |x2−a, γ ′)+p(x2, τ |x2 + a, γ ′)

]

+α−1
∑
γ ′
(1 + γ γ ′) [ḡ(x−x2 + a)p(x2, τ |x2

−a, γ ′)+ ḡ(x−x2−a)p(x2, τ |x2 + a, γ ′)
]

(3.16)

and

p(x2, τ |x, γ ) = q(x2, τ |x, γ )
+α [

w(x2−x+a)p(x − a, τ |x, γ ′)

+w(x2−x−a)p(x + a, τ |x, γ ′)
]
.

(3.17)

Defining

p±(x, γ, τ ) = p(x ± a, τ |x, γ ),
q±(x, γ, τ ) = q(x ± a, τ |x, γ ), (3.18)

and setting x2 = x±a in Eq. 3.17 gives the pair of equations

p+(x, γ, τ ) = q+(x, γ, τ )+ α−1[w(2a)p−(x, γ, τ )
+w(0)p+(x, γ, τ )], (3.19)

p−(x, γ, τ ) = q−(x, γ, τ )+ α−1[w(0)p−(x, γ, τ )
+w(2a)p+(x, γ, τ )]. (3.20)

Similarly, setting x2 = x ± a in Eq. (3.16) shows that

∂q+
∂τ

= −q+(x, γ, τ )− α−1ĉ
∑
γ ′

[
p+(x, γ ′, τ )

+p−(x + 2a, γ ′, τ )
]

+α−1
∑
γ ′
(1 + γ γ ′)

[
ḡ(0)p+(x, γ ′, τ )

+ḡ(2a)p−(x + 2a, γ ′, τ )
]
, (3.21)

∂q−
∂τ

= −q−(x, γ, τ )− α−1ĉ
∑
γ ′

[
p+(x, γ ′, τ )

+p−(x − 2a, γ ′, τ )
]

+α−1
∑
γ ′
(1 + γ γ ′) [ḡ(2a)

×p+(x − 2a, γ ′, τ )+ ḡ(0)p−(x, γ ′, τ )
]
.

(3.22)

Eqs. 3.19–3.22 have eigensolutions of the form

p±(x, γ, τ ) = eλτeikxP±(k, γ ),
q±(x, γ, τ ) = eλτeikxQ±(k, γ ) (3.23)

with the eigenvalue λ and eigenvectors P = (P+, P−)T ,Q =
(Q+,Q−)T determined from the matrix equations

λQ(k, γ ) = −Q(k, γ )− α−1ĉL(k)
∑
γ ′

P(k, γ ′)

+α−1Ḡ(k)
∑
γ ′
(1 + γ γ ′)P(k, γ ′),

(3.24)

P(k, γ ) = Q(k, γ )+ α−1WP(k, γ ). (3.25)

The matrices W and Ḡ(k) are defined as in Eq. 2.37 with g
replaced by ḡ, and

L(k) =
(

1 e2iκa

e−2iκa 1

)
. (3.26)

The above matrix equations can be diagonalized with respect
to the discrete label γ by introducing the symmetric and anti-
symmetric fields

pS±(x, τ ) = p±(x, γ0, τ )+ p±(x,−γ0, τ ),

qS±(x, τ ) = q±(x, γ0, τ )+ q±(x,−γ0, τ ), (3.27)

pA±(x, τ ) = p±(x, γ0, τ )− p±(x,−γ0, τ ),

qA±(x, τ ) = q±(x, γ0, τ )− q±(x,−γ0, τ ) (3.28)

with associated vector coefficients PS,A(k) = P(k, γ0) ±
P(k,−γ0) and QS,A(k) = Q(k, γ0) ± Q(k,−γ0). We then
find that

(λ+ 1)QS(k) = 2α−1
[
Ḡ(k)− ĉL(k)

]
PS(k), (3.29)

(λ+ 1)QA(k) = 2α−1γ 2
0 Ḡ(k)PA(k), (3.30)

PS,A(k) = QS,A(k)+ α−1WPS,A(k). (3.31)
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Fig. 4 Segregation of activity bumps generated by left and right eye dominated inputs, respectively. a A leftward shift due to perturbations
p±(x, γ0) at the boundaries of a homogeneous bump solution centered about x2 = x and having width 2a. b Corresponding rightward shift due
to perturbations p±(x,−γ0) = −p±(x, γ0)

Note that the basic structure of the eigensolutions reflects the
fact that they form irreducible representations of the symme-
try group T × Z2. In particular, the existence of symmetric
and antisymmetric solutions under the exchange γ → −γ
reflects the underlying Z2 symmetry.

The matrix equations for the symmetric and antisymmet-
ric modes decouple and are identical in form to the monocular
case considered in Sect. 2, see Eq. 2.36, with G(k) replaced
by GS,A(k):

GS(k) = 2
[
Ḡ(k)− ĉL(k)

]
, GA(k) = 2γ 2

0 Ḡ(k) (3.32)

The analysis of the corresponding symmetric and antisym-
metric eigenvalues also proceeds along identical lines to Sect.
2. Therefore, assuming that w2 < 0, the one–dimensional
binocular topographic map will be stable with respect to the
excitation of symmetric eigenmodes provided that

gS2 ≡ 2(ḡ(2a)− ĉ) < 0, (3.33)

and will be stable with respect to the excitation of antisym-
metric eigenmodes provided that

gA2 ≡ 2γ 2
0 ḡ(2a) < 0. (3.34)

A necessary condition for the formation of ocular dominance
columns is that the binocular state should undergo an insta-
bility that breaks the underlying left/right Z2 symmetry. The
latter will occur if the instability is associated with the growth
of an antisymmetric mode, that is, if gA2 > 0 and gS2 < 0.
This leads to the conditions

0 < ḡ(2a) < ĉ. (3.35)

The first inequality is always satisfied, since Eq. 3.9 implies
that ḡ is a positive function. The dominant excited mode is
given by (modulo an arbitrary phase)

p±(x, γ0) = ±� cos(πx/2a),

p±(x,−γ0) = ∓� cos(πx/2a), (3.36)

which represents a state for which the center of the response
to a left dominated input (+γ0) is shifted in the opposite
direction to the center of the response to a right dominated
input (−γ0), see Fig. 4. Moreover, the directions of the shifts
periodically alternate across space according to the sign of
cos(πx/2a). The form of the fastest growing mode suggests
that ocular dominance columns will form, at least within the

given linear approximation. Note that the joint development
of a topographic map and ocular dominance columns has re-
cently been demonstrated numerically using self–organizing
neural fields with linear threshold nonlinearities (Woodbury
et al. 2002).

The above analysis shows that a certain level of feed-
forward inhibition is needed in order to stabilize the topo-
graphic map with respect to perturbations that are symmetric
under the exchange of left/right eye inputs. Indeed, if there
were no inhibitory contribution (ĉ = 0), then the symmetric
eigenmode would grow faster than the anti-symmetric mode
(since γ 2

0 < 1) and no OD columns would form. As we com-
mented at the end of Sect. 2, feedforward inhibition plays an
analogous role to subtractive normalization in correlation–
based Hebbian models (Miller and MacKay 1994). Although
neither mechanism for stabilizing the symmetric eigenmode
may be biophysically realistic, it is clear that some form of
normalization is needed if the cortical development of ocular
dominance columns occurs via Hebbian–like learning. Such
a normalization will depend on properties of the inputs. In the
case of the neural field model with feedforward inhibition,
this is expressed by Eqs. 3.9 and 3.35, which show that the
minimum level of inhibition c̄ depends on the width σ and
amplitiude A of the Gaussian inputs.

4 Spontaneous symmetry breaking in an isotropic two
dimensional network

In this section, we extend the analysis presented in Sect. 2
to the case of two–dimensional topographic maps. We show
how a dynamical instability of the topographic map can occur,
in which there is a spontaneous breaking of continuous rota-
tion symmetry, leading to the formation of elongated activity
bumps; these are consistent with the emergence of orienta-
tion preference columns. Our analysis is based on a direct
linearization of the neural field Eqs. 2.11 and 2.12 about a
radially symmetric homogeneous solution.

4.1 Two–dimensional topographic map

Consider a radially symmetric, homogeneous equilibrium
solution of Eq. 2.13 such that
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U(r) > 0, 0 < r < a, U(r) = 0, r = a,

U(r) < 0, r > a, (4.1)

where a is the radius of the two–dimensional activity bump
in cortex. Substituting into Eq. 2.13 gives

U(r) = F(a, r)− h, (4.2)

where

F(a, r) =
∫ 2π

0

∫ a

0
f (|r − r′|)r ′ dr′ dθ (4.3)

and we have defined f (r) = w(r)+ g(r). The radius of the
bump is determined from the threshold condition U(a) = 0,
which yields

F(a, a) = h. (4.4)

As in the one–dimensional case, suppose thatw(r) is a Mex-
ican hat function and the input I (r) is a Gaussian so that g(r)
is a monotonically decreasing function of r , see Eq. 2.10. A
unique stable bump solution then exists for a range of thresh-
olds h. (The issue of stability will be addressed below). How-
ever, as has been pointed out elsewhere (Werner and Richter
2001), certain care has to be taken with regards the existence
of two–dimensional bumps in the presence of short–range
excitation and long–range inhibition. That is, in contrast to
the one–dimensional case, the threshold condition may not be
sufficient for existence, since the activity u could dip below
threshold within the interior of the disc r < a.We will assume
in the following that the stable bump solution is superthresh-
old for r < a.

It is possible to simplify the double integral in Eq. 4.3 us-
ing a Fourier transform, which for radially symmetric func-
tions reduces to a Hankel transform (Folias and Bressloff
2004). To see this, consider the two-dimensional Fourier
transform of the radially symmetric function f , expressed
in polar coordinates,

f (r) = 1

2π

∫
R2
eir·k̃f(k)dk

= 1

2π

∫ ∞

0

(∫ 2π

0
eirk cos(θ−φ)̃f(k)dφ

)
kdk,

where f̃ denotes the Fourier transform of f and k = (k, ϕ).
Using the integral representation

1

2π

∫ 2π

0
eirk cos(θ−ϕ)dθ = J0(rk),

where Jν(z) is the Bessel function of the first kind, we express
f in terms of its Hankel transform of order zero,

f (r) =
∫ ∞

0
f̃ (k)J0(rk)k dk (4.5)

which, when substituted into Eq. 4.3, gives

F(a, r)

=
∫ ∞

0
f̃ (k)

(∫ 2π

0

∫ a

0
J0(k|r − r′|)r ′dr′d θ ′

)
k dk.

(4.6)

In polar coordinates,
∫ 2π

0

∫ a

0
J0(k|r − r′|)r ′dr′dθ ′

=
∫ 2π

0

∫ a

0
J0

(
k

√
r2 + r ′2 − 2rr ′ cos(θ − θ ′)

)
r ′dr′dθ ′

To separate variables, we use the addition theorem

J0

(
k
√
r2 + r ′2 − 2rr ′ cos θ ′

)

=
∞∑
m=0

εmJm(kr)Jm(kr
′) cosmθ ′

where ε0 = 1 and εn = 2 for n ≥ 1. Since
∫ 2π

0 cos mθ ′
dθ ′ = 0 for m ≥ 1, it follows that∫ 2π

0

∫ a

0
J0(k|r − r′|)r ′dr′dθ ′

= 2πJ0(kr)

∫ a

0
J0(kr

′)r ′dr′

= 2πa

k
J0(rk)J1(ak).

Hence, F(a, r) has the integral representation

F(a, r) = 2πa
∫ ∞

0
f̃ (k)J0(rk)J1(ak)dk. (4.7)

Stability of two–dimensional bumps

The stability of a two–dimensional bump with respect to fluc-
tuations on the fast time–scale t can be determined from lin-
earizing the equation

η
∂U

∂t
= −U(r, t)

+
∫

R2
f (|r − r′|)H(U(r′, t))dr′ − h (4.8)

about the radially symmetric equilibrium solution. This par-
ticular problem has previously been studied in the restricted
case of radially symmetric perturbations by Taylor (Taylor
1999). However, as recently shown by Folias and Bressl-
off (Folias and Bressloff 2004), it is also necessary to take
into account non–radially symmetric perturbations in order
to fully determine the stability of a two–dimensional activity
bump. It is useful to review this latter analysis here before
considering the stability of the associated topographic map.
Consider the time-dependent perturbationU(r, t) = U(r)+
p(r, t) and expand to first order in p. This leads to the line-
arized equation

∂p

∂t
= −p(r, t)

+
∫

R2
f (|r − r′|)H ′(U(r ′)− κ)p(r′, t)) dr′ (4.9)
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which has solutions of the form p(r, t) = p(r)eλt . Introduc-
ing polar coordinates r = (r, θ) and using the result

H ′(U(r)) = δ(U(r)) = δ(r − a)

|U ′(a)|
we obtain the eigenvalue equation

(λ+ 1)p(r) = a

|U ′(a)|
∫ 2π

0
f (|r − a′|)p(a, θ ′) dθ ′,

(4.10)

where a′ = (a, θ ′).
If the eigenfunction p satisfies the condition∫ 2π

0
f (|r − a′|)p(a, θ ′) dθ ′ = 0

for all r then the associated eigenvalue is λ = −1. This is
part of the essential spectrum and does not cause instability.
If p does not satisfy the above condition, then we must study
the solutions of the integral equation

µp(r, θ) = a

∫ 2π

0
F(a, r; θ − θ ′)p(a, θ ′) dθ ′,

where (λ+ 1)|U ′(a)| = µ and

F(a, r;φ)) = f
(√
r2 + a2 − 2ra cos φ

)
.

It follows thatp(r, θ) is determined completely by the restric-
tion p(a, θ). Hence we need only consider r = a, yielding
the integral equation

µp(a, θ) = a

∫ 2π

0
F(a, a;φ)p(a, θ − φ) dφ. (4.11)

The solutions of this equation are exponential functions einθ

where n ∈ Z. Thus the integral operator with kernel F has a
discrete spectrum given by

µn = a

∫ 2π

0
F(a, a;φ)e−inφdφ

= a

∫ 2π

0
f

(√
a2 + a2 − 2a2 cosφ

)
e−inφdφ

= a

∫ 2π

0
f (2a sin (φ/2)) e−inφdφ

(after rescaling φ). Note that µn is real since

Im{µn(a)} = −a
∫ 2π

0
f (2a sin(φ/2)) sin(nφ)dφ = 0,

i.e. the integrand is odd-symmetric about π . Hence,

µn(a) = Re{µn(a)}
= a

∫ 2π

0
f (2a sin(φ/2)) cos(nφ)dφ (4.12)

with the integrand even-symmetric about π .
We conclude from the above analysis that an activity

bump of radius a (assuming that it exists) will be stable
provided that µn(a) ≤ |U ′(a)| for all n ∈ Z. This en-
sures that the corresponding eigenvalues are non–negative,

λn = −1+|U ′(a)|−1µn(a) ≤ 0 for all n ∈ Z. Differentiating
Eq. 4.3 with respect to r shows that

U ′(a) = ∂

∂r
F (a, r)

∣∣∣∣
r=a

=
∫ 2π

0

∫ a

0

f ′
(√
a2 + r ′2 − 2r ′a cos φ

)
√
a2 + r ′2 − 2r ′a cos φ

×(a − r ′ cos φ)r ′dr′dφ

=
∫ 2π

0

∫ a

0

[
− cosφ

∂f

∂r ′ + sin φ

r ′
∂f

∂φ

]
r=a

r ′dr′dφ

=−a
∫ 2π

0
f

(√
2a2 − 2a2 cos φ

)
cosφ dφ

= −µ1(a).

The final step in the above derivation involves integrating–
by parts the term −r ′ cosφ∂f/∂r ′ with respect to r ′ and the
term sin φ∂f/∂φ with respect to φ. It follows that
λ1 = −1 + |U ′(a)|−1µ1(a) = 0. The existence of a zero
eigenvalue reflects the underlying translation symmetry of
the system, which implies that the activity bump is margin-
ally stable with respect to uniform shifts in space (see also
Fig. 5 below). It follows that the bump will be stable if the
zero eigenvalue is simple and all other eigenvalues are neg-
ative, that is, µn(a) < |U ′(a)| for all n = 1. From Eqs. 4.2
and 4.3 we have

µ0(a)− |U ′(a)| = ∂

∂a
F (a, r)

∣∣∣∣
r=a

+ ∂

∂r
F (a, r)

∣∣∣∣
r=a

= d

da
F(a, a). (4.13)

Hence, a necessary condition for stability is dF(a, a)/ da <
0, which was previously derived by Taylor (Taylor 1999) by
considering only radially symmetric perturbations. However,
our analysis shows that when one takes into account the full
range of perturbations, this stability condition is not suffi-
cient, since it does not ensure that µn(a) < |U ′(a)| for all
n = 1. We will assume in the following that on a fast time–
scale (fixed weights), a given activity bump is stable with
respect to both radially symmetric and non radially symmet-
ric perturbations.

Euclidean symmetry

The two–dimensional isotropic and homogeneous neural field
Eqs. 2.11 and 2.12 are equivariant with respect to the product
Euclidean group E(2) × E(2) acting on the space R2 × R2

according to

Ts,s′ · (r2, r) = (r2 + s, r + s′),
Rξ,ξ ′ · (r2, r) = (Rξr2, Rξ ′r),
Rκ,κ ′ · (r2, r) = (Rκr2, Rκ ′r),

(4.14)

whereRξr denotes the planar rotation of r through an angle ξ ,
and Rκ = R± with R±(x, y) = (x,±y). The corresponding
group action on the neural fields u, v is
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Fig. 5 Perturbations �θ(r) of the boundary of a radially symmetric bump solution (it dashed circle) centered about r2 = r. a Elongation of the
bump in the horizontal direction. b Shift of bump in ψ direction

Ts,s′(u(r2|r), v(r2|r))
= (u(r2 − s|r − s′), v(r2 − s|r − s′)),

Rξ,ξ ′(u(r2|r), v(r2|r))
= (u(R−ξr2|R−ξ ′r), v(R−ξr2|R−ξ ′r)),

Rκ,κ ′(u(r2|r), v(r2|r))
= (u(Rκr2|Rκ ′r), v(Rκr2|Rκ ′r)).

Equivariance means that if (u, v) is a solution of the neural
field equations then so is η · (u, v) for all η ∈ E(2)× E(2).
In other words, the two–dimensional network has both trans-
lation and rotation/reflection symmetries. An isotropic and
homogeneous equilibrium solution of the form u0(r2|r) =
U(|r2 −r|), v0(r2|r) = V (|r2 −r|) then explicitly breaks the
symmetry group from E(2)×E(2) → E(2)with E(2) having
the group elements Ts = Ts,s , Rξ = Rξ,ξ and Rκ = Rκ,κ . We
will show below that the homogeneous equilibrium solution
can undergo a pattern forming instability that spontaneously
breaks the remaining Euclidean symmetry.

4.2 Linear stability analysis

Following along analogous lines to Sect. 2.3, we investigate
the stability of the two–dimensional topographic map by line-
arizing equations 2.11 and 2.12 about the homogeneous radi-
ally symmetric solution given by Eqs. 2.13, 2.14 and 4.1. That
is, introducing the perturbations

u(r2, τ |r) = U(|r2 − r|)+ p(r2, τ |r),
v(r2, τ |r) = V (|r2 − r|)+ q(r2, τ |r)
and expanding to first order in p, q leads to the linear equa-
tions (on setting η = 1)

∂q

∂τ
= −q(r2, τ |r)

+
∫
R2
g(|r − r′|)H ′(U(|r2 − r′|))p(r2, τ |r′)dr′,

and

p(r2, τ |r) = q(r2, τ |r)
+

∫
R2
w(|r2 − r′

2|)H ′(U(|r′
2 − r|))

×p(r′
2, τ |r)dr′

2

Using the identity

H ′(U(|r′
2 − r|)) = α−1δ(|r′

2 − r| − a)

with α = |U ′(a)|, we can reduce the above linear equations
to the form

∂q

∂τ
= −q(r2, τ |r)

+a
α

∫ 2π

0
g(|r − r2 + aeφ|)p(r2, τ |r2−aeφ)dφ

(4.15)

and

p(r2, τ |r) = q(r2, τ |r)+ a

α

∫ 2π

0
w(|r2 − r − aeφ|)

×p(r + aeφ, τ |r)dφ, (4.16)

with eθ = (cos θ, sin θ). Defining

pθ(r, τ ) = p(r + aeθ , τ |r),
qθ (r, τ ) = q(r + aeθ , τ |r) (4.17)

and setting r2 = r + aeθ in Eq. 4.16, we find that

pθ(r, τ ) = qθ (r, τ )+ a

α

∫ 2π

0
w(a|eθ − eφ|)pφ(r, τ )dφ

= qθ (r, τ )+ a

α

∫ 2π

0
w(2a sin([θ − φ]/2))

×pφ(r, τ )dφ. (4.18)

We have used the identity

|eθ − eφ|2 = 2[1 − cos(θ − φ)]

= 4 sin2([θ − φ]/2).



Spontaneous symmetry breaking in self–organizing neural fields 269

Similarly, setting r2 = r + aeθ in Eq. 4.15 gives

∂qθ

∂τ
= −qθ (r, τ )

+ a
α

∫ 2π

0
g(2a sin([θ − φ]/2))

×pφ(r + a(eθ − eφ), τ )dφ. (4.19)

Equations 4.18 and 4.19 are the two–dimensional extensions
of Eqs. 2.31–2.34.

As in the one–dimensional case (see Fig. 2), the neural
field perturbations pθ(r, τ ) can be related to perturbations of
the boundary of the activity bump, which in the case of a radi-
ally symmetric bump is in the form of a circle. Let us write
the perturbed threshold condition in the form u(r2, τ |r) = 0
at r2 = r + (a +�θ(r, τ ))eθ . This yields

0 = U(a +�θ(r, τ ))+ p(r + (a +�θ(r, τ ))eθ , τ |r)
= U(a)+ U ′(a)�θ(r, τ )

+p(r + aeθ , τ |r)+ O(�2)

which implies that

�θ(r, τ ) = α−1pθ(r, τ )

since U(a) = 0 and U ′(a) = −α. Here�θ(r) represents the
radial shift in the θ direction of the circular bump boundary
centered at r. In the special case of a small uniform shift δr of
the bump in theψ–direction, one can use a simple geometric
argument to show that �θ = δr cos(θ −ψ)+ O(δr2). Thus
the generators of a uniform shift are the perturbations e±iθ .
Similarly, the perturbations e±2iθ generate an elongation of
the bump, whereas a θ–independent perturbation generates
an expansion or contraction of the bump (see Fig. 5).

Eqs. 4.18 and 4.19 have solutions of the form

pθ(r, τ ) = eλτeik·rPθ(k),
qθ (r, τ ) = eλτeik·rQθ(k) (4.20)

with

Pθ(k) = Qθ(k)

+ a
α

∫ 2π

0
w

(
2a sin

(
[θ − φ]

2

))
Pφ(k)dφ

(4.21)

and

λQθ(k) = −Qθ(k)

+ a
α

∫ 2π

0
g(2a sin([θ − φ]/2))eiak·(eθ−eφ)

×Pφ(k)dφ.
(4.22)

Equations 4.21 and 4.22 can be analyzed further by introduc-
ing the Fourier series

Pθ(k) =
∑
n∈Z

Pn(k)einθ ,

Qθ(k) =
∑
n∈Z

Qn(k)einθ . (4.23)

This leads to the discrete set of equations

(λ+ 1)Qn(k) = α−1
∑
n∈Z

Gnn′(k)Pn′(k), (4.24)

Pn(k) = Qn(k)
1 − α−1νn

(4.25)

with

Gnn′(k) = a

∫ 2π

0
e−inθ

∫ 2π

0
ein

′φg (2a sin (θ − φ/2))

×eiak·(eθ−eφ) dφdθ

2π
(4.26)

and

νn = a

∫ 2π

0
w (2a sin (θ/2)) cos(nθ)dθ. (4.27)

Note from Eqs 4.12 and 4.27 that

νn = µn − a

∫ 2π

0
g (2a sin (θ/2)) cos(nθ)dθ. (4.28)

Moreover, the requirement that two–dimensional bumps are
stable on the fast time–scale means thatµn < α for all n = 1
and µ1 = α.

Calculation of eigenmodes: wide inputs

Determining the stability of the two–dimensional topographic
map is reduced to the problem of finding the eigenvalues of
the infinite–dimensional matrix Gnn′(k) for n, n′ ∈ Z. It is
not possible to do this analytically for general input kernel g.
However, an explicit solution can be obtained in the limiting
case of wide Gaussian inputs such that σ � a in Eq. 2.10.
We can then carry out a perturbation expansion in a2/σ 2 by
writing

g(2a sin(θ/2)) = cσ 2πA2e−a2 sin2(θ/2)/σ 2 − ĉI 2
0

≈ g(0)− ḡ(0)a2/2σ 2(1 − cos(θ))

+O
(
a4/σ 4

)
, (4.29)

where g(0) = cσ 2πA2 − ĉI 2
0 and ḡ(0) = cσ 2πA2. Keeping

only lowest order terms we find that

Gnn′(k) ≈ ag(0)
∫ 2π

0
e−inθ

∫ 2π

0
ein

′φ

×eiak(cos(θ−ϕ)−cos(φ−ϕ)) dφdθ

2π
, (4.30)

where k = (k, ϕ) in polar coordinates. The integrals over
φ and θ may now be evaluated using the following Bessel
function expansion:

eika cos(θ−ϕ) =
∑
m∈Z

(−i)mJm(ka)eim(θ−ϕ) (4.31)
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with J−m = Jm. This gives

Gnn′(k) ≈ ag(0)
∫ 2π

0
e−inθ

∫ 2π

0
ein

′φ
∑
m∈Z

(−i)mJm(ka)eim(θ−ϕ)

×
∑
m′∈Z

(i)m
′
Jm′(ka)e−im′(φ−ϕ) dφdθ

2π

= 2πag(0)(−i)n(i)n′
Jn(ka)Jn′(ka)ei(n

′−n)ϕ.
(4.32)

Similarly, substituting Eq. 4.29 into 4.28 gives to lowest order

ν0 ≈ µ0 − 2πag(0)

ν1 ≈ µ1 − πaḡ(0)
a2

2σ 2

νn ≈ µn, n > 1 (4.33)

Combining Eqs. 4.24, 4.25 and 4.32 yields a vector equa-
tion of the form

b∗(k)(b(k) · P̂(k)) = (1 + λ)̂P(k), (4.34)

where ∗ denotes complex conjugate, and

P̂n(k) = √
α − νnPn(k),

bn(k) =
√

2πag(0)

α − νn
(i)nJn(ka)e

inϕ. (4.35)

There are two classes of solution to Eq. 4.34. If b · P̂ = 0
then λ = −1 and the topographic map is stable with respect
to excitation of the corresponding eigenmodes. On the other
hand, if b · P̂ = 0 then P̂ = b∗ (up to a constant multipli-
cative factor). Substituting into the Fourier series (4.23), the
resulting eigenmode is of the formPθ(k) = P(k, θ−ϕ)with
k = (k, ϕ),

P(k, θ) = �

[
J0(ka)

α − ν0
+ 2

∑
n≥1

(−1)n
J2n(ka)

α − ν2n
cos(2nθ)

− 2
∑
n≥1

(−1)n
J2n−1(ka)

α − ν2n−1
sin((2n− 1)θ)

]
,

(4.36)

where � is an arbitrary amplitude. The corresponding eigen-
value is λ = λ(k) with

λ(k) = −1 + |b|2 = −1 +
∑
n∈Z

2πag(0)

α − νn
Jn(ka)

2. (4.37)

The Bessel functions Jn for n = 0, 1, 2 are plotted in Fig. 6.
For the sake of illustration, suppose that νn < α for all

n ∈ Z. This is plausible given Eq. 4.33 and the conditions on
µn. Equation (4.37) implies that if g(0) < 0 then the topo-
graphic map is stable since λ(k) < 0 for all k. On the other
hand, if g(0) > 0 such that λ(kc) = maxk λ(k) > 0 then the
topographic map is unstable and the fastest growing eigen-
modes have the critical wavenumber kc. Recall from Sect.
4.1 that α = µ1. It then follows from Eq. 4.33 that ν1 ≈ α

and the dominant contribution to the sum in Eq. 4.37 will
arise from the n = 1 term, at least distance from the zeros
of J1(ka). Hence, kc is approximately given by the point at
which the first order Bessel function attains its global max-
imum, that is, |J1(akc)| = maxk |J1(ak)|. Fig. 6 shows that
kc ≈ 3/a. One of the major differences between the linear
theory of one–dimensional and two dimensional topographic
maps, is that in the latter case the eigenvalues λ(k), k = 0,
have an infinite degeneracy that reflects the additional rota-
tion symmetry of the system. That is, all eigenmodes Pθ(k)
with |k| = k have the same eigenvalue. It follows that the
pattern forming instability will be dominated by some lin-
ear combination of eigenmodes lying on the critical circle
|k| = kc:

pθ(r) =
N∑
i=1

(
zie

iki ·r + z∗i e
iki ·r)P(kc, θ − ϕi), (4.38)

where ki = (kc, ϕi) and zi is a complex amplitude. Suppose
that each eigenmode can be approximated by the first three
terms of Eq. 4.36 so that

P(kc, θ) ≈ �

[
J0(kca)

α − ν0
+ 2J1(kca)

α − ν1
sin(θ)

−2J2(kca)

α − ν2
cos(2θ)

]
, (4.39)

The first term generates an expansion of the bump, the second
term generates a uniform shift of the bump and the third term
generates an elongation of the bump (see Fig. 5). In gen-
eral, we expect the eigenmode (Eq. 4.39) to be dominated
by the first harmonic term sin(θ), since ν1 ≈ α. However, if
ν2 ≈ α as well, then there could also be a significant contribu-
tion from the term cos(2θ). Thus the spontaneous symmetry
breaking mechanism has the potential for generating elon-
gated receptive fields that are consistent with the formation
of orientation columns. Moreover, since each eigenmode in
the sum (Eq. 4.38) then represents an elongation in the direc-
tion ϕi or π/2 + ϕi (depending on the sign of its associated
coefficient z(r) = zieiki ·r + z∗i e

iki ·r), it follows that there is
some complicated variation in the preferred orientation as r
varies across the cortex. We note that the emergence of orien-
tation selectivity in self–organizing neural fields has recently
been demonstrated numerically (Fellenz and Taylor 2002).
However, whether or not such a model can reproduce the
detailed structure of orientation maps found experimentally
remains to be established. For example, it might be neces-
sary to develop a more detailed model that takes into account
separate ON and OFF pathways as previously considered by
Miller using correlation–based methods (Miller 1994).

Calculation of eigenmodes: narrow inputs

As in the one–dimensional case, if the excitatory inputs be-
come sufficiently narrow then the topographic map is stable
in the presence of feedforward inhibition. In the absence of
such inhibition (ĉ = 0), it is possible to find an approximate
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Fig. 7 Action of a rotation by ξ : pθ (r) → pθ ′ (r′)where (r′, θ ′) = (Rξ r, θ+ ξ). Here r represents the position of the center of a two–dimensional
bump and pθ represents the perturbation of steady–state activity at a point θ on the boundary of the bump

solution for the eigenmodes in the limit of narrow inputs
(σ � a) to determine the dominant eigenmode. For sim-
plicity, we take the excitatory input kernel ḡ to be a narrow
step function rather than a Gaussian such that ḡ(|r|) = g0
if |r| < σ and zero otherwise. Under this approximation,
g(2a sin([θ − φ]/2)) = g0 for φ ≈ θ ± σ/a and is zero
otherwise. Substitution into Eq. 4.26 shows that

Gnn′(k) ≈ g0a

∫ 2π

0
e−inθ

∫ σ/a

−σ/a
ein

′(θ+ψ)

eiak[cos(θ−ϕ)−cos(θ+ψ−ϕ)] dψdθ

2π

= g0a

∫ 2π

0
e−inθ

∫ σ/a

−σ/a
ein

′(θ+ψ)(1

+iak sin(θ + ϕ)ψ + O(ψ2))
dψdθ

2π

= 2g0a
sin(nσ/a)

n
δn,n′

+g0a
2k

(
δn′,n−1eiϕ − δn′,n+1e−iϕ)

× 1

in′

(
σ cos(n′σ/a)

a
− sin(n′σ/a)

n′

)

+ · · ·
= g0a

[
2σ

a
δn,n′ + O([σ/a]3)

]
. (4.40)

Note in particular that the O([σ/a]2) term is zero. Substitu-
tion into Eq. 4.24 and using Eq. 4.25 implies that to lowest
order in σ/a, the eigenmodes are k–independent and of the
form einθ with corresponding eigenvalues

λn = −1 + 2g0σ

α − νn
(4.41)
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Given that νn = µn + O(σ/a) (see Eq. 4.28) and µ1 = α, it
follows that the dominant eigenmode is going to be n = 1,
which represents a uniform shift in the topographic map. We
conclude that even in the absence of feedforward inihibition,
destabilization of the topographic map cannot generate elon-
gated receptive fields nor an associated orientation map if the
excitatory inputs are too narrow.

Euclidean shift–twist symmetry

The basic structure of the eigenmodes pθ(k) can be under-
stood from a more general group theoretic perspective by
noting that the linear equations 4.18 and 4.19 are equivari-
ant with respect to the so–called shift–twist action of the
Euclidean group E(2) on the space R2 × S1 (Bressloff et al.
2001a,b):

Ts · (r, θ) = (r + s, θ),
Rξ · (r, θ) = (Rξr, θ + ξ),
Rκ · (r, θ) = (Rκr,−θ),

(4.42)

where Rκ(x, y) = (x,−y). The corresponding action on the
fields pθ(r) and qθ (r) is

Ts · (pθ (r), qθ (r)) = (pθ (r − s), qθ (r − s)),

Rξ · (pθ (r), qθ (r)) = (pθ−ξ (R−ξr), qθ−ξ (R−ξr)),

Rκ · (pθ (r), qθ (r)) = (p−θ (Rκr), q−θ (Rκr)).

It can be seen that the rotation operation comprises a trans-
lation or shift of the angle θ to θ + ξ , together with a rota-
tion or twist of the position vector r by the angle ξ . This is
illustrated in Fig. 7. One of the consequences of the under-
lying Euclidean symmetry is that the associated eigenfunc-
tions form irreducible representations of the shift–twist group
action (Bressloff et al. 2001a,b). This explains why the eigen-
modes Pθ(k) have the basic structure given by Eq. 4.36, with
the angular variable θ coupled to the direction of the wave-
vector k. Interestingly, there is growing evidence that there
is a coupling between orientation and topography consistent
with an underlying rotational shift–twist symmetry (Bosking
et al. 1997; Lee et al. 2003), as highlighted in the discussion
below.

5 Discussion

In this paper we have extended the theory of self–organiz-
ing neural fields in order to investigate from a mathemati-
cal perspective the possible joint emergence of topography
and feature selectivity through spontaneous symmetry break-
ing. We first showed how a binocular one–dimensional topo-
graphic map can undergo a pattern forming instability that
breaks the underlying Z2 symmetry between left and right
eyes.This leads to the spatial segregation of eye specific activ-
ity bumps consistent with the emergence of ocular dominance
columns. We then showed how a two–dimensional isotropic
topographic map can undergo a pattern forming instability

that breaks the underlying rotation symmetry. This leads to
the formation of elongated activity bumps consistent with
the emergence of orientation preference columns. A partic-
ularly interesting property of the latter symmetry breaking
mechanism is that the linear equations describing the growth
of the orientation columns exhibits a rotational shift–twist
symmetry, in which there is a coupling between orientation
and topography. A recent statistical analysis of orientation
preference maps in primates indicates that there are correla-
tions between the direction of the topographic axis joining
pairs of columns with similar orientation preferences and
their common orientation (Lee et al. 2003). Thus the orienta-
tion preference map exhibits a form of rotational shift–twist
symmetry as predicted from our analysis of two–dimensional
topographic maps. Numerical simulations of a feature–based
dynamical spin mode has led to the suggestion that such a
symmetry could help to stabilize the emerging orientation
preference map with its associated set of pinwheels (Lee et
al. 2003). As previously shown by Wolf and Geisel (Wolf and
Geisel 1998), in the absence of such a coupling, the pinwheels
typically annihilate in pairs. Hence, in order to maintain pin-
wheels, either development has to be stopped or one has to
introduce inhomogeneities that trap the pinwheels. (Note that
Thomas and Cowan (Thomas and Cowan 2004) have recently
analyzed a spin model with a different form of rotational cou-
pling between orientation and topography, and shown how
dislocations in the topographic map can occur).

Another aspect of cortical structure that appears to exhibit
shift–twist symmetry is the distribution of patchy horizon-
tal connections found in superficial layers of cortex. Optical
imaging combined with labeling techniques has established
that these connections tend to link cells with similar feature
preferences (Malach et al. 1993;Yoshioka et al. 1996). More-
over, in tree shrew and cat there is a pronounced anisotropy in
the distribution of patchy connections, with iso–orientation
patches preferentially connecting to neighboring patches in
such a way as to form continuous contours along the topo-
graphic axis (Bosking et al. 1997). There is also a clear anisot-
ropy in the patchy connections of owl (Sincich and Blasdel
2001) and macaque (Angelucci et al. 2002) monkeys. How-
ever, in these cases most of the anisotropy can be accounted
for by the fact that V1 is expanded in the direction orthog-
onal to ocular dominance columns. It is possible that when
this expansion is factored out, there remains a weak anisot-
ropy correlated with orientation selectivity but this remains
to be confirmed experimentally. Interestingly, the recently
observed patchy feedback connections from extrastriate areas
in macaque tend to be more strongly anisotropic (Angelucci
et al. 2002); it is likely that the patchiness again signifies
that feedback correlates cells with similar feature preferences
(Shmuel et al. 1998). It has been shown elsewhere that the
shift–twist symmetry of anisotropic horizontal connections
has a nontrivial affect on the dynamics of neural activity in
visual cortex (Bressloff et al. 2001a,b, 2002). It would be
interesting to extend the analysis of this paper in order to
determine how such connections self–organize through Heb-
bian learning. This will require treating both feedforward
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and intracortical connections as adaptive (Bartsch and van
Hemmen 2001), rather than keeping the latter fixed.
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